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OBJECTIVE—The proinflammatory cytokines/adipokines pro-
duced from adipose tissue act in an autocrine and/or endocrine
manner to perpetuate local inflammation and to induce periph-
eral insulin resistance. The present study investigates whether
lipocalin-2 deficiency or replenishment with this adipokine has
any impact on systemic insulin sensitivity and the underlying
mechanisms.

METHODS AND RESULTS—Under conditions of aging or
dietary-/genetic-induced obesity, lipocalin-2 knockout (Lcn2-KO)
mice show significantly decreased fasting glucose and insulin
levels and improved insulin sensitivity compared with their
wild-type littermates. Despite enlarged fat mass, inflammation
and the accumulation of lipid peroxidation products are signifi-
cantly attenuated in the adipose tissues of Lcn2-KO mice. Adi-
pose fatty acid composition of these mice varies significantly
from that in wild-type animals. The amounts of arachidonic acid
(C20:4 n6) are elevated by aging and obesity and are paradoxi-
cally further increased in adipose tissue, but not skeletal muscle
and liver of Lcn2-KO mice. On the other hand, the expression and
activity of 12-lipoxygenase, an enzyme responsible for metabo-
lizing arachidonic acid, and the production of tumor necrosis
factor-� (TNF-�), a critical insulin resistance–inducing factor,
are largely inhibited by lipocalin-2 deficiency. Lipocalin-2 stimu-
lates the expression and activity of 12-lipoxygenase and TNF-�
production in fat tissues. Cinnamyl-3,4-dihydroxy-�-cyanocin-
namate (CDC), an arachidonate lipoxygenase inhibitor, prevents
TNF-� expression induced by lipocalin-2. Moreover, treatment
with TNF-� neutralization antibody or CDC significantly attenu-
ated the differences of insulin sensitivity between wild-type and
Lcn2-KO mice.

CONCLUSIONS—Lipocalin-2 deficiency protects mice from de-
veloping aging- and obesity-induced insulin resistance largely by
modulating 12-lipoxygenase and TNF-� levels in adipose tissue.
Diabetes 59:872–882, 2010

T
he prevalence of obesity increases dramatically
and has attained the characteristics of an epi-
demic (1). Studies in both humans and animals
demonstrate that obesity is a state of low-grade,

chronic inflammation, characterized by elevated circulat-
ing proinflammatory molecules produced predominantly
from enlarged adipocytes and activated macrophages in
adipose tissue (2–4). In fact, chronic inflammation in
adipose tissue per se plays a key role in the development
of obesity and associated metabolic disorders, such as
type 2 diabetes. Various proinflammatory adipokines, in-
cluding tumor necrosis factor-� (TNF-�), interleukin-6
(IL-6), resistin, retinol-binding protein 4, and plasminogen
activator inhibitor-1, directly antagonize the metabolic
actions of insulin and cause decreased insulin sensitivity
(5,6).

Lipocalin-2, also called growth factor–stimulated super-
inducible protein 24 (7), neutrophil gelatinase-associated
lipocalin (8), 24p3, or oncogene neu-related lipocalin
(9,10), belongs to the lipocalin superfamily consisting of
more than 20 small secretory proteins, including retinol-
binding protein 4, adipocyte fatty acid binding protein,
apolipoprotein D, and prostaglandin D synthase (11).
Members of the lipocalin family share a highly conserved
structural homology (12). By forming a cup-shaped hydro-
phobic cavity, lipocalins bind and transport a variety of
small lipophilic substances such as retinoids, arachidonic
acid, and various steroids. Although lipocalin-2 can bind
weakly to some common ligands of lipocalins, including
leukotriene B4 and platelet activating factor, its high-
affinity endogenous ligand(s) remain to be identified.

Lipocalin-2 is abundantly produced from adipocytes
(13–15). The expression and secretion of this protein
increases sharply after conversion of preadipocytes to
mature adipocytes. Its expression can be induced by
various inflammatory stimuli, including lipopolysaccha-
ride and IL-1� (16,17). The proinflammatory transcription
factor nuclear factor-�B transactivates lipocalin-2 expres-
sion through binding to the consensus motif within its
promoter (16,18). This evidence suggests that lipocalin-2
may participate in inflammation-related disorders. Expres-
sion of lipocalin-2 in adipose tissue is elevated in various
experimental models of obesity and in obese humans
(19–23). Moreover, this increase can be reversed by the
insulin-sensitizing drug rosiglitazone. In human subjects,
serum concentrations of lipocalin-2 are associated closely
with obesity-related anthropometric and biochemical vari-
ables (20). The positive correlations of serum lipocalin-2
with fasting glucose, homeostasis model assessment of
insulin resistance (HOMA-IR) index, and the inflammatory
marker high-sensitivity C-reactive protein are significant
even after adjustment for BMI, suggesting that it is an
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independent risk factor for insulin resistance, diabetes,
and inflammation. The present study has used a knockout
mouse model to evaluate the impact of lipocalin-2 loss-of-
function on systematic energy homeostasis and insulin
sensitivities under both basal and obese conditions. The
results demonstrate that lipocalin-2 plays a causal role in
the development of insulin resistance, at least partly
through modulating the inflammatory responses in adi-
pose tissue.

RESEARCH DESIGN AND METHODS

Experimental animals. Male mice were used for this study. C57BL/6J and
C57BL/6J db/db diabetic mice were from The Jackson Laboratory (Bar Harbor,
ME). The lipocalin-2 knockout (Lcn2-KO) mice were generated as reported
(24). The mRNA and protein levels of lipocalin-2 were undetectable in all
tissues evaluated including liver, fat, and muscle. The mice were backcrossed
to C57BL/6J mice for more than 20 generations. Leptin receptor�/�/lipocalin-
2�/� double knockout (DKO) mice were established by cross-breeding male
C57BL/6J db/� mice with female Lcn2-KO mice. The mice were housed in a
room under controlled temperature (23 � 1°C) and 12-h light-dark cycle, with
free access to water and standard chow (LabDiet 5053; Purina Mills, Rich-
mond, IN). Dietary obesity was induced in wild-type and Lcn2-KO mice by
allowing free access to a high-fat diet (D12451; Research Diet, New Bruns-
wick, NJ) from the age of 4 weeks onward. The comparisons throughout this
study are between wild-type and knockout littermates from heterocrosses.
Intraperitoneal glucose tolerance test (ipGTT) and insulin tolerance test
(ITT) were performed using mice that were fasted overnight and for 6 h, re-
spectively, as described (25). For drug treatment, 8 mg/kg of cinnamyl-3,4-
dihydroxy-�-cyanocinnamate (CDC; BIOMOL Research Laboratories, Ply-
mouth Meeting, PA) mixed with sesame oil was injected intraperitoneally
three times per week for 2 weeks. The control mice were injected with diluent
sesame oil. The TNF-� neutralization experiment was performed by injecting
the TNF-�–neutralizing antibody (50 �g � mouse � day i.p.; Sigma-Aldrich, St.
Louis, MO) or control IgG during the 2-week treatment period. The animal
experimental procedures were approved by the Committee on the Use of Live
Animals for Teaching and Research, University of Hong Kong, and were
carried out in accordance with the Guide for the Care and Use of Laboratory

Animals (26).
Production of recombinant adenoviruses and lipocalin-2 for in vivo

treatment. The adenovirus vector encoding FLAG-tagged murine lipocalin-2
was generated using the Adeno-X Expression System (Clontech, Mountain
View, CA). The recombinant adenovirus was injected into the tail vein of mice
2 weeks prior to tissue collection (25). The amount of injected adenovirus (108

plaque-forming units) caused no toxicity in the mice. The increased expres-
sion level of lipocalin-2 was confirmed by both Western blotting and enzyme-
linked immunosorbent assay (ELISA; supplementary Fig. 1, available in an
online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db09-1541/
DC1). Recombinant murine lipocalin-2 was expressed and purified, and
endotoxin was removed as described (20). The purity of the protein was
confirmed by SDS-PAGE and mass spectrometry analysis. No siderophore or
iron was found to bind to the protein.
Measurement of insulin and lipid levels. Fasting serum insulin concentra-
tions were determined with a commercial ELISA kit (Mercodia AB, Uppsala,
Sweden). The amounts of triglyceride (TG), total cholesterol, and free fatty
acids (FFAs) in tissues and serum samples were analyzed as described
elsewhere (27). Fatty acid compositions of the epididymal adipose tissue,
liver, and muscle were analyzed by gas chromatography–mass spectrometry
(GC-MS) (28). Nonadecanoic acid C19:0 and tridecanoic acid methyl ester
C13:0 were added as internal controls during sample processing. The standard
curve was generated using the fatty acid standard Supelco 37 Component
FAME mix (10 mg/ml, Sigma-Aldrich).
ELISA quantification of lipocalin-2, adiponectin, TNF-�, and 12(S)-

HETE. Total serum lipocalin-2 and adiponectin levels were measured using
in-house ELISAs (20,29). Serum TNF-� concentrations were quantified using a
high-sensitivity TNF-� Quantikine ELISA System (R&D Systems, Minneapolis,
MN). Mouse adipose TNF-� levels were measured using immunoassay kit
from Invitrogen (Camarillo, CA). Tissue membrane and soluble fractions were
prepared as described (30). Equal amounts (500 �g) of samples were used for
analysis. 12(S)-hydroperoxy tetraenoic eicosatetraenoic acid �12(S)-HETE	 in
different tissues was measured using an enzyme immunosorbent assay (Assay
Designs, Ann Arbor, MI) as described (31).
Measurement of glucose uptake. Fat pads or skeletal muscle strips were
stimulated with or without insulin, and the glucose uptake was determined as
described (32).

Evaluation of in vivo insulin signaling. After overnight fasting, mice were
anesthetized and 1 IU per kg insulin (Novo Nordisk, Novo Allé, Denmark) or
an equal volume of vehicle was administered through the portal vein. Adipose
tissue (epididymal fat pads), liver, and soleus muscle were collected 120 s
after the injection and immediately stored in liquid nitrogen for subsequent
Western blotting analysis.
Quantitative RT-PCR analysis. Quantitation of target genes was performed
using SYBR Green PCR Master Mix (Qiagen) and an ABI PRISM 7900 HT
Sequence Detection System (Applied Biosystems, Foster City, CA). The
primer sequences are listed in supplementary Table 1.
Western blotting. Antibodies against total or phosphorylated Akt and insulin
receptor-� (IR-�) were purchased from Cell Signaling Technology. Proteins
(100 �g) derived from cell or tissue lysates were separated by SDS-PAGE and
transferred to polyvinylidene difluoride membranes. The immune complexes
were detected with the enhanced chemiluminescence reagents from GE
Healthcare (Uppsala, Sweden).
Thiobarbituric acid reactive substance assays. The concentrations of the
lipid peroxidation product malondialdehyde (MDA) were determined with a
commercial thiobarbituric acid reactive substance assay kit (Cayman Chem-
ical, Ann Arbor, MI). The results were calculated against the total protein
contents.
TOBEC measurement. The total body electrical conductivity (TOBEC) was
measured in an EM-SCAN SA-3203-type chamber (EM-SCAN, Springfield, IL).
Briefly, mice were anesthetized and placed in the middle of the Plexiglas
cylinder. A 10-HMz oscillating magnetic field was applied and the energy
dissipation was detected and expressed as E-value. At least five measurements
were taken for each mouse each time. The fat-free body mass was calculated
by the formula: �3.732 � 0.578 
 body wt (g) � 2.967 
 E0.5.
Histologic analysis. Paraffin sections (5 �m) were prepared for hematoxylin
and eosin staining and analyzed under a microscope (Leica Microsystems,
Bensheim, Germany). The sizes of adipocytes were measured using ImageJ
software. Histologic staining of a macrophage-specific marker was performed
as described (33,34).
Data analysis. All results were derived from at least three sets of repeated
experiments. The statistical calculations were performed with SPSS 11.5
statistical software package. Differences between groups were determined by
Student t test. All values were presented as means � SD. In all statistical
comparisons, P � 0.05 was used to indicate significant differences.

RESULTS

Improved systemic insulin sensitivity in mice without
lipocalin-2 under conditions of aging and dietary- or
genetic-induced obesity. Mice lacking lipocalin-2 had
similar growth rates and food intake compared with their
wild-type littermates (Fig. 1A and B). However, starting
from the age of 11 weeks, the fasting glucose levels of
Lcn2-KO mice were significantly lower than those of
wild-type mice (Fig. 1C). Moreover, the fasting serum
insulin levels were constantly lower by �45% in Lcn2-KO
mice compared with wild-type mice at all time points (Fig.
1D). At the end of the monitoring period, wild-type mice
were much more glucose intolerant and insulin resistant
than Lcn2-KO mice (Fig. 1E and F). In fact, the values of
ipGTT area under the curve (AUC) in Lcn2-KO mice at
ages 11, 15, and 21 weeks were significantly reduced than
those in wild-type mice (Fig. 1G). Similar results had also
been observed for ITT, showing that insulin sensitivity was
greatly improved in Lcn2-KO mice at 13 and 23 weeks
(Fig. 1H).

Dietary obesity was induced by feeding the mice with 18
weeks of high-fat diet. Compared with wild-type animal,
the percentage body weight gain of Lcn2-KO mice was
slightly lower (116.4 � 0.2 and 96.8 � 0.12%, respectively),
despite a similar food intake (Fig. 2A and B). The fasting
glucose levels of Lcn2-KO mice were lower (4.0 � 0.67 to
5.6 � 1.18 mmol/l) than those of the wild-type littermates
(6.2 � 0.22 to 8.4 � 1.51 mmol/l) throughout the monitor-
ing period (Fig. 2C). Although hyperinsulinemia was ob-
served in both types of animals, the values remained much
lower in Lcn2-KO mice than those of the wild-type litter-
mates (Fig. 2D). At the end of the treatment, severe
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FIG. 1. Lipocalin-2 deficiency ameliorates age-associated deterioration of insulin sensitivity. Age-matched wild-type and Lcn2-KO mice were fed
with normal chow. Their body weight (A) and food intake (B) were monitored from 5 to 24 weeks. Fasting blood glucose (C) and serum insulin
concentrations (D) were measured in blood samples collected from the tail vein. At the end of the period, Lcn2-KO mice showed significantly
improved insulin sensitivity as evaluated by ipGTT (E) and ITT (F). The AUC of ipGTT (G) and ITT (H) were calculated for each set of
experiments to demonstrate the progressive development of aging-associated insulin resistance, which was attenuated by lipocalin-2 deficiency.
*P < 0.05 Lcn2-KO mice vs. wild-type controls, n � 6–8.
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FIG. 2. Mice without lipocalin-2 are partly protected from high-fat diet–induced insulin resistance. Age-matched wild-type and Lcn2-KO mice were
fed with high-fat diet for 18 weeks. Body weight (A) and food intake (B) were monitored on a weekly basis. Fasting blood glucose levels (C) and
serum insulin concentrations (D) were evaluated as in Fig. 1. At the end of the treatment, mice deficient in lipocalin-2 showed greatly improved
insulin sensitivity as demonstrated by ipGTT (E) and ITT (F). The AUC of ipGTT (G) and ITT (H) were calculated for monitoring the
development of insulin resistance induced by high-fat diet feeding. *P < 0.05 Lcn2-KO mice vs. wild-type controls, n � 6–8.
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glucose intolerance and insulin resistance developed in
wild-type mice (Fig. 2E and F). Lipocalin-2 deficiency
significantly alleviated high-fat diet–induced insulin resis-
tance, and the effect could be observed as early as 5 weeks
after high-fat diet feeding (Fig. 2G and H).

Next, leptin receptor–deficient db/db mice lacking the
expression of lipocalin-2 (DKO) were generated. Both
db/db and DKO mice showed early-onset obesity (Fig. 3A).
The food intake of db/db mice was slightly higher com-
pared with DKO mice (Fig. 3B). At 7 weeks of age, db/db
mice developed hyperglycemia (fasting glucose levels:
10.16 � 2.67 mmol/l, Fig. 3C). By contrast, both fasting and
fed blood glucose levels (data not shown) of DKO mice
were maintained at a much lower level throughout the
observation period. The db/db mice displayed a severe
and progressive hyperinsulinemia during the course of
the study (348.421 � 75.716, 420.826 � 94.706, and
516.778.421 � 73.225 �U/ml at 7, 9, and 11 weeks, respec-
tively) (Fig. 3D), whereas DKO mice showed a significantly
lower fasting plasma insulin levels (55.18 � 12.8, 60.48 �

26.21, and 97.67 � 35.63 �U/ml at 7, 9, and 11 weeks,
respectively). The results from both ITT and HOMA-IR
calculations confirmed that systemic insulin sensitivity
was significantly higher in DKO mice compared with db/db
controls (Fig. 3E and F).

Recombinant adenoviruses were used for administra-
tion of exogenous murine lipocalin-2 into Lcn2-KO mice
and the wild-type littermates. Overexpressing this adi-
pokine for 2 weeks significantly elevated fasting glucose
levels and HOMA-IR indexes in both types of animals
(supplementary Fig. 1). The serum insulin levels were
significantly augmented in Lcn2-KO mice, but only
slightly increased in wild-type controls, compared with
those treated with recombinant adenoviruses encoding
luciferase. On the other hand, acute treatment with
lipocalin-2 recombinant protein by intraperitoneal injec-
tion into both types of animals at different dosages had
no effects on circulating glucose and insulin levels
during the short period of treatment (up to 24 h, data not
shown).
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FIG. 3. Insulin resistance caused by genetic obesity is attenuated in mice lacking lipocalin-2. Body weight (A) and food intake (B) were measured
regularly for db/db and DKO mice between 6 and 12 weeks. Fasting blood glucose levels (C), fasting serum insulin concentrations (D), AUC of
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Despite enlarged mass, the fat tissues of Lcn2-KO
mice show attenuated inflammation and increased
insulin sensitivity. Circulating lipid profiles were ana-
lyzed in wild-type and lipocalin-2–null mice under four
different conditions (supplementary Table 2). Although
elevated serum FFA levels could contribute to the devel-
opment of systemic insulin resistance, no significant
changes were detected. Serum total cholesterol levels
were reduced in lipocalin-2–deficient mice. However,
overexpression of lipocalin-2 did not increase the circulat-
ing total cholesterol concentrations. Individual tissue sam-
ple analyses revealed that compared with wild-type mice,
the amount of all three major lipid species (TG, FFA, and
total cholesterol) was increased by 1.5- to 1.8-fold in
epididymal fat of Lcn2-KO mice fed with either normal
chow or high-fat diet. Moreover, overexpression of lipoca-
lin-2 significantly reduced the lipid content in fat tissues.

In obese Lcn2-KO mice, an expansion of the epididymal
adipose tissue by �50% was observed compared with
wild-type mice (Fig. 4A). In DKO mice, the net weight of
epididymal fat pad was also increased by �25% compared
with db/db mice (data not shown). Conversely, adenovirus-
mediated overexpression of lipocalin-2 reduced the epidid-
ymal adipose tissue mass by �55% in wild-type mice and
�48% in Lcn2-KO mice. Compared with the wild-type
mice, lipogenesis was significantly increased and lipolysis
decreased in the adipose tissues of Lcn2-KO mice (supple-
mentary Fig. 2). Histologic examination revealed that the
average area of adipocytes derived from epididymal fat
pads of obese Lcn2-KO mice was about threefold larger
than that of obese wild-type mice (Fig. 4B). When ex-

pressed on a per-organ basis, the total lipid contents in
epididymal fat pads of high-fat diet–fed Lcn2-KO obese
mice were even more markedly augmented (FFA: 44.8 �
8.29 mmol; TG: 137.174 � 25.39 mg; total cholesterol: 1.7 �
0.32 mg) compared with wild-type obese mice (FFA:
19.8 � 4.12 mg; TG: 55.9 � 11.62 mg; total cholesterol:
0.76 � 0.16 mg). The average cell size of epididymal
adipocytes of Lcn2-KO mice fed with normal chow was
also significantly larger compared with wild-type litter-
mates (Fig. 4B). Increased subcutaneous fat mass had also
been observed for obese Lcn2-KO mice compared with
wild-type littermates (data not shown). Body composition
analysis using TOBEC, which reflects total body fat mass
(35), revealed that 15 weeks of high-fat diet induced an
increase of 40 and 24% fat mass in Lcn2-KO mice and
wild-type mice, respectively, whereas the values were not
significantly different from those fed with normal chow
(wild-type mice: 12.32 � 2.921; Lcn2-KO mice: 13.42 �
1.8309).

Immunohistochemical staining revealed that a large
number of F4/80-positive macrophages were accumulated
in the epididymal fat tissues from high-fat diet–fed wild-
type mice, whereas the macrophages were virtually unde-
tectable in Lcn2-KO mice, despite the enlargement of the
fat cells (Fig. 4C). The concentrations of MDA, markers of
oxidative stress, were lower by 50% in Lcn2-KO mice
compared with wild-type mice (Fig. 4D). The total protein
levels of inhibitor of �B� were increased in the adipose
tissues of Lcn2-KO mice (data not shown). Quantitative
PCR analysis revealed that the expressions of TNF-�,
monocyte chemoattractant protein 1, F4/80, and CD14
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were significantly lower in high-fat diet–fed Lcn2-KO mice
compared with wild-type animals (supplementary Table
3). Insulin-induced phosphorylation of insulin receptor
and Akt was examined in adipose tissue. Whereas high-fat
diet–fed mice showed a much lower magnitude of re-
sponse to portal vein injection of insulin (Fig. 4E), both
insulin receptor and Akt phosphorylations were enhanced
significantly in lean and obese Lcn2-KO mice compared
with wild-type animals. Moreover, the insulin-stimulated
glucose uptake was significantly higher in epididymal fat
pad of Lcn2-KO mice, under both normal and high-fat diet
conditions than that of wild-type mice (Fig. 4E). Compared
with fat tissue, the phosphorylations of insulin receptor
and Akt in skeletal muscle and liver tissues showed less
prominent changes between mice with and without lipoca-
lin-2. Insulin-stimulated glucose uptake was not signifi-
cantly different in soleus muscle of Lcn2-KO mice from
that of the wild-type littermates (supplementary Fig. 3A).
Of note is that the expressions of key genes involved in
gluconeogenesis were much lower in obese Lcn2-KO mice
(supplementary Fig. 3B).
Lipocalin-2 treatment stimulates TNF-� expression
in adipose tissue partly through upregulating 12-
lipoxygenase expression and activity. GC-MS analysis
revealed that fatty acid composition in the epididymal
adipose tissue of Lcn2-KO mice, but not in the liver and
skeletal muscle, varied significantly from those of wild-

type littermates, under both standard chow and high-fat
diet conditions (supplementary Fig. 4). One of the signifi-
cantly increased fatty acid species was arachidonic acid
(C20:4 n6) (Fig. 5A). Aging and high-fat diet elevated
arachidonic acid contents in adipose tissues, which were
found to be further elevated in Lcn2-KO mice. Quantitative
real-time PCR was performed to measure the expression
levels of enzymes involved in arachidonic acid metabolic
pathways. The results demonstrated that although cy-
cloxygenase-1 and -2 were not obviously different between
the two types of animals (data not shown), lipocalin-2
deficiency dramatically attenuated both aging- and dietary
obesity–induced upregulation of 12-lipoxygenase (Fig. 5B
and C). The activity of 12-lipoxygenase, indicated by the
total amount of its metabolite 12(S)-HETE, was also
largely reduced in the adipose tissues of obese Lcn2-KO
mice (Fig. 5D). Note that in liver and skeletal muscle
tissues, the gene expression (data not shown) and activity
of 12-lipoxygenase were not different between mice with
and without lipocalin-2.

The above results showed that lipocalin-2 deficiency
decreased TNF-� expression in adipose tissue (supple-
mentary Table 3). Further analysis using tissues derived
from different ages of animals revealed that the increased
TNF-� mRNA levels associated with both aging and obe-
sity were blocked in Lcn2-KO mice, and the significant
differences could be observed in animals as young as 7
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weeks (Fig. 6A). Similarly, the protein levels of TNF-�
were also decreased in adipose tissues of Lcn2-KO mice,
especially in the membrane fractions, with a reduction of
�70% (Fig. 6B). Administration of recombinant adenovirus
expressing lipocalin-2 promoted TNF-� expression by
�5-fold and �11-fold in Lcn2-KO mice fed with standard
chow and high-fat diet, respectively (Fig. 6C). These
effects were largely reversed by treatment with CDC, a
small molecular inhibitor of 12-lipoxygenase. Further-
more, overexpression of lipocalin-2 resulted in a signifi-
cant increase of 12-lipoxygenase expression (Fig. 6C) and
12(S)-HETE production (data not shown) in adipose tis-
sue. Acute treatment with lipocalin-2 significantly in-
creased the mRNA levels of both 12-lipoxygenase and
TNF-� at 1 and 2 h, respectively, in Lcn2-KO mice (Fig.
7A), but not in those treated with CDC (data not shown).
In the meantime, a transient but significant decrease of

serum FFA was observed in mice treated with lipocalin-2
(Fig. 7B). The 12(S)-HETE production was steadily ele-
vated from 2 h after injection. These data indicated that
arachidonate lipoxygenase pathway was involved in li-
pocalin-2–mediated TNF-� production from adipose tis-
sue. Note that a large amount of lipocalin-2 rapidly entered
into the adipose tissues (Fig. 7C). However, the levels of
both serum and adipose lipocalin-2 gradually decreased
and could not be detected at 12 h after the treatment.

To investigate whether there was any relationship be-
tween the decreased 12-lipoxygenase activity/TNF-� pro-
duction and the improved insulin sensitivity in Lcn2-KO
mice, CDC or specific TNF-� neutralization antibody was
administered into mice that were fed a high-fat diet (Fig.
8). Two weeks of treatment with CDC significantly atten-
uated the progression of insulin resistance in both wild-
type and Lcn2-KO animals and abolished the differences
between the two groups (Fig. 8A and B). On the other
hand, similar treatment with TNF-� neutralization anti-
body improved insulin sensitivity in wild-type littermates,
but had no significant effects on Lcn2-KO mice (Fig. 8C
and D).

DISCUSSION

Although lipocalin-2 has been identified for nearly two
decades, its physiological function remains poorly under-
stood. Studies have focused on its role in innate immune
response to bacterial infection (24) and cancer progres-
sion (36). It has been considered as an early marker of
acute kidney damage (37). In human obese subjects, like
other insulin resistance–inducing adipokines and cyto-
kines, circulating lipocalin-2 levels are markedly elevated
(20–22). In db/db obese mice, increased serum levels of
lipocalin-2 are mainly due to the selective augmentation of
its expression in adipose tissue and liver (20,21). Both
stimulatory and inhibitory effects of lipocalin-2 on insulin
sensitivities in 3T3-L1 adipocytes have been reported
(21,22). The present study has used a knockout mouse
model to evaluate the physiological functions of lipoca-
lin-2 on systematic energy homeostasis and insulin sensi-
tivities. The results suggest that lipocalin-2 deficiency
attenuates the development of aging- and obesity-associ-
ated insulin resistance, hyperglycemia, and hyperinsu-
linemia. Lipocalin-2 elicits its adverse effects at least
partly by activating the arachidonate 12-lipoxygenase
metabolic pathway and stimulating adipose expression
of TNF-�, which may in turn magnify the local inflamma-
tion and cause impaired energy homeostasis and systemic
insulin resistance.

TNF-� has been proposed as a link between obesity and
insulin resistance because it is highly expressed in adipose
tissues of obese animals and humans and can directly
impair insulin signaling in both cultured cells and experi-
mental animals (38). Obese mice lacking either TNF-� or
TNF-� receptors are protected against insulin resistance
(39,40). Infusion of TNF-� to adult rats reduces systemic
insulin sensitivity, which is associated with major changes
of gene expression in adipose tissue (30,41). Direct expo-
sure of isolated cells to TNF-� induces a state of insulin
resistance in several systems, including adipocytes and
myocytes (42). In addition to obesity and type 2 diabetes,
insulin resistance is associated with many other patholog-
ical conditions including aging, cancer, and infections
(43). A decline in fat-free mass and a relative increase in
fat mass are common findings in aged subjects and are
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associated with a rise in TNF-� concentration and a
deterioration of insulin action (44,45). Neutralization of
TNF-� reverses age-induced impairment of insulin respon-
siveness (46). Although these pharmacologic studies have
attributed most of the action of TNF-� to the pathogenesis
of insulin resistance, the molecular basis underlying in-
creased TNF-� expression in the obese state is largely
unknown. The present study provides evidence suggesting
that lipocalin-2 plays critical roles in regulating TNF-�
expressions in fat tissues, at least partly through upregu-
lating 12-lipoxygenase expression and activity. First, in-
creased levels of lipocalin-2 are found to be associated
with both aging (data not shown) and obesity (20) in
wild-type mice. Second, mice lacking lipocalin-2 are pro-
tected from aging- and obesity-induced upregulation of
TNF-� and activation of 12-lipoxygenase in adipose tissue.
Third, lipocalin-2 treatment increases TNF-� levels and
12-lipoxygenase expression and activity. Fourth, block-
age of arachidonate lipoxygenase pathway by CDC
treatment prevents the induction of TNF-� expression
by both high-fat diet (data not shown) and lipocalin-2
treatment. Taken together, the presence of lipocalin-2
may be indispensable for TNF-� induction by various
pathologic conditions.

Consistent with the findings on TNF-� production, insu-
lin resistance is largely prevented in aged and obese
Lcn2-KO mice. This improvement of insulin sensitivity is
correlated mainly with attenuated inflammation in adipose
tissues of mice lacking lipocalin-2. Both the total protein
and adipose membrane fraction of TNF-� are significantly
decreased in obese Lcn2-KO mice compared with wild-
type mice. Membrane TNF-� is a precursor form of soluble
TNF-� and exerts proinflammatory functions in a cell-to-
cell contact manner. It has been demonstrated that mac-
rophages in fat pads of obese mice and humans are
localized to dead adipocytes and are often coincident with
increased TNF-� expression (47). This information sug-
gests that lipocalin-2 may exert adverse metabolic and
inflammatory actions, locally and systemically, partly
through upregulating the expression of TNF-�. This has
been further verified by introducing neutralization anti-
bodies to high-fat diet–fed wild-type and Lcn2-KO mice.
TNF-� neutralization attenuates insulin resistance in wild-
type mice, whereas lipocalin-2–deficient mice do not show
reduced insulin sensitivity. Of note is that CDC treatment,
which attenuates TNF-� expression and 12-lipoxygenase
activity induced by lipocalin-2, improves insulin sensitivity
in both wild-type and Lcn2-KO mice. Because CDC at
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higher concentrations also inhibits other lipoxygenases, it
is highly possible that some unidentified inflammatory
mediators may play a role in causing insulin resistance in
both wild-type and Lcn2-KO mice, which could not be
prevented by lipocalin-2 deficiency. In fact, our unpub-
lished observation suggests that CDC treatment attenuates
the expression of a wide range of inflammatory adipo-
kines, including TNF-�, IL-6, and IL-1� in adipose tissue of
high-fat diet–fed mice (J.T.C.L. and Y.W.).

12-Lipoxygenase has been linked to inflammation and
insulin resistance partly through the production of biolog-
ically active lipid species, such as 12(S)-HETE (31,48).
Mice deficient in this gene are resistant to inflammatory
effects induced by Western diet. Treatment with its prod-
uct 12(S)-HETE enhances the expression of proinflamma-
tory cytokine genes and impairs insulin signaling in 3T3-L1
adipocytes. Stimulators of 12-lipoxygenase gene expres-
sion include saturated fatty acids, such as palmitate (48).

In addition, the expression levels of this enzyme can be
upregulated by iron deficiency (49), in which the overall
effect is a perturbation of lipid homeostasis. Using induc-
tively coupled plasma mass spectrometry analyses, we
have found that lipocalin-2 deficiency is associated with a
higher level of iron contents in adipose tissues of Lcn2-KO
mice than in wild-type animals (supplementary Fig. 5).
However, the iron levels are decreased by high-fat feeding
in both types of animals to a similar extent, suggesting that
other factors in addition to iron may be involved in causing
the different expression levels of 12-lipoxygenase in mice
with or without lipocalin-2. Although lipocalin-2 belongs to
a family of proteins that can bind to lipids, its endogenous
ligands have not been identified. Acute lipocalin-2 treat-
ment causes a rapid but transient reduction of the circu-
lating FFA levels. It can also enhance fatty acid uptake into
fat tissue, suggesting that the inducing effect of this
adipokine on 12-lipoxygenase may also involve transpor-
tation of lipid species into the adipocytes.

Excessive ectopic lipid accumulation plays an important
role in inducing peripheral insulin resistance (50). Note
that lipid accumulation in liver can be markedly abolished
by lipocalin-2 deficiency. Moreover, the lipid contents in
skeletal muscle are lower in Lcn2-KO mice and can be
augmented by replacement with lipocalin-2, suggesting
that it may promote lipid remobilization from fat to
peripheral tissues. Indeed, irrespective of obesity condi-
tions induced by the diet or the genetic mutations, the
absence of lipocalin-2 enhances lipid storage in fat tissue
and treatment with this adipokine reduces the adipose fat
content, which may explain the phenomenon that excess
ectopic lipid accumulation is attenuated in Lcn2-KO mice.
Nevertheless, whether lipocalin-2 could promote periph-
eral insulin resistance through its lipid-binding activities
needs to be further addressed but is beyond the scope of
this study.
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treatment with CDC (A and B) or TNF-� neutralization antibody (C

and D) for another 2 weeks. ipGTT (A and C) or ITT (B and D) were
performed at the end of the experiment. AUC was calculated and
displayed at the bottom of each panel. *P < 0.05 vs. all other groups;
#P < 0.05 vs. CDC-treated mice (A and B) or Lcn2-KO mice (C and D),
n � 3.
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