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Nitrogen-bearing heterocycles are among the most prevalent substructures found in approved
therapeutic agents.1 Among all heterocycles, pyridines most often appear in pharmaceutically
active compounds.2 Modular methods for the catalytic coupling of pyridines and higher azines
are largely limited to metal catalyzed cross-coupling processes (Suzuki, Stille, Kumada-Corriu,
Negishi and Hiyama coupling reactions) and ortho-C-H activation initiated biaryl couplings3

and insertions of olefins or alkynes.4 A notable exception involves the rhodium catalyzed
coupling of 2-vinyl azines5a and 2-alkynyl azines5b,c to organoboron reagents, which result
in C-C coupling at the β-position of the vinyl or alkynyl moiety, respectively. Vinylpyridines
also participate in rhodium catalyzed couplings to olefins, typically initiated via C-H insertion,
again resulting in functionalization at the β-position of the vinyl moiety.6 Despite the
significance of azine substructures, there are remarkably few methods available for catalytic
C-C coupling of azine-containing building blocks.7,8,9

We have found that diverse π-unsaturated reactants engage in C-C coupling under the
conditions of catalytic hydrogenation.10 For example, rhodium catalyzed hydrogenation of
vinyl arenes in the presence of anhydrides was found to deliver formal products of acyl
substitution with complete branched regioselectivity.11 Additionally, activated olefins in the
form of conjugated enones engage in highly diastereo- and enantioselective reductive aldol
and Mannich couplings when hydrogenated in the presence of aldehydes and imines.12,13 Here,
we report the first catalytic reductive C-C couplings of vinyl azines. Specifically, we find that
catalytic hydrogenation of 2-vinyl azines in the presence of N-arylsulfonyl imines results in
regio- and diastereoselective reductive coupling to furnish branched products of imine addition.

Initial studies focused on the hydrogenative coupling of 6-bromo-2-vinylpyridine 1a and N-
ortho-toluenesulfonyl aldimine 2a. After extensive optimization, it was found that
hydrogenation of 6-bromo-2-vinylpyridine 1a and imine 2a at ambient temperature and
pressure employing a cationic rhodium catalyst ligated by (2-Fur)3P14 leads to formation of
the reductive coupling product 3a in 97% isolated yield with complete branched
regioselectivity and modest syn-diastereoselectivity (3:1 dr). Added Na2SO4 was found to
suppress imine hydrolysis. To evaluate scope, these conditions were applied to aromatic imines
2a-2d, heteroaromatic imines 2e and 2f, α,β-unsaturated imine 2g, and aliphatic imines
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2h-2l, which were all found to couple efficiently to provide adducts 3a-3l, respectively, in good
to excellent yield with complete branched regioselectivity and modest to good levels of syn-
diastereoselectivity (3:1 – 13:1 dr).15 The stereochemical assignment of adducts 3a and 3f were
confirmed by single crystal X-ray diffraction analysis of diastereomerically pure samples. The
stereochemical assignment of the remaining adducts are made in analogy to 3a and 3f (Table
1).

The scope of the vinyl azine partner was evaluated next. Whereas the parent 2-vinylpyridine
does not participate in the coupling, presumably due to strong coordination at nitrogen, 6-
substituted-2-vinyl pyridines 1b-1d couple efficiently to (hetero)aromatic and aliphatic imines
2f, 2i and 2k (Table 2). Higher azines, for example 2,3-diphenyl-5-vinylpyrazine couple in
diminished yield under standard conditions.16 However, as exemplified by the coupling of 8-
benzyloxy-2-vinylquinoline 1e to imines 2e, 2f, 2i and 2k, fused vinyl azines are effective
coupling partners.

To gain insight into the catalytic mechanism, the reductive coupling of 6-bromo-2-
vinylpyridine 1a to imine 2l was performed under an atmosphere of elemental deuterium
(99.6% purity). As corroborated by 1H and 2H NMR spectroscopy, the branched adduct
deuterio-3l incorporates deuterium exclusively at the former β-position of the vinyl moiety
(93:7, 2H:1H). Deuterium incorporated at nitrogen is lost through exchange during
chromatographic isolation. The results of isotopic labeling are consistent with a mechanism in
which oxidative coupling of vinyl azine 1a and imine 2l delivers the indicated cationic aza-
rhodacyclopentane, which upon deuteriolytic cleavage of the metallacycle17 releases
deuterio-3l and regenerates cationic rhodium(I) to close the catalytic cycle. Mechanisms
involving vinyl azine hydrometallation to form nucleophilic benzylrhodium intermediates
cannot be excluded on the basis of this experiment.

In summary, we report the first metal catalyzed reductive C-C coupling of vinyl azines. By
simply hydrogenating vinyl azines 1a-1e in the presence of N-arylsulfonyl aldimines 2a-2l,
one gains access to the branched products of reductive coupling 3a-3v, which appear as single
regioisomers. Using a rhodium catalyst ligated by tri-2-furylphosphine, modest to high levels
of syn-diastereoselectivity may be achieved. Future studies will focus on the development of
enantioselective variants of this process and related vinyl azine-carbonyl reductive couplings.
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Ultimately, through hydrogenative C-C coupling, byproduct-free protocols for the coupling of
diverse unsaturated feedstocks will be achieved.

Supplementary Material
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Table 1

Hydrogenative coupling of 6-bromo-2-vinylpyridine 1a to N-arylsulfonyl aldimines 2a-2l.

2a, R = p-NO2Ph
2d, R = Piperonyl
2g, R = Cinnamyl
2j, R = CH2OBn

2b, R = Ph
2e, R = 2-Furyl

2h, R = n-Propyl
2k, R = c-C3H5

2c, R = p-MeOPh
2f, R = 2-Thienyl

2i, R = i-Butyl
2l, R = Me

97% Yield
3:1 dr, 3a

80% Yield
3:1 dr, 3b

72% Yield
5:1 dr, 3c

91% Yield
5:1 dr, 3d

99% Yield
4:1 dr, 3e

72% Yield
7:1 dr, 3f

67% Yield
4:1 dr, 3g 63% Yieldb,c

8:1 dr, 3h

74% Yieldc
6:1 dr, 3i

69% Yield
5:1 dr, 3j

72% Yieldb,c
6:1 dr, 3k

64% Yieldc
6:1 dr, 3l
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a
Cited yields are of isolated diastereomeric mixtures. Standard conditions employ 3 equiv. of 1a and 1 equiv. of imines 2a-2l. See Supporting

Information for details.

b
Reaction was performed at 35 °C.

c
Reaction was performed using 7.5 mol% [Rh(cod)2]BARF and 18 mol% (2-Fur)3P.
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Table 2

Hydrogenative coupling of vinyl azines 1b-1d to N-toluenesulfonyl aldimines 2f, 2i and 2k.

1b, R = Me 1c, R = Ph 1d, R = CH2OTBS

70% Yieldb
5:1 dr, 3m 56% Yieldb

10:1 dr, 3n
77% Yield
5:1 dr, 3o

80% Yield
4:1 dr, 3p

71% Yield
5:1 dr, 3q

67% Yield
6:1 dr, 3r

a
Cited yields are of isolated diastereomeric mixtures. Standard conditions employ 3 equiv. of 1b-1d and 1 equiv. of imines 2f, 2i and 2k. See Supporting

Information for further details.

b
Reaction was performed using 7.5 mol% [Rh(cod)2]BARF and 18 mol% (2-Fur)3P.
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Table 3

Hydrogenative coupling of vinyl azine 1e to N-toluenesulfonyl aldimines 2e, 2f, 2i and 2k.a

94% Yield
3:1 dr, 3s 81% Yield

6:1 dr, 3t

68% Yield
8:1 dr, 3u

79% Yield
6:1 dr, 3v
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a
Cited yields are of isolated material. Standard conditions employ 3 equivalents of 6-bromo-2-vinylpyridine and 1 equivalent of imine. See Supporting

Information for further details.
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