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OBJECTIVE—We examined in insulin-resistant muscle if, in
contrast to long-standing dogma, mitochondrial fatty acid oxida-
tion is increased and whether this is attributed to an increased
nuclear content of peroxisome proliferator–activated receptor
(PPAR) � coactivator (PGC) 1� and the adaptations of specific
mitochondrial subpopulations.

RESEARCH DESIGN AND METHODS—Skeletal muscles
from male control and Zucker diabetic fatty (ZDF) rats were used
to determine 1) intramuscular lipid distribution, 2) subsarcolem-
mal and intermyofibrillar mitochondrial morphology, 3) rates of
palmitate oxidation in subsarcolemmal and intermyofibrillar
mitochondria, and 4) the subcellular localization of PGC1�.
Electotransfection of PGC1� cDNA into lean animals tested the
notion that increased nuclear PGC1� preferentially targeted
subsarcolemmal mitochondria.

RESULTS—Transmission electron microscope analysis re-
vealed that in ZDF animals the number (�50%), width (�69%),
and density (�57%) of subsarcolemmal mitochondria were in-
creased (P � 0.05). In contrast, intermyofibrillar mitochondria
remained largely unchanged. Rates of palmitate oxidation were
�40% higher (P � 0.05) in ZDF subsarcolemmal and intermyofi-
brillar mitochondria, potentially as a result of the increased
PPAR-targeted proteins, carnitine palmitoyltransferase-I, and
fatty acid translocase (FAT)/CD36. PGC1� mRNA and total
protein were not altered in ZDF animals; however, a greater
(�70%; P � 0.05) amount of PGC1� was located in nuclei.
Overexpression of PGC1� only increased subsarcolemmal mito-
chondrial oxidation rates.

CONCLUSIONS—In ZDF animals, intramuscular lipids accumu-
late in the intermyofibrillar region (increased size and number),
and this is primarily associated with increased oxidative capacity
in subsarcolemmal mitochondria (number, size, density, and
oxidation rates). These changes may result from an increased
nuclear content of PGC1�, as under basal conditions, overex-
pression of PGC1� appears to target subsarcolemmal mito-
chondria. Diabetes 59:819–828, 2010

S
keletal muscle, due to its mass and high rate of
glucose disposal, is an important tissue in the
development of insulin resistance. While the
etiology of skeletal muscle insulin resistance re-

mains uncertain, it has been proposed that an accumula-
tion of intramuscular lipids, particularly diacylglycerol
(DAG) (1) and ceramides (2,3), may attenuate the insulin-
signaling cascade. Kelley and colleagues (4,5) and others
(6–8) have speculated that a dysfunction in mitochondrial
fatty acid oxidation, due to either a reduction in the
number of mitochondria and/or a reduction in their intrin-
sic activity, may account for intramuscular lipid accumu-
lation. However, support for mitochondrial dysfunction as
a mechanism to induce lipid accumulation and insulin
resistance has begun to wane, as recent reports have
shown that despite the presence of skeletal muscle insulin
resistance in animals (9–11) and in humans (12–14), the
capacity for fatty acid oxidation by mitochondria is not
downregulated. In addition, reductions in mitochondrial
content have not been consistently observed in insulin-
resistant muscle (10,15). Clearly, whether compromised
fatty acid oxidation can account for intramuscular lipid
accumulation has been questioned. However, whether
there are alterations in fatty acid oxidation in subpopula-
tions of mitochondria with insulin-resistant muscles has
received little attention.

Mitochondria in skeletal muscle are present in two
distinct locations, below the sarcolemma and between the
myofibrils, and are known as subsarcolemmal and inter-
myofibrillar mitochondria, respectively. Their subcellular
distribution and lipid accumulation near intermyofibrillar
mitochondria (16) suggest that the metabolic roles of
subsarcolemmal and intermyofibrillar mitochondria may
differ. Functional studies (17,18) have shown that mito-
chondrial subpopulations do not respond uniformly to
selected physiological stimuli, and therefore it is possible
that divergent metabolic responses could occur in mito-
chondrial subpopulations from insulin-resistant muscle,
particularly with respect to fatty acid oxidation. Although
Kelley et al. (5) suggested, based on changes in mitochon-
drial size and enzymatic ratios in insulin-resistant muscle,
that there was a preferential dysfunction in subsarcolem-
mal mitochondrial fatty acid oxidation, it is unknown
whether these parameters scale with rates of mitochon-
drial fatty acid oxidation. Studies in insulin-resistant mus-
cles of obese Zucker rats indicated that fatty acid
oxidation was increased in red skeletal muscle subsar-
colemmal and not intermyofibrillar mitochondria (10).
Thus, the muscle fiber type, as well as the subpopulation
of mitochondria, may influence fatty acid oxidation in
insulin-resistant muscle. Whether such differences are
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related to peroxisome proliferator–activated receptor
(PPAR) � coactivator (PGC) 1�, which is well known to
differ in red and white muscle, is uncertain.

PGC1�, a transcriptional cofactor regulating mitochon-
drial biogenesis, has been linked to mitochondrial prolif-
eration (19,20) and lipid oxidation (20). This coactivator
may therefore represent an important mechanism in the
context of mitochondrial oxidative capacity and the devel-
opment of insulin resistance. Indeed, PGC1� mRNA is
reduced in selected models of insulin resistance (21,22),
although others have shown that PGC1� mRNA (6,23) and
protein contents (23,24) are not reduced with insulin
resistance and that PGC1� overexpression in muscle has
not improved insulin sensitivity (25). In contrast, more
recent work (20) in healthy muscle has shown that over-
expression of PGC1� within physiologic limits improved
insulin-stimulated glucose transport and selected steps in
the insulin-signaling cascade. Interestingly, PGC1� also
upregulated fatty acid oxidation but only in subsarcolem-
mal mitochondria (20). This suggested that PGC1� prefer-
entially targeted this mitochondrial subpopulation. Since
PGC1� can be induced to translocate from the cytosol into
nuclei (26), it is possible that the subcellular distribution
of PGC1� in insulin-resistant muscles is altered, which
may contribute to changes in fatty acid utilization in
subsarcolemmal mitochondria. This remains to be
determined.

In the present study, we have examined in red and white
muscles of Zucker diabetic fatty (ZDF) rats, a model of
type 2 diabetes (27), 1) lipid droplet distribution and 2)
morphological as well as functional differences in subsar-
colemmal and intermyofibrillar mitochondria and whether
these mitochondrial changes are 3) associated with
changes in the nuclear content of PGC1�. Our results
demonstrate that in ZDF rats 1) subsarcolemmal mito-
chondrial size, number, and oxidation rates are preferen-
tially increased in accordance with 2) an increased nuclear
content of PGC1� protein that preferentially targets sub-
sarcolemmal mitochondria.

RESEARCH DESIGN AND METHODS

Male control (n � 5, weighing �400 g) and ZDF (n � 5, weighing �400 g) rats
were purchased from Charles River. Animals were housed in a climate- and
temperature-controlled room, on a 12:12-h light-dark cycle, with rat diet and
water provided ad libitum. Twenty-four–week-old animals were anesthetized
with an intraperitoneal injection of sodium pentobarbital (60 mg/kg), and
subsequently blood was sampled from nonfasted animals using a cardiac
puncture, and muscles were rapidly excised for various measurements
(described below). For the PGC1� electotransfection experiments, Sprague-
Dawley rats (�300 g) from our breeding colony were used. All facets of this
study were approved by the University of Guelph Animal Care Committee.
Blood metabolite assays. Serum samples were analyzed for glucose using a
spectrophotometric method (Sigma, St. Louis), insulin by radioimmunoas-
say using a rat-specific antibody (Linco, St. Charles, MO), and fatty acid
concentrations using a spectrophotometric procedure (Wako Chemicals,
Richmond, VA).
Transmission electron microscope analysis of mitochondria. Samples
from the red and white portions of the tibialis anterior muscle were rapidly
immersed in a fixing buffer (2.5% glutaraldehyde, 1.0% parafermaldehyde in
PBS) and incubated at 4°C overnight. Tissue was then washed three times in
0.1 mol/l Hepes and subsequently suspended in 1.0% osmium tetroxide for 4 h.
Thereafter, tissue was washed three times in 100 mmol/l Hepes and suspended
in 2% uranyl acetate for 3 h, washed three times in 0.1% Hepes, and dehydrated
by incubating in a graded ethanol series (i.e., 25, 50, 75, 95, and twice in 100%
ethanol). Tissue was infiltrated with resin by suspending in 50/50 ethanol/resin
(London Resin Company White) for 4 h on a rotating mixer and subsequently
suspended in pure resin for 4 h on a rotating mixer. Tissue was then placed in
an embedding capsule containing pure resin and incubated overnight at 60°C
to polymerize. Sections (100 nm) were cut and laid onto 200 mesh formvar/

carbon copper grids and then stained with 2% uranyl acetate and Reynold’s
lead citrate. Samples were viewed on a Philips CM 10 transmission electron
microscope (TEM) at 80 kV, and images were obtained with an Olympus/SIS
Morada CCD camera using the Olympus/SIS iTEM software. Images were
analyzed using the measurement tools provided by this software. Individual
lipid droplet and mitochondrial sizes were determined repeatedly and aver-
aged for a given image taken at 25,000� magnification. Mitochondrial sub-
population densities were determined within a defined region (10-�m2 area) at
a minimum of three locations within an image taken at 5,800� magnification,
similar to methodologies previously published (28). Several fibers (3–5) were
imaged for each animal. Mitochondrial number and density were not deter-
mined in white muscle because of their infrequent presence within our defined
region.
Triacylglycerol concentrations. Intracellular triacylglycerol concentrations
were determined biochemically as previously described (29). Lipids were
extracted in a standard Folch solution and subsequently separated by high-
performance thin-layer chromatography and quantified against known
standards.
Mitochondrial enzymatic activities. Muscle samples were homogenized in
100 vol/wt of a 100 mmol/l potassium phosphate buffer and citrate synthase
(CS) activity was assayed spectrophotometrically at 412 nm (37°C) (30).
Mitochondrial DNA. mtDNA was determined using real-time PCR, as
previously reported (10), using the following primers: NADH dehydrogenase
subunit 5 forward, 5	-GCAGCCACAGGAAAATCCG-3	 and reverse, 5	-GTAG
GGCAGAGACGGGAGTTG-3	; and the solute carrier family 16 member 1 forward,
5	-TAGCTGGATCCCTGATGCGA-3	 and reverse, 5	-GCATCAGACTTCCCAG
CTTCC-3	.
Isolation of mitochondria from skeletal muscle. Differential centrifuga-
tion was used to obtain both subsarcolemmal and intermyofibrillar mitochon-
drial fractions from the red and white portions of the tibialis anterior, as we
have previously published (20,31). Mitochondria were further purified using a
Percoll gradient for Western blotting analysis.
Western blotting. Whole-muscle homogenates were prepared as previously
described (20) (n � 4). Isolated mitochondria (5 �g), whole muscle (30 �g),
nuclear extract (45 �g), and cytosolic protein (25 �g) were analyzed. Samples
were separated by electrophoresis by SDS-PAGE and transferred to polyvi-
nylidene difluoride membranes. The MO-25 antibody has been used previously
(10,12) to detect fatty acid translocase (FAT)/CD36 (a gift from Dr. N.N.
Tandon), and commercially available antibodies were used to detect cyto-
chrome c oxidase complex IV (COXIV; Invitrogen, Burlington, ON, Canada),
PGC1� (Calbiochem, LA Jolla, CA), lactate dehydrogenase (LDH; Abcam;
Cambridge, MA), and histone H2B (H2B; Abcam). Blots were visualized and
quantified using chemiluminescence and the ChemiGenius 2 Bioimaging
System (SynGene, Cambridge, U.K.).
Carnitine palmitoyltransferase I activity. The forward radioisotope assay
was used for the determination of carnitine palmitoyltransferase I (CPTI)
activity as described by McGarry et al. (32), with minor modifications as we
have previously reported (20,33). Briefly, the assay was conducted in the
presence of 75 �mol/l P-CoA (l-[3H]carnitine (Amersham Bioscience, Buck-
inghamshire, England). Palmitoyl-[3H] carnitine was extracted in water-
saturated butanol and the radioactivity determined.
Mitochondrial palmitate oxidation. Palmitate oxidation was measured in
the presence [1-14C] palmitate, as previously described (34). Briefly, gaseous
14CO2 production and isotopic fixation were determined following a 30-min
reaction at 37°C in the presence of 77 �mol/l palmitate.
PGC-1� mRNA. PGC-1� mRNA was determined in the tibialis anterior
muscle using real-time PCR as we have previously reported (20). The
following primer sets were used: PGC-1� forward 5	-CAATGAGCCCGCGAA
CATAT-3	, PGC-1� reverse 5	-CAATCCGTCTTCATCCACCG-3	 and 18S for-
ward 5	-GTTGGTTTTCGGAACTGAGGC-3	, 18S reverse ‘5-GTCGGCATCG
TTTATGGTCG-3	.
Isolation of nuclear extracts. Nuclear extraction was performed using a
commercial kit (Pierce Biotechnology, Rockford, IL) according to the manu-
facturer’s specifications, as done previously (26). Harvested muscles were
immediately placed in 750 �l of PBS, minced, and briefly homogenized.
Cytosolic and nuclear extraction was performed using supplied reagents
supplemented with 1 mmol/l sodium orthovanadate, 1 mmol/l phenylmethyl-
sulfonyl fluoride, and 10 �g/ml of pepstain A, aprotinin, and leupeptin. Isolated
nuclei were washed 15 times in alternating PBS or PBS supplemented with
0.1% Nonidet P-40. To confirm the purity of nuclear extracts, both fractions
were analyzed by Western blotting for cytosolic (LDH) and nuclear proteins
(H2B).
Electrotransfection of PGC1�. Electrotransfection experiments were per-
formed as described by us (20,35) and others (36,37), with minor modifica-
tions. The PGC1� expression construct (a gift from Dr. B. Spiegelman,
Harvard University, Boston, MA) was produced by subcloning the PGC1�
coding sequence into a mammalian expression vector (pcDNA 3.0) (Invitro-
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gen, Burlington, ON, Canada). Plasmid stocks were produced by large-scale
plasmid isolation from transformed Escherichia coli cells (One-Shot; Invitro-
gen) using commercially available kits (GIGA-prep kits; Invitrogen).

For electrotransfection, animals were anesthetized with isoflurane and the
tibialis anterior muscle injected with 100 �l hyaluronidase (0.15 units/�l in
50% vol/vol saline). Two hours later, muscles were electrotransfected with 1)
PGC1�-pcDNA plasmid (500 �g PGC1� in 50% vol/vol saline) or 2) empty
pcDNA3.0 plasmid (500 �g pcDNA in 50% vol/vol saline) as described
previously (20,38,39). Thereafter, rats were provided with an analgesic
(Temgesic) and allowed to recover for 2 weeks (40).
Statistics. All data are presented as means 
 SE. Unpaired t tests, paired t

tests, and two-way ANOVA were used where appropriate. When significance
was obtained, a Fisher’s least-significant-difference post hoc analysis was
completed. Statistical significance was accepted at P � 0.05.

RESULTS

Blood characteristics. In ZDF animals, serum insulin
concentrations were markedly lower (4.8 
 0.8 vs. 1.5 

0.4 ng/ml; P � 0.05), while glucose (14 
 1 vs. 37 
 1
mmol/l) and fatty acid (0.3 
 0.1 vs. 0.9 
 0.2 mmol/l)
concentrations were higher (P � 0.05).
Lipid droplet characteristics. In red ZDF muscle, the
area of individual lipid droplets was �47% larger than in
red control muscle (P � 0.05) (Fig. 1A). In addition, TEM
images revealed a large number of lipid droplets in red
ZDF muscle, which were largely in contact with intermyo-
fibrillar mitochondria, while the subsarcolemmal mito-
chondrial region was devoid of lipids (Figs. 2 and 3).
Biochemical extraction revealed that triacylglycerol con-
centration was approximately threefold higher (P � 0.05)
in ZDF muscle (Fig. 1B). In white muscle, lipid droplets
were not quantifiable.
Mitochondrial morphology in ZDF animals
Mitochondrial area. In red and white ZDF muscles,
subsarcolemmal mitochondrial size was not altered (Fig.

2A and B). However, compared with control animals, red
intermyofibrillar mitochondria in ZDF animals were �35%
larger (P � 0.05) (Fig. 2A), while white muscle intermyo-
fibrillar mitochondria in ZDF animals were �37% smaller
(P � 0.05) (Fig. 2B).
Mitochondrial number. In red muscle, the number of
subsarcolemmal mitochondria in ZDF animals was mark-
edly increased (�50%; P � 0.05) (Fig. 2C), but the number
of intermyofibrillar mitochondria was unaltered (Fig. 2C).
In white muscle, this parameter was not determined
because of the scarcity and diffuse nature of mitochondria
in this tissue (Figs. 2 and 4).
Mitochondrial density. The width of the red muscle
subsarcolemmal mitochondrial subpopulation was �69%
larger (P � 0.05) (Fig. 3A), and the density of red muscle
subsarcolemmal mitochondria was �57% larger (P � 0.05)
(Fig. 3B) in ZDF animals. In contrast, the density of
intermyofibrillar mitochondria was not different (P � 0.05)
when analyzed in regions devoid (Fig. 3C) or abundant
(Fig. 3D) in lipid droplets.
Enzyme activities, protein expression,
and mitochondrial DNA
Whole muscle. Whole-muscle COXIV protein (Fig. 5A)
and CS maximal activity (Fig. 5B) were not different in
ZDF animals. The amount of mitochondrial DNA (mtDNA)
was also not altered in ZDF rats in either red (control:
2.23 
 0.25 vs. ZDF: 2.13 
 0.63 arbitrary units) or white
(control: 1.31 
 0.23 vs. ZDF: 0.91 
 0.28 arbitrary units)
muscles, suggesting that mitochondrial content was unal-
tered. In contrast, FAT/CD36 was increased �2.4-fold in
red, and �50% in white, ZDF muscles (Fig. 5C).
Isolated mitochondria. In isolated mitochondria,
COXIV protein was constant across all mitochondrial
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subpopulations (Fig. 5D and G), while in contrast, CPTI
activity (Fig. 5E and H) and FAT/CD36 protein (Fig. 5F and
I) were greater (P � 0.05) in all mitochondrial subpopu-
lations in ZDF animals.
Mitochondrial palmitate oxidation. In both red and
white muscle, ZDF animals displayed higher (P � 0.05)
rates of palmitate oxidation in isolated subsarcolemmal
(�40%) and intermyofibrillar (�40%) mitochondria (Fig.
6A and B). Increased ratios of 14C -acid soluble interme-
diates (ASMs) to 14CO2 have previously been used to infer
incomplete oxidation of 14C-palmitate (41). In red inter-
myofibrillar mitochondria, the ASM/CO2 ratio was un-
changed. In contrast, this ratio was decreased (�30%; P �
0.05) in red muscle subsarcolemmal mitochondria and in
white muscle subsarcolemmal and intermyofibrillar mito-
chondria, indicating greater complete fatty acid oxidation
in these mitochondria (data not shown).
PGC1� subcellular location

PGC1� mRNA. In red muscle, PGC1� mRNA was not
different (P � 0.05) between control and ZDF animals (Fig.
7A). In control animals, PGC1� mRNA was �54% lower
(P � 0.05) in white, compared with red, muscle (Fig. 7A).
In contrast, this fiber type difference was lost in ZDF
animals as a result of the increase (P � 0.05) in white
muscle PGC1� mRNA (Fig. 7A).

PGC1� total protein. Whole-muscle PGC1� protein was
not altered in ZDF animals in either red or white muscles
(Fig. 7B). White muscle, compared with red muscle, had
less (P � 0.05) PGC1� protein in both control (�19%) and
ZDF (�23%) animals (Fig. 7B).
Nuclear PGC1� protein. Purified nuclear extracts were
devoid of LDH and contained high levels of H2B (Fig. 7D),
indicating successful enrichment of nuclear proteins and
the absence of cytosolic contamination. The amount of
PGC1� protein located in the nuclei was higher (P � 0.05)
in both red (�68%) and white (�67%) muscles of ZDF
animals (Fig. 7C). A fiber type difference existed in nuclear
PGC1� protein, as white muscle contained less (P � 0.05)
PGC1� nuclear protein in both control (�32%) and ZDF
(�32%) animals (Fig. 7C).
Targeting of PGC1� to subsarcolemmal mitochon-

dria. To test the notion that PGC1� preferentially targets
subsarcolemmal mitochondria, we electrotransfected
PGC1� cDNA into the tibialis anterior muscle of lean
animals and determined the effect on FAT/CD36, a target
protein. Transfection increased the mRNA (�29%) (Fig.
8A), total protein (�22%) (Fig. 8B), and the nuclear
content of PGC1� (�15%) (Fig. 8C). Subsequently, whole-
muscle FAT/CD36 content was increased (P � 0.05) �30%
(control: 100 
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 18.4 arbitrary

SS IMF
0

5

10

15

20

25

SS IMF
0

50
100
150
200
250
300
350

In
di

vi
du

al
 m

ito
ch

on
dr

ia
l

ar
ea

 (x
 1

00
0 

nm
2 )

M
ito

ch
on

dr
ia

l n
um

be
r/1

0 
µm

2

In
di

vi
du

al
 m

ito
ch

on
dr

ia
l

ar
ea

 (x
 1

00
0 

nm
2 )*

*

*

 

Red White

SS IMF SS IMF

Control

ZDF

Control

ZDF

SS IMF
0

50
100
150
200
250
300
350

 

 

1µm

1µm

1µm

1µm

1µm

1µm

1µm

1µm

ZDF

Control
A B

C

†
†

FIG. 2. Subsarcolemmal (SS) and intermyofibrillar (IMF) mitochon-
drial area (A and B) and number (C) in red and white muscle of
control and ZDF animals. Data are expressed as the means � SE.
Images were taken at 25,000� magnification and the black bar � 1 �m.
n � 5 animals for each measure. *Significantly different (P < 0.05)
from control mitochondria. †Significantly different (P < 0.05) from
subsarcolemmal mitochondria. Mitochondrial number was not deter-
mined in white muscle because of the infrequent presence in our
defined region.

NUCLEAR PGC1� AND MITOCHONDRIAL SUBPOPULATIONS

822 DIABETES, VOL. 59, APRIL 2010 diabetes.diabetesjournals.org



units), as was subsarcolemmal mitochondrial FAT/CD36
content (control: 100 
 10.5 vs. transfected: 117 
 15.5
arbitrary units) but not intermyofibrillar FAT/CD36 (con-
trol: 105.4 
 6.3 vs. transfected: 98 
 3.9 arbitrary units).
Rates of palmitate oxidation increased (P � 0.05) �37% in
subsarcolemmal mitochondria, but PGC1� transfection
had no effect (P � 0.05) on intermyofibrillar mitochondria
(Fig. 8D). Around 30% of muscle fibers are transfected
with our procedures (data not shown), and therefore we
could not determine mitochondrial content in various
subpopulations in transfected muscle fibers, as with TEM
imaging one cannot determine which fibers have been
affected.

DISCUSSION

The novel findings of the current study are that skeletal
muscle from ZDF rats 1) have larger and more prevalent
lipid droplets and 2) preferentially display compensatory
increases in subsarcolemmal mitochondrial number,

width, density, as well as fatty acid oxidation rates, which
potentially result from 3) an increased nuclear content of
PGC1� that appears to target subsarcolemmal mito-
chondria.
Mitochondrial morphology. The original hypothesis of a
mitochondrial dysfunction in fatty acid oxidation was
partially based on observations of smaller subsarcolemmal
mitochondria in insulin-resistant muscle (4). However, the
current TEM images do not support the notion of smaller
mitochondria with insulin resistance, as in red muscle
subsarcolemmal mitochondrial size, was unchanged and
intermyofibrillar mitochondrial size was actually increased
in ZDF animals. In addition, it was not previously under-
stood if mitochondrial size directly impacted mitochon-
drial oxidation rates, making the previous observations of
reduced mitochondrial size (4) difficult to interpret. The
current data suggests that mitochondrial size does not
influence mitochondrial palmitate oxidation, as these rates
were increased when the size of mitochondria were unal-
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tered (red and white subsarcolemmal mitochondria), in-
creased (red intermyofibrillar mitochondria), as well as
decreased (white intermyofibrillar mitochondria).

Analysis of TEM images showed that the number
(�50%), width (�69%), and density (�57%) of subsar-
colemmal mitochondria were increased in ZDF animals. In
contrast, ZDF intermyofibrillar mitochondrial number and
density were not changed, nor were markers of mitochon-
drial content (mtDNA, CS, and COXIV). These data show
that mitochondrial subpopulations can respond differently
in insulin-resistant muscle, and whole-muscle measures of
mitochondrial content cannot reveal the subtle differences
of various signals that induce mitochondrial proliferation.
Mitochondrial content and rates of palmitate oxida-
tion. Previously, indirect assessments suggested that
there was an intrinsic dysfunction in fatty acid oxidation
within mitochondria (4). However, the current data do not
support this notion, as subsarcolemmal and intermyofibril-
lar mitochondria, from both red and white muscles of ZDF
animals, displayed �40% increased rates of palmitate
oxidation. These data are consistent with more contempo-
rary mitochondrial literature, as it has recently been
shown that mitochondrial fatty acid oxidation, when mea-
sured in isolated mitochondria or permeabilized fibers, is
not reduced in mitochondria of obese and type 2 diabetic
individuals (12–14). Rodent models of insulin resistance
have also supported the notion that downregulation of
mitochondrial fatty acid oxidation is not a requirement for
lipid accumulation and impairments in insulin signaling.
High-fat feeding has been shown to induce insulin resis-
tance while increasing mitochondrial content (9,11). Mag-
netic resonance spectroscopy has suggested that fatty acid
oxidation is not compromised in diabetic animals (42), and
we have recently shown in both red and white muscles of
obese Zucker rats that fatty acid oxidation was increased,
not decreased, in subsarcolemmal mitochondria (10).
Thus, our work (10,12) and that of others (9,13,14,43),
indicates that in both human (12–14) and animal models of
insulin resistance (9,43) there is little evidence to support
the view that an intrinsic impairment in the ability of
mitochondria to oxidize fatty acids accounts for the in-
creased intramuscular lipid accumulation associated with
insulin resistance. Instead, evidence in both human (44)

and rodent (10,45) models of insulin resistance suggests
that plasma membrane fatty acid transport is increased as
a result of an increased content of fatty acid transport
proteins. Despite the potential compensatory adaptations
in mitochondrial fatty acid oxidation, the large changes in
plasma membrane fatty acid transport have been proposed
to create an imbalance between delivery and utilization
such that lipids accumulate (10).
Mitochondrial CPTI activity and FAT/CD36 protein.
In the current study, the increase in palmitate oxidation in
ZDF mitochondria may result from the observed increase
in 1) CPTI activity and/or 2) mitochondrial FAT/CD36
protein. The rate-limiting step in fatty acid transport/
oxidation has long been attributed to CPTI activity, and
the changes in CPTI activity mimicked the trends in
mitochondrial fatty acid oxidation in both red and white
muscle. However, the notion that CPTI activity represents
the only regulatory site in mitochondrial fatty acid oxida-
tion has been challenged, as several laboratories have
recently found the fatty acid transport protein FAT/CD36
on mitochondrial membranes. Gain-of-function (46) and
loss-of-function (34) molecular approaches, as well as
physiological perturbations (31), have suggested that mi-
tochondrial FAT/CD36 has a role in regulating mitochon-
drial fatty acid oxidation. While FAT/CD36 appears to have
a role in regulating mitochondrial fatty acid oxidation, this
is likely mediated in a concerted fashion with additional
proteins, as mitochondrial FAT/CD36 and palmitate oxida-
tion rates do not correlate under basal conditions (47) but
rather multiple regression approaches that take into con-
sideration both CPTI and mitochondrial FAT/CD36 highly
correlate with mitochondrial fatty acid oxidation rates
(47). Therefore, in the current study, the increase in both
CPTI activity and mitochondrial FAT/CD36 may account
for the observed changes in mitochondrial palmitate oxi-
dation rates in ZDF animals, both of which are transcribed
by PPARs and mediated by PGC1�.
PGC1� mRNA and total and nuclear protein. It has
been suggested that reductions in PGC1� expression has a
role in the etiology of insulin resistance (21,22). However,
in the current study we have found that PGC1� mRNA and
total muscle protein were not reduced in ZDF muscles.
However, the subcellular distribution of PGC1� did differ,

Control White ZDF White
A

5µm 5µm

B

FIG. 4. Representative images of white muscle in control (A) and ZDF (B) animals. Note the absence of lipid droplets and the diffuse nature of
mitochondria. Images were taken at 5,800� magnification and the black bar � 5 �m.
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as the nuclear content was markedly increased (�70%).
Others (6,23,24) have also now found that PGC1� is not
reduced with insulin resistance in human skeletal muscle.
The mechanism(s) triggering the PGC1� translocation to
the nucleus are unknown. However, muscle contraction,
through calcium-mediated signaling, has previously been
shown to induce nuclear translocation of PGC1� (26), and
therefore alterations in cytosolic calcium levels represent
a potential mechanism of action.

Interestingly, the increase in nuclear PGC1� was associ-
ated with increased proliferation of the ZDF subsarcolemmal
mitochondria not intermyofibrillar mitochondria. PGC1�
overexpression experiments revealed that PGC1� targets
subsarcolemmal mitochondria, as palmitate oxidation
rates and FAT/CD36 content were only increased in sub-
sarcolemmal, not intermyofibrillar, mitochondria. This
was also observed previously in another study (20). How-
ever, in ZDF animals in the current study, intermyofibrillar
mitochondrial CPTI, FAT/CD36, and rates of fatty acid

oxidation were also all increased in conjunction with
increased nuclear PGC1�. Proliferation of intermyofibril-
lar mitochondria is also possible in PGC1� transgenic
animals (25). This may suggest that a greater increase in
nuclear PGC1� is required to upregulate intermyofibrillar
mitochondria, as transfection only had a modest affect on
nuclear PGC1� (�15%) compared with the in vivo ZDF
(�70%) and, arguably, the transgenic conditions. Alterna-
tively, the apparent argeting of PGC1� to subsarcolemmal
mitochondria may be a result of the proximity of nuclei to
the subsarcolemmal subpopulation and differences in the
rate of protein import into mitochondrial subpopulations
(48). Regardless of the exact mechanism, more pro-
nounced changes occur in subsarcolemmal mitochondria
in response to increased nuclear PGC1� content in both
ZDF and electrotransfected rats.

While ZDF animals share a number of similar traits with
human type 2 diabetes, including hyperglycemia, insulin
resistance (49), hyperlipidemia (50), increased plasmale-
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the means � SE. n � 4–5 for each measure. *Significantly different (P < 0.05) from control animals. †Significantly different (P < 0.05) from red
muscle or subsarcolemmal mitochondria.

G.P. HOLLOWAY AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, APRIL 2010 825



mmal fatty acid transport, and intramuscular lipids (44),
we recognize that the ZDF animal model is not fully
representative of human type 2 diabetes. Therefore, it will
be important to discern whether the current observation in
ZDF animals extend to human type 2 diabetic individuals.

In summary, we show that in ZDF rats 1) intramuscular
triacylglycerol accumulates, almost exclusively in the in-
termyofibrillar region, as a result of an increase in both the
size and number of lipid droplets. In an attempt to
compensate for the increased plasma membrane fatty acid

transport and lipid delivery (as we have shown previously
[45]), in ZDF muscle the there was an increase in 2)
subsarcolemmal mitochondrial number, size, and density;
3) subsarcolemmal and intermyofibrillar CPTI activity and
FAT/CD36 protein; and 4) mitochondrial palmitate oxida-
tion rates in subsarcolemmal and intermyofibrillar mito-
chondria. The increase in ZDF mitochondrial oxidative
capacity was greater in subsarcolemmal mitochondria, as
the increase in mitochondrial fatty acid oxidation rates is
amplified by the increase in subsarcolemmal mitochon-
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drial number. These changes may result in part from 5) an
increased nuclear translocation of PGC1� protein, which
preferentially targets subsarcolemmal mitochondria.
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