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Abstract
Methods for identifying meaningful growth patterns of longitudinal trial data with both nonignorable
intermittent and drop-out missingness are rare. In this study, a combined approach with statistical
and data mining techniques is utilized to address the nonignorable missing data issue in growth pattern
recognition. First, a parallel mixture model is proposed to model the nonignorable missing
information from a real-world patient-oriented study and concurrently to estimate the growth
trajectories of participants. Then, based on individual growth parameter estimates and their auxiliary
feature attributes, a fuzzy clustering method is incorporated to identify the growth patterns. This case
study demonstrates that the combined multi-step approach can achieve both statistical gener ality
and computational efficiency for growth pattern recognition in longitudinal studies with nonignorable
missing data.
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1. Introduction
Missing data commonly occur in patient-oriented research and studies with longitudinal
designs. For decades, different statistical methods utilizing the missing patterns and
mechanisms have been proposed to address missing data, ranging from simple listwise deletion
to the currently popular maximum likelihood (ML) or Bayesian model-based multiple
imputation (e.g. References 1-8). The missing patterns, such as univariate, monotone, or
arbitrary patterns, are used to depict which values are missing or observed in the data. The
missing mechanisms express the relation between missingness and the values of variables in
the data. These mechanisms are categorized formally as missing completely at random
(MCAR), missing at random (MAR), and nonmissing at random (NMAR). In this literature,
NMAR is also called nonignorable or informative drop-out, while MCAR and MAR are termed
as ignorable or noninformative drop-out.5, 6, 9-11 Historically, the simple listwise or pairwise
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deletion for an ad hoc complete-case analysis can be applied under MCAR assumption, but
this simple procedure results in serious bias when the missing rate is high.

Here, we illustrate an analytic approach that addresses the nonignorable missing data issue
using a longitudinal, patient-oriented case study where the purpose is to identify substantive
latent growth patterns. This example data set is a prototype of longitudinal data sets where a
large proportion of data is missing due to a potentially NMAR mechanism. In other words, the
missingness is dependent on the missing values of the variable of our interest, which is
nonignorable and informative. In this repeated trial data study, the NMAR missing data are
from the dependent variable (i.e. the repeatedly observed response variable), but not from the
attributes.12 Also, the missingness includes two types: (a) intermittent missingness (i.e.
occasional missing and can relapse) and (b) drop-out missingness (i.e. premature withdrawal
and never relapse). To solve this issue, conventional weighting methods may be applied but
only when covariate information is limited and sample size is large. 13-16 Weighting methods
for use with MAR or NMAR, such as those based on generalized estimating equations (GEE),
have recently been developed. However, the semiparametric estimator employed by these
methods can be less efficient and less powerful than ML or Bayesian estimation under correctly
formulated parametric models (e.g. References 17-21).

Imputation methods also are used to handle missing data, and can be grouped into single,
resampling, or multiple imputations. These methods now are utilized primarily under the MAR
assumption. Single imputations, such as mean, regression, and hot deck imputation, do not
account for imputation uncertainty, and therefore, can cause bias and lose statistical precision.
5, 14, 22-24 Both resampling and multiple imputations can estimate the imputation uncertainty.
However, resampling imputations, such as bootstrap and jackknife, rely on large samples and
are computationally intensive. 25-28 Multiple imputation is less computationally intensive than
resampling, and as long as the proportion of missing information is small, multiple imputation
results are robust even if MAR fails.6, 29-32 However, under MAR, substantial problems with
bias, efficiency, and coverage can arise when missing information exceeds 25% or the
correlation between missingness and the dependent variable is greater than 0.4.33

To address the absence of a satisfactory way, we propose a new approach using a parallel
mixture model (PMM) to deal with the NMAR problem. The PMM is utilized to generate
growth parameter estimates for each subject by considering both observed and NMAR missing
values of the repeated measures in parallel, so that each subject has complete growth factors
used for depicting their own growth trajectories. However, a purely statistical modeling
approach is inadequate as the PMM has a computational disadvantage in growth pattern
recognition when a large number of attributes are also considered.

Some have proposed a purely data mining approach, but the most common techniques in the
data mining field rely on preprocessing methods, which adopt the same principle of listwise/
pairwise deletion and single imputation (e.g. References 34 and 35). Although investigators in
a few recent data mining studies (e.g. Reference 36) acknowledge the potential harm of
contributing to the appearance of completeness based on these inadequate preprocessing
methods, use of these strategies in data mining has not been scrutinized adequately, either
empirically or theoretically. Furthermore, missingness under the NMAR mechanism largely
has not been addressed in this work. With complete data and especially with a greater number
of attributes, data mining techniques are more computationally efficient than PMM to identify
growth patterns. Therefore, one of data mining techniques, the fuzzy C-means (FCM)
clustering, is incorporated in our study to conduct the cluster identification when more
attributes (e.g. covariates) are included, in order to improve computational efficiency.
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Thus, the actual motivating rationale of this research is any longitudinal data set used for growth
pattern recognition with two characteristics: (1) Informative NMAR missing data on a
repeatedly measured response variable, where both intermittent and drop-out missingness
coexist and (2) more attributes are used to identify growth patterns along with the subjects'
growth profiles. The goal here is to combine the merits of modern statistical methods with the
data mining techniques to model the missing data under NMAR mechanism, and effectively
identify unique growth patterns in longitudinal designs. This multi-step approach was applied
to an observational study, designed to assess stress regulation patterns in the neonatal period
(from birth to 1 month of age) among those exposed to tobacco during pregnancy and those
not. The study had a high proportion of NMAR missing data. Combining the PMM and FCM
along the lines we proposed, the procedure appears to adequately address the NMAR missing
problem while achieving accurate growth pattern recognition.

In the next section, the theoretical background of PMM is proposed and compared with the
pattern mixture model that is conventionally used under NMAR, and in Sec. 3, the FCM
clustering method is discussed. To evaluate the utility of this method, in Sec. 4, the step-wise
PMM and FCM clustering method is applied in an empirical case study to identify clusters
with post-hoc statistical analyses. The final section includes discussion of these results and
conclusions.

2. Parallel Mixture Model
2.1. Conventional NMAR model

To illustrate the PMM model, conventional NMAR models are reviewed briefly in order to
understand the development and principles of PMM. Introduced in the early 1980s, pattern
mixture and selection models are the two major NMAR models commonly used. Only pattern
mixture models are discussed here as they do not require detailed specification of missing
mechanism and their likelihood function tends to be more convenient to maximize than
selection models.1, 5, 10, 37-41 Pattern mixture models proposed in missing data context have
specific implications regarding both (a) the observed patterns of missing data, and (b) the
mixture of the distribution of the observed data under different missing patterns and the
distribution of the occurrence of missing patterns. The two implications are expressed
mathematically via the following expressions.6

Definition 1. Let M denote the categorical variable that identifies the missing patterns, Y denote
the complete data that include the observed values Yobs and missing values Ymis, Y = Yobs +
Ymis. If the unknown parameters ξ and ω are associated with Y and M, respectively, and assume
the observations are modeled independently, then

(1)

(2)

Equation (1) shows the independence among the observations i; Equation (2) expresses the
joint distribution of yi under different missing patterns mi, f(yi|mi, ξ) and the occurrence of the
missing patterns, f(mi|ω).

In a longitudinal study, considering the random effects for the repeated measures data and the
missing values, the pattern mixture model can be redefined as below.
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Definition 2. Let subject i have repeated measures yi = (yi1, …, yit) at time t, and let  and
 denote the observed and missing values of yi, xj, the fixed covariates. Let mi denote the

missing indicator, bi denote the random coefficients varying across the subjects, and ξ, ω, and
τ denote the unknown parameters associated with Y, M, and b, respectively. Then

(3)

The first two terms describe the joint distribution of yi and bi given missing pattern mi; the last
term reflects the distribution of missing patterns. There are two kinds of nonignorable
missingness in longitudinal studies, according to Little and Rubin.6 One is that M depends on
the outcome Y, that is,

(4)

The other assumes that the probability of missingness depends on the underlying random
coefficients (or latent continuous variable) bi,

(5)

To apply the above pattern mixture model in a practical longitudinal study, the first step is to
divide the subjects into groups based on the missing patterns. These groups, then, can be used
to examine the effect of missing patterns on the outcomes, to evaluate the group-by-time
interaction related to the missing patterns, to estimate and compare models of different missing
patterns, or even to obtain the overall estimates averaged across the missing patterns. This
pattern mixture approach has been utilized in multiple regression, structural equation models,
and multilevel models in longitudinal studies.42-44 These analyses can be implemented in
current statistical packages such as SAS 9.1 45 and Mplus 5.0.46 The disadvantage of using
pattern mixture models is that the missing pattern grouping must be conducted before modeling
and the identification of groups in the data processing step is subjective, which can be
problematic particularly when sample size in groups is small.43

2.2. Parallel mixture model
Unlike the pattern mixture models, the PMMs empirically identify clusters of subjects (i.e.
latent groups) in the modeling process itself. Muthén 47, 48 has proposed a two-part growth
mixture model to handle the problem of zero-inflation. We propose PMM to estimate the
individual growth parameters using an NMAR missing data set. With PMM, the nonignorable
missingness also is assumed to depend on a latent categorical variable ci in addition to the latent
continuous variable bi and the outcome yi as discussed above.

Definition 3. Let subject i have repeated measures yi = (yi1, …, yit) at time t, where , ,
mi, bi are defined as above. Let ci = (ci1, ci2, …, cik) be a latent categorical variable, where
cik = 1 if subject i belongs to cluster k and zero otherwise. Then

(6)

Assuming mi only depends on ci, byi, and bmi for Y and M part, respectively, and xj are not
considered at this stage in this research, Equation (6) can be simplified as
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(7)

As implied in (7), both the Y and M parts of the model are influenced by ci. In general, ci can
be defined for the Y (cyi) and M parts (cmi), respectively. In this case study, ci is defined only
by the Y part while the M part only gives the cluster information.

Under the general latent model framework, the growth model for Y part can be expressed as
follows:

(8)

(9)

where yi is a t × 1 vector of repeated measures for subject i; Λyk is a t × q design matrix of the
Y part for growth parameter loadings for each subject. For example, Column 1 of Λyk contains
intercepts with value of 1; Columns 2 and 3 are parameter vectors associated with slope and
quadratic terms, respectively; byi is defined as a q × 1 vector of Y part containing the continuous
latent variables. For example, the byi vector can include intercept, slope, and quadratic growth
parameters for each subject. ayk is a q×1 matrix containing the growth factor means in the kth
cluster. Finally, εi is a t × 1 vector of measurement errors for each i, εi ~ (0, Φk) and ζi is a
vector of residuals for subject i in the kth cluster, ζii ~ (0, ψk,), and both εi and ζi are assumed
uncorrelated with other variables. As a relatively high portion of NMAR missing values exist
in this case study with a medium sample size, the bootstrap standard errors are calculated for
the growth parameter estimates and parameter estimates of attributes.49, 50

For the M part, let mi denote is a t × 1 vector of binary categorical outcome for subject I, where
t is the number of time points. Given ci and bmi in this study, the conditional independence for
ui, in symbol, is

(10)

In general, mit can follow an ordered polytomous logistic regression and in this study mit
follows binomial logistic regression. Let mi* be a t × 1 logit vector mi, Amk be a t × q design
matrix for growth parameter loadings for each subject, κmk be a q × 1 matrix containing the
means for the logit coefficients in the kth cluster and bmi be a q × 1 vector of logit coefficients
of M part. Given the subject is in cluster cj = k, the model for mi, in symbol, is

(11)

(12)

Ignoring the residual terms and conditioning on ci, Equations (11) and (12) imply that the logits
mi* do not vary across subjects instead across clusters, ci. To implement the PMM, the usual
EM algorithm for the regular ML under MAR and ignorability need to be revised to take into
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account the updated E step information on ci, as the missingness cannot be ignored when
conditioning on ci.

To sum up, the rationale for applying PMM to NMAR missing data without the attributes xj is
as follows: First, NMAR missing data is common in longitudinal studies, and there is
substantial interest in estimating the growth parameters byi rather than using a number of
observed repeated measures in growth pattern recognition, because (a) the estimated growth
parameters generated from PMM consider nonignorable missing information; (b) an optimal
data reduction can be achieved (e.g. 10-dimensional repeatedly measured response variables
over time can be reduced to three-dimensional individual growth parameters). Second, after
the first step — PMM modeling, all subjects have complete data on their own growth
parameters with statistical generality, which will further facilitate the next step, the fuzzy
clustering procedure that performs better with high-dimensional but complete data.

3. Fuzzy Clustering
At the first step, the subjects with missing repeated measures were assigned estimated growth
parameters using PMM. In other words, with the post-hoc complete data set in which each
subject has growth parameters and their original corresponding attributes, we can combine the
data mining techniques to efficiently conduct the cluster identification procedure.

For this working example, given five-dimensional covariates xj, and three-dimensional b̂yi =
(b̂0i, b̂1i, b̂2i) where b̂0i, b̂1i, b̂2i represent intercepts, slopes, and quadratic estimates, an eight-
dimensional data matrix for cluster partition was obtained. Two main clustering methods are
available for partition: hard clustering that divides the data set into mutually exclusive subsets
and fuzzy clustering that allows the subjects to simultaneously belong to several subsets, but
with different degrees of membership. In practice, fuzzy clustering better reflects the real-world
circumstance where an individual can have membership in different clusters but with different
degrees, and therefore, was selected.

FCM has been proved to be a valid, analytically tractable and computationally efficient
clustering method and can solve nonlinear optimization problems using Lagrange multipliers.
51, 52 This technique has been frequently used in pattern recognition (e.g. References 53-61)
and was therefore applied here. Let X denote the eight-dimensional working data set, X =
(b̂0i, b̂1i, b̂2i, x1i, x2i, …, x5i), V denote the cluster centroids, V = (v1, v2, …, vk) and k represent
the kth cluster, and U denote the degree of membership for subjects i (i = 1, 2, …, n) in the
respective clusters k, U = (μ11, μ12, …, μik), 0 ≤ μik ≤ 1, ∀i, k. Let w denote the weight exponent,
and A denote the norm-inducing matrix.51 The objective function to be minimized is

(13)

where |xi − vk
2| is the Euclidean distance (equivalent to the variance) and μik is constrained as

follows:

(14)

Using Lagrange multipliers, the stationary points of Equation (13) are identified by combining
the constraint (14) to f and setting the gradients of f′ with respect to U, V and λ to zero; that is,
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(15)

The specific algorithm is well known and is applied as follows: Given the eight-dimensional
working data set X, the number of clusters 1 < k < c, the weighting exponent w > 1, the
termination tolerance ε < 0 and the norm-inducing matrix A.

Step 1. Initialize U matrix such that U(0).

Step 2. Compute the cluster centroids

(16)

Step 3. Compute the distances

(17)

Step 4. Update the partition matrix U(0) to U(1) until ∥ U(1) − U(0) ∥ < ε

(18)

Step 5. Repeat Steps 2–4 h times.

With the results from above fuzzy clustering, that is, cluster centroids vk, membership degree
values μik, and the distances Dik, the fuzzy Sammon mapping technique 62 was applied to map
the eight-dimensional data space to the desired two-dimensional plane for visualization. Also,
two validation coefficients were used to validate the optimal number of clusters by considering
the clustering errors: Classification entropy (CE),63, 64 Xie and Beni's index (XB).65 CE
measures the fuzziness of the cluster partition and the larger the value, the closer to optimal
the number of clusters. Symbolically,

(19)

where n is the number of subjects and μij has the same meaning as above. The drawback of CE
is that it increases monotonically with the increase of number of clusters and lacks a direct
connection to the data. XB, which quantifies the ratio of the total variation within clusters and
the separation of clusters, where the smallest value indicating the optimal number of clusters,
is more suitable and hence, a widely used index for fuzzy clustering. The index can be expressed
as:

(20)
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where the symbols have the same meaning as above and the denominator stands for the
minimum distance between cluster centroids. Both CE and XB coefficients were used in this
study for the cross-validation purposes.

4. Application in a Case Study
The advantages of combining the PMM and FCM techniques are demonstrated in the following
case study. As a part of a project funded by the National Institute of Drug Abuse (Espy,
Principal Investigator) to delineate the impact of prenatal tobacco exposure on change in
neonatal regulation, a systematic assessment, the Neonatal Temperament Assessment (NTA;
adapted from Reference 92), was administered to neonates at birth, 2 weeks, and 4 weeks of
age. In particular, the NTA Stressor module is designed specifically to evaluate the neonate's
regulatory response to a mid-intensity stressor, where a metal disc is immersed in ice water
and is applied to the neonate's thigh for a total of five trials. This module was selected for
analysis because its requirements for administration and resultant NMAR data. Because this
module is administered in a fixed sequence after last feeding, the neonate's initial state before
application provides meaningful information regarding his or her regulatory abilities. In this
study, multiple measures of prenatal exposure were available for use as attributes in the
clustering algorithm. In addition to the basic exposure group membership, maternal self-
reported tobacco use and urinary cotinine levels (a metabolic by-product of nicotine, the main
psychoactive compound in tobacco) were collected at 16 weeks, 28 weeks, and delivery.

4.1. Outcome and attributes
On the NTA Stressor module, “latency to soothe” (in seconds) is scored on each of the five
cold-disc trials. The outcome variable, “latency to soothe” is calculated as the average of these
latencies over the five trials to reduce measurement errors. Thus, each neonate has three average
latency scores, representing the value at the birth, 2-week, and 4-week age points. The NMAR
missing data for these latency scores will be explained in Section 4.2. Although more repeated
measures should exhibit the merits of data reduction in the PMM modeling (e.g. from 10
observed repeated measures to 3 latent growth parameters), this case study is intended as an
example where the growth parameter estimates can be inferred based on the missing data using
the PMM.

Five attributes were added in the fuzzy clustering procedure. “PTE” represented the tobacco
exposure group status, coded as 1 for tobacco-exposed and 0 for nonexposed, respectively. The
other predictor, “COT,” represented the cotinine level in ng/mL analyzed from maternal urine
collected around the 28th week of pregnancy, which biochemically indexed of the amount of
tobacco exposure at the cusp of the second and third trimesters. Among the attributes, “ED”
was the mothers' educational attainment in years. “ALCHX” indicated mothers' pre-pregnancy
drinking history in the month prior to the mothers' last menstrual period, with 1 coded for those
who reported drinking and 0 for nondrinkers. “MJ” specified whether the mother reported
marijuana use during pregnancy or whose neonate tested positive for marijuana in meconium
samples collected at birth (coded as 1) vs those who did not (coded as 0).

4.2. Missingness for the NTA stressor module
4.2.1. Trial level missingness—Several aspects of the stressor module design contributed
to the observed missingness in the case study data, resulting in both intermittent and drop-out
missingness Within the module at any given age, some neonates were too irritable at the outset
of the module that precluded administration of the cold-disc trials. In these cases, each of the
trials within the module had missing latency to soothe values. For others, over the course of
the stressor module, some neonates were not consoled by the end of the 3-minute trial, and
therefore, the stressor module was terminated. In these cases, the remaining trials of the module
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had missing latency to soothe values. Finally, some neonates did not become irritable to the
application of the cold-disc within the allotted time on a given trial. In these cases, the latency
to soothe value for that trial was missing. In each of these circumstances, informative missing
values were assigned to the subjects for the trial in order to calculate the outcome measure.
Since a dependence between missingness and stress regulation ability, the key outcome
variable being measured, seems plausible and cannot be ruled out, it is prudent to start the
analysis with the presumption that NMAR exists.

4.2.2. Missingness at the module level—As the trial-level descriptions indicate, there
are two easily discernable NMAR missing situations that result for the module outcome. The
first reflects neonates who were too irritable to be administered the stressor module at all, and
thus have a missing average latency value for that module. The other in volves those who did
not once respond with irritability to the cold-disc stressor on any of the module trials, and thus
never needed to be consoled. The average latency would be missing in this situation as well,
though for an entirely different reason than the first. There is a third circumstance, where on
at least one trial, the neonate never became irritable to the cold-disc within the allotted time,
but on another trial became irritable but could not be consoled within the allotted trial time and
then the module was terminated. The end result is a missing latency value for these key trials,
but due to both a blend of the “nonirritable” to the stressor missing and the “too irritable/not
soothable after the stimulus was removed” missing situations. For the purposes here, the latency
to soothe outcome for these cases was treated as though it was missing because of too irritable,
as that was the circumstance that precluded further completion of the administration of the
stressor module.

4.2.3. Missing rates—The missing values on the repeated measure stress regulation
outcome variable are the primary concern. For the 266 cases completed to date, only 12 (4.5%)
subjects had nonmissing average latency values for all three assessments. If a listwise deletion
method were used, the sample size would drop to 12, which clearly results in a loss of
substantial subjects and information about the outcome. A total of 61 (22.9%) subjects had
missing values on all trials of only one assessment, and therefore, were missing the average
latency outcome score at one age point only. Another 111 (41.7%) subjects were missing
average latency value for two assessments. A fair number of subjects (82; 32.8%) were missing
an average latency to soothe outcome value for all three assessments. For each assessment,
more infants were missing an average latency score than those who were not; that is, 59.8%,
69.9%, and 69.2% of subjects had a missing outcome value at birth, 2 weeks and 4 weeks of
age, respectively.

As the missing average latency to soothe values reflect two different missing data
circumstances (i.e. “not irritable” or “too irritable/not soothable”), these two categories of
missingness must be separated for appropriate treatment in the analyses to follow. The missing
trial latency to soothe values for “too irritable/not soothable” subjects were assigned a value
of 181 (in seconds) because this designated threshold just exceeded the a priori trial 3-minute
time limit and reflected the persistent irritability of the subjects. These values were retained to
aid in the estimation procedures of the modeling and clustering demonstration that follows.
For “nonirritable” subjects, their missing values were kept as missing in order to distinguish
these groups.

4.3. Parallel mixture model vs pattern mixture model for the NTA stressor module
4.3.1. Pattern mixture model for the NTA stressor module—On t repeated measures,
there are 2t possible missing patterns over time. In this study, three waves of data collection at
birth, 2-, and 4-weeks of age were considered and eight missing patterns were observed with
corresponding frequencies displayed in Table 1, where “O” stands for observed values for the
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Stressor module across data waves and “M” represents missing values. The eight observed
missing patterns were used by pattern mixture models. After separation of the two missing
conditions as described above, there were 144 subjects with experimental records.

Due to the sparseness of four patterns (MMO, MOM, OMM, and MMM), they were grouped
into one single group called “Combined Group (CG),” representing subjects who had missing
stressor modules for at least two assessments (for detailed grouping criteria and implementation
of pattern mixture model, see Reference 43. Based on Definitions 1 and 2 and assuming no
covariates at the stage, Equations (3) and (5) can be simplified as

(21)

(22)

Using a multilevel representation with the dummy-coded grouping variable for the five missing
patterns, M, the model could be expressed as:

(23)

(24)

(25)

(26)

where yti is the outcome variable, latency to cry and t represents time. Parameters are the
random coefficients b0i, b1i, and b2i (the latent continuous variables) for intercepts, slopes, and
acceleration/deceleration of the ith subject; β0, β2, and β4 are the mean parameters for b0i,
b1i, and b2i when Mi= 0, i.e. subject i belongs to Pattern OOO; β1, β3, and β5 are the mean
differences in intercepts, slopes, and acceleration/deceleration among the missing-pattern
groups. The level-1 error terms εti are assumed to be independent of level-2 error terms ν, where
εti ~ (0, σ2) and ν ~ (0, ψ). The model allows individuals to deviate from the missing-pattern
group trend in terms of ν0i (intercepts), ν1i (slopes), and ν2i (acceleration/deceleration). This
model could be implemented in Mplus(5.0) using multiple group analysis or SAS(9.2) using
PROC MIXED or PROC GLIMMIX.66 As mentioned earlier, the subjects' growth parameters
estimates b̂0i, b̂1i, and b̂2i were the primary concern. The partial output of individual growth
parameter estimates based on the observed missing patterns from the pattern mixture model
was listed in Table 2. The output showed a substantial number of negative estimates for the
intercepts, which did not conform to the actual design, where the initial status of the latency
to soothe variable should have been at least zero if the subject was not irritable at all.

4.3.2. Parallel mixture model for the NTA stressor module—Then, the PMM was
applied to the same data. Based on Definition 3, the latent categorical variable ci was introduced
into the model, instead of grouping subjects into observed missing pattern categories a

Fang et al. Page 10

Int J Inf Technol Decis Mak. Author manuscript; available in PMC 2010 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



priori. To visualize the Y -part and M-part models expressed in Equations (7)-(12), refer to the
diagram in Figure 1.

As depicted in Figure 1, the Y part and M part of PMM are separated by the black line but
associated by the latent variables in the dashed ellipse, where iy, sy, and qy represent the
continuous latent variables for each subject (i.e. byi in Equations (7)-(9)), and im, sm, and qm
represent bmi in Equations (10)-(12). ei, es, and eq are the bootstrap standard errors associated
with the continuous latent variables. Each latent variable in the respective circles has indicators
y1–y3 representing the three repeated measures outcomes, or indicator m1–m3 representing
missing. Residuals of each measure are represented by ε1–3 in squares; double-arrowed curve
lines represent correlation/covariance among latent variable and single-arrowed lines represent
estimated path values. The two single-arrowed lines point to byi and bmi from ci, as assumed
earlier, represent that ci is defined by the Y part but the M part gives the cluster information.

The PMM for individual growth parameter estimation was implemented in Mplus 5.0. Local
maxima often are encountered in mixture modeling, especially with an increasing number of
latent clusters. For ci = k ≥ 2, this study used 10,000 random sets of starting values at the initial
stage and 1000 optimizations at the final stage, respectively.46, 67 All estimates in this study
were obtained avoiding the local maxima and five clusters were found. The growth parameter
estimates for each subject were much more reasonable than those from pattern mixture models.
For example, the intercepts estimates were not negative, consistent with the experimental
design (see Table 2).

4.4. Fuzzy clustering for NTA stressor module
At the second step, fuzzy clustering was conducted by considering individual growth
parameters estimated from PMM model and the five attributes: “PTE,” “COT,” “ED,”
“ALCHX,” and “MJ” (i.e. eight-dimensional X in Equations (13)-(15)). The FCM algorithm
was implemented in Matlab (6.5) to obtain the fuzzy clusters within 15 sec.

Two coefficients, CE and XB index were used to identify the latent clusters by considering
clustering errors. The CE monotonically increased with the number of clusters. However,
above five clusters, the value of CE increased slowly (see Figure 2). The XB curve reached its
lowest point at five clusters and then increased. Based on these two indexes, five clusters were
clearly optimal.

To view the five clusters of the eight-dimensional data space, fuzzy Sammon mapping was
applied to obtain the two-dimensional plane shown in Figure 3. As displayed in Figure 3, the
asterisk spots represent the projected centroids and the dots representing subjects are clustered
within each cluster. The values on the two axes are the projected normalized scores for these
subjects.

The growth patterns of these five clusters are displayed in Figure 4. The persistently highly
irritable, nonsoothable cluster (diamond line) includes those subjects whose average latency
to soothe was around 180 sec, consistently across the three assessment age points. At the
bottom, persistently nonirritable cluster (circle line) represents those whose values were below
20 sec across the three assessments. Between the two clusters, there were three other patterns
which are labeled as declining (triangle line), rising (square line), and rise to plateau (plus line)
clusters, respectively.

4.5. Post-hoc tests for NTA stressor module
After the identification of five latent clusters, two sets of post-hoc tests were implemented.
First, the Chi-square tests were used to examine the proportion of categories of “PTE” (prenatal
tobacco-exposed/nonexposed infants), “ALCHX” (before pregnancy maternal drinking/

Fang et al. Page 11

Int J Inf Technol Decis Mak. Author manuscript; available in PMC 2010 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nondrinking), and “MJ” (use of marijuana during pregnancy/nonuse) group within each cluster.
The two continuous variables, “COT” and “ED,” were tested across the five clusters.
Nonparametric Kruskal Wallis tests were used due to relatively small sample sizes in each
cluster. As indicated in Table 3, the proportion of neonates exposed prenatally to tobacco
differed from the expected proportion of 0.5 in the persistently irritable, nonsoothable cluster,
χ2(1, N = 116) = 5.83, p = 0.02. The maternal cotinine value at 28 weeks, however, did not
differ amongst the five clusters, χ2(4, N = 257) = 3.03, p = 0.554. No significant differences
were found within each cluster in the proportion of neonates whose mothers reported a history
of drinking alcohol in the month prior to the last menstrual period and whose mothers did not.
There were also no differences in maternal educational attainment across the five clusters,
χ2(4, N = 257) = 2.58, p = 0.631. The proportion of neonates exposed to marijuana during
pregnancy differed from the expectation in persistently irritable, nonsoothable, and rising
clusters.

5. Conclusions and Discussions
The identification of growth patterns with nonignorable missing data was addressed in a
longitudinal study under the NMAR assumption. A new stepwise approach, combining PMM
and FCM techniques, was demonstrated to utilize informative and nonignorable missing
information to achieve computational efficiency as well as statistical generality. The step-wise
approach was realized by: Step 1, estimating the growth parameters for each subject with
bootstrap standard errors using PMM, which models both the observed and NMAR missing
values (including intermittent and drop-out missingness); Step 2, using individual growth
parameters and attributes to identify the growth patterns through the fuzzy clustering method
by considering clustering errors. Importantly, these results show that using PMM to estimate
individuals' growth parameters can achieve data reduction, especially when more repeated
measures were observed for subjects. Meanwhile, this modeling approach can retain the
number of collected subjects with the nonignorable missing values, rather than deleting these
cases or imputing uncertain values for these informative missing values. The concept of
combining the PMM and fuzzy clustering method is novel and feasible. Currently, different
software is required for each step. In the future, an integrated algorithm is expected to be
developed to conduct the whole procedure.

In this paper, PMM was illustrated in comparison with pattern mixture models in theoretical
discussion and in a case study. The PMM model using latent clusters in our case was
demonstrated to outperform the pattern mixture model which uses observed missing patterns.
We expect that PMM will demonstrate its superiority in other applications that are similar to
this study, assuming different growth patterns indeed exist. As to single-growth-pattern data,
we expect the pattern mixture model should still fit well. In the future, a simulation study is
planned to systematically compare the results of these two models un der different modeling
conditions.

With complete attributes added to the model, fuzzy clustering methods were incorporated
because of computational efficiency. The widely applied FCM clustering method performed
well in this case study. Substantively, the identified clusters appear to have validity, given the
findings in our lab and others 68-70 that link prenatal tobacco exposure to difficulties in self-
regulation in the neonatal and early infancy developmental periods. In the future, other existent
clustering methods (e.g. References 71-77) will be compared to this FCM technique to evaluate
its utility via simulation and case studies. As more novel fuzzy clustering methods emerge in
data mining research (e.g. Reference 78), future studies may also consider comparing the FCM
method with these methods in order to generalize this hybrid technique for growth pattern
recognition.
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Figure 1.
Parallel mixture model for NTA case study.
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Figure 2.
CE and XB coefficients for fuzzy clustering identification.
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Figure 3.
Visualization of five latent clusters.
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Figure 4.
Five growth patterns: (a) Estimated growth trends vs observed trends (b) estimated growth
trends.
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Table 1

Observed missing patterns and frequency for pattern mixture model in case study.

Missing pattern Frequency

OOO 144

MOO 45

OMO 26

OOM 22

MMO 11

MOM 10

OMM 4

MMM 4
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