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Introduction
FGFs comprise a family of 22 polypeptides that regulate  
migration, proliferation, differentiation, and survival of different  
cell types. They exert these functions through activation of 
four transmembrane tyrosine kinase receptors, designated 
FGF receptor (FGFR) 1–4 (Ornitz and Itoh, 2001; Beenken 
and Mohammadi, 2009). Further complexity is achieved by 
alternative splicing in the FGFR genes. Of particular impor-
tance is alternative splicing in the third immunoglobulin-like 
domain of FGFR1-3, which generates IIIb and IIIc vari-
ants of these receptors that are characterized by different  

ligand-binding specificities (Ornitz and Itoh, 2001). For example, 
the IIIb splice variant of FGFR2 (FGFR2IIIb) is a high-affinity 
receptor for FGF7, FGF10, and FGF22, whereas the IIIc variant 
(FGFR2IIIc) binds a variety of other FGF ligands (Zhang  
et al., 2006).

Previous studies revealed important roles of FGFs in 
development, homeostasis, and repair of the skin (Steiling  
and Werner, 2003). Several FGFs are expressed in this tissue,  
and most of them are up-regulated upon injury (Werner et al.,  
1992, 1993; Komi-Kuramochi et al., 2005). Of particular  
interest are ligands of FGFR2IIIb because transgenic mice  
expressing a dominant-negative mutant of this receptor  
in keratinocytes showed epidermal atrophy, hair follicle  

Fibroblast growth factors (FGFs) are master regula-
tors of organogenesis and tissue homeostasis. In this 
study, we used different combinations of FGF recep-

tor (FGFR)-deficient mice to unravel their functions in the 
skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 
in keratinocytes caused progressive loss of skin append-
ages, cutaneous inflammation, keratinocyte hyperpro-
liferation, and acanthosis. We identified loss of FGF- 
induced expression of tight junction components with 
subsequent deficits in epidermal barrier function as the 
mechanism underlying the progressive inflammatory 

skin disease. The defective barrier causes activation of 
keratinocytes and epidermal  T cells, which produce  
interleukin-1 family member 8 and S100A8/A9 pro-
teins. These cytokines initiate an inflammatory response 
and induce a double paracrine loop through produc-
tion of keratinocyte mitogens by dermal cells. Our  
results identify essential roles for FGFs in the regulation 
of the epidermal barrier and in the prevention of  
cutaneous inflammation, and highlight the importance  
of stromal–epithelial interactions in skin homeostasis 
and disease.
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signaling in the latter. EGF activated these signaling pathways 
in cells of both genotypes (Fig. 1 D).

Overlapping functions of FGFR1  
and FGFR2 in the skin
Macroscopically, no obvious abnormalities were observed in  
K5-R1 mice at any stage of postnatal development (Fig. 2 B).  
In contrast, K5-R2 mice revealed a phenotype (Fig. 2 C) 
that fully matches the abnormalities seen in mice lacking  
FGFR2IIIb in keratinocytes (K5-R2IIIb mice; Grose et al., 
2007). The latter show hair abnormalities, a reduction in the 
number of hairs, and loss of sebaceous glands. The phenotype 
was much more severe in the double knockout mice (Fig. 2 D), 
whereas the loss of only one Fgfr2 allele in addition to both 
Fgfr1 alleles did not cause obvious phenotypic abnormal-
ities (not depicted). All females and 60% of the males were 
infertile, and both were much smaller than control littermates. 
They also progressively lost their hair and were hairless by 
the age of 2–4 mo (Fig. 2 E). However, we did not observe 
an increased mortality rate, and we were able to maintain the 
animals for up to 2 yr.

FGFR1IIIb cooperates with FGFR2IIIb in 
the regulation of epidermal homeostasis
To identify the splice variant that cooperates with FGFR2 in 
keratinocytes, we generated mice lacking FGFR1IIIb in all cells 
and FGFR2 in keratinocytes (K5-R2/R1IIIb mice). FGFR1IIIb-
deficient mice are phenotypically normal and do not display an 
obvious skin phenotype because only the IIIb exon of the Fgfr1 
gene was deleted in these mice, whereas all other FGFR1 splice 
variants are normally expressed (Zhang et al., 2004). The pheno
type of K5-R2/R1IIIb mice was identical to the phenotype  
observed in K5-R1/R2 mice at the macroscopic (Fig. 2, E and F)  
and histological level (Fig. 3 E and not depicted). Therefore, 
we conclude that FGFR1IIIb and FGFR2IIIb cooperate in the 
regulation of epidermal homeostasis.

Loss of skin appendages and progressive 
acanthosis in K5-R1/R2 mice
We next focused on the phenotype of the double mutant mice. 
At P5 (first anagen), a mild hypotrophy of the epidermis was 
observed, but the dermis and appendages appeared normal  
(Fig. 3 A). Although smaller and abnormally shaped, hair fol-
licles were still present at P18 (first telogen), and their number 
was similar to control mice (24 follicles/mm in control mice vs. 
25 follicles/mm in K5-R1/R2 mice; n = 6 control and 5 K5-
R1/R2 mice). At this stage, the epidermis had a normal thick-
ness, and no dermal abnormalities were observed (Fig. 3 B). 
By P30, control mice had entered the second anagen. However, 
most follicles from K5-R1/R2 mice were in telogen, although 
their number was still similar to the number in control mice  
(5 follicles/mm in mice of both genotypes; n = 4 control and  
3 K5-R1/R2 mice; Fig. 3 C). Hair follicles and sebaceous 
glands were virtually absent in the back skin of older mice, 
and only a few cysts were present in the dermis (unpublished 
data), which demonstrates a progressive loss of appendages. 
Concomitantly, fibrosis developed in the dermis (Fig. 3 D). 

abnormalities, and impaired wound reepithelialization (Werner 
et al., 1994). However, the responsible receptors remain to 
be identified, as the dominant-negative mutant blocks the  
action of all FGF receptors in response to common FGF  
ligands (Ueno et al., 1992). The abnormalities seen in these 
animals were not observed in FGF7 knockout mice (Guo et al., 
1996), which suggests functional redundancy among different 
FGFs and possibly FGF receptors. Indeed, expression studies 
revealed that FGF10 and FGF22 are also expressed in normal 
and wounded skin (Beer et al., 1997; Nakatake et al., 2001; 
Beyer et al., 2003). Together with FGF7, they can activate 
the “b” splice variants of FGFRs 1 and 2 (Zhang et al., 2006) 
that are expressed in keratinocytes (Beer et al., 2000; Zhang  
et al., 2004). In the case of FGF7 and FGF10, the activation  
occurs in a paracrine manner because both ligands are produced 
by fibroblasts in the dermal papilla and in the interfollicular  
dermis as well as by epidermal  T cells (Werner et al., 1993; 
Rosenquist and Martin, 1996; Jameson and Havran, 2007).  
In contrast, FGF22 is mainly expressed in the inner root sheath 
of the hair follicle (FGF22; Nakatake et al., 2001) and most 
likely acts in an autocrine manner (Fig.1 A).

To determine the function of these FGFs and their recep-
tors in the skin, we generated mice lacking FGFR1, FGFR2, 
or both receptors in keratinocytes. Our results revealed that 
these receptors cooperate to maintain the epidermal barrier 
and cutaneous homeostasis.

Results
Generation of mice lacking FGFR1, FGFR2, 
or both receptors in keratinocytes
Mice with floxed Fgfr1 (Pirvola et al., 2002) and Fgfr2 alleles 
(Yu et al., 2003) were mated with transgenic mice expressing 
Cre recombinase under the control of the keratin 5 (K5)  
promoter. This promoter allows excision of floxed alleles in 
basal cells of stratified epithelia after embryonic day 15.5  
(Ramirez et al., 2004).

The progeny of our breeding included mice lacking FGFR1, 
FGFR2, or both receptors in keratinocytes (designated K5-R1, 
K5-R2, and K5-R1/R2 mice). Mice with floxed Fgfr alleles but 
without the Cre transgene were used as controls. Mice hetero-
zygous for the floxed alleles that express Cre were used as an 
additional control in some experiments, and they never revealed 
phenotypic abnormalities (unpublished data).

Real-time RT-PCR using RNA from isolated epidermis 
of control and mutant mice demonstrated a strong reduction of 
Fgfr1 and Fgfr2 expression (Fig. 1 B) in newborn single and 
double knockout mice, which further declined until postnatal day 
18 (P18; Fig. 1 B and not depicted). There was no compensatory 
up-regulation of Fgfr3 expression, and Fgfr4 mRNA could not 
be detected in mice of all genotypes using an RNase protection 
assay (Fig. 1 C).

When primary keratinocytes from P3 mice were stimulated 
with FGF7 or FGF10, efficient phosphorylation of FGFR sub-
strate 2 (FRS2), extracellular signal-regulated kinase 1/2 
(Erk1/2), and p38 was observed in cells from control but not from 
K5-R1/R2 mice, which demonstrates efficient inhibition of FGFR 
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Figure 1.  Expression and activation of FGFR1IIIb and FGFR2IIIb in the skin of control and K5-R1/R2 mice. (A) The expression pattern of FGF7, FGF10, 
and FGF22 in the skin is shown schematically. FGF7 and FGF10 are expressed by fibroblasts of the dermis and the dermal papilla (DP) of the hair follicles 
and by epidermal  T cells. FGF22 is expressed by keratinocytes. These FGFs activate FGFR1IIIb and FGFR2IIIb on keratinocytes. Bar, 50 µm. (B) RNA 
from P0, P12, and P18 back skin epidermis of control and K5-R1/R2 mice was analyzed by real-time RT-PCR for the levels of Fgfr1 and Fgfr2 mRNAs. 
Error bars indicate mean ± SD. n = 3 K5-R1/R2 mice and 2 control mice at P0, n = 5 mice per genotype for P12 and P18. Glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh) mRNA was used for normalization. Data are indicated as the percentage of control. (C) RNA was isolated from the epidermis 
of adult K5-R1/R2 mice and age-matched control mice. RNA from mouse liver was used as a positive control for FGFR4. Samples of 20 µg of RNA were 
analyzed by an RNase protection assay for expression of FGFR3, FGFR4, or GAPDH. b, bases. (D) Primary keratinocytes from control and K5-R1/R2 
mice were grown to confluency, serum-starved, and treated for 10 min with FGF7, FGF10, EGF, or medium without growth factors (medium). Lysates were 
analyzed by Western blotting using antibodies against total and phosphorylated signaling proteins or lamin A (loading control).
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although the loricrin-positive part of the epidermis was thicker 
in K5-R1/R2 animals. K6, which is restricted to hair follicle 
keratinocytes in normal skin, was abnormally expressed in the 
interfollicular epidermis of adult K5-R1/R2 mice (Fig. S1).  
Interfollicular expression of this keratin is characteristic for 
hyperplastic and hyperproliferative skin. Overexpression of 
K6 was already seen at the RNA level at P18, but only a weak  
immunoreactivity was observed in the interfollicular epidermis 
at this time point (unpublished data).

Cell proliferation was assessed by in vivo labeling with 
BrdU. At P18, keratinocyte proliferation was only mildly  
increased in K5-R1/R2 mice (Fig. 4 B, left). At the age of 3 mo, 
however, keratinocyte proliferation was strongly increased in the 
back and tail skin of K5-R1/R2 mice but not of K5-R1 or K5-R2 
mice (Fig. 4, A and B, right; and not depicted). The increase in  
keratinocyte proliferation upon aging suggests that the hyper
proliferation is not a cell-autonomous effect but results from the 
progressive inflammation. This hypothesis is supported by the 
normal in vitro proliferation rate of primary keratinocytes isolated 
from K5-R1/R2 mice at P3 (Fig. 4 C, left). Proliferation was 
even reduced in cells from P23 K5-R1/R2 mice compared with 
cells from control mice of the same age (Fig. 4 C, right).

Progressive skin inflammation in  
K5-R1/R2 mice
To test the possible role of inflammation in the hyperthickening 
of the epidermis, we analyzed the immune cells. The most obvious 

These abnormalities were reminiscent of the phenotype seen in  
K5-R2IIIb mice (Grose et al., 2007), but they were more  
severe in double knockout mice. In contrast to all single knock-
out mice, however, K5-R1/R2 as well as K5-R2/R1IIIb mice 
developed epidermal hyperthickening (acanthosis) combined 
with disorganization of the keratinocytes at the age of 2–3 mo, 
and this phenotype further progressed upon aging (Fig. 3, D 
and E). Acanthosis was seen in all areas of the skin and was 
particular severe in the tail skin (Fig. 3 E). This phenotype was 
unexpected because FGFs are potent mitogens for keratinocytes 
(Steiling and Werner, 2003). Therefore, we next focused on the 
mechanisms underlying the epidermal abnormalities and the 
progressive skin disease that developed in these mice.

Loss of FGFR1 and FGFR2 in 
keratinocytes causes hyperproliferation  
in vivo but not in vitro
Acanthosis may result from reduced apoptosis, impaired differ-
entiation, or enhanced proliferation of keratinocytes, and these 
possibilities were explored. Apoptotic cells were extremely rare 
in the epidermis of control or K5-R1/R2 mice (unpublished 
data). Immunofluorescence analysis of epidermal differentiation 
markers revealed appropriate expression of keratin 14 (K14) in 
the basal layer. K10 expression started in the first suprabasal 
layer in mice of both genotypes, but the number of K10-positive 
layers was increased in K5-R1/R2 mice. Loricrin was expressed 
in the granular and cornified layers in mice of all genotypes, 

Figure 2.  Macroscopic abnormalities in FGFR mutant mice. Photographs were taken from control (A), K5-R1 (B), K5-R2 (C), K5-R1/R2 (D and E), and  
K5-R2/R1IIIb (F) mice at the age of 1 mo (1M; A–D) or 5 mo (5M; E and F).

http://www.jcb.org/cgi/content/full/jcb.200910126/DC1
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and IL-1F8 in the epidermis of K5-R1/R2 mice, whereas 
TNF and IL-1 expression was unaltered (Fig. 6 C and not  
depicted). However, S100A8, S100A9, and IL-1F8 were not  
up-regulated in cultured keratinocytes from K5-R1/R2 mice, 
neither in exponentially growing cells nor in quiescent cells that 
had undergone in vitro differentiation (unpublished data). This 
finding suggests that these cytokines are not directly regulated 
by the loss of FGFR1 and FGFR2, but rather through a pro- 
inflammatory stimulus that is only present in vivo. Alternatively, 
they may be produced by other cell types in the epidermis, e.g., 
by  T cells. To distinguish between these possibilities, we 
separated  T cells from other epidermal cells (predominantly 
keratinocytes) by FACS using dissociated cells from epidermal 
sheets (Fig. S3, B and C). The efficient enrichment of keratino-
cytes and  T cells was verified by semiquantitative RT-PCR 
analysis of mRNAs encoding K14 or the  T cell receptor, 
respectively (Fig. 6 D). Using RNAs from the purified cell 
populations, we found that S100A8/A9 are mainly produced 

difference that we observed by immunofluorescence was the 
strong (60%) increase in epidermal  T cells (Fig. 5 A). This 
was verified by FACS analysis of cells from isolated  
epidermis (unpublished data). Interestingly, the number of   
T cells was already significantly increased at P18, whereas no  
difference was observed at P12 (Fig. S2 A). The number of 
Langerhans cells was similar in control and K5-R1/R2 mice 
(unpublished data). Toluidine blue staining revealed signifi-
cantly more mast cells in the dermis of K5-R1/R2 mice at the 
age of 6 mo and P18, but no differences at P12 (Fig. 5 A  
and Fig. S2 B).

FACS analysis of dermal cells showed a significant increase 
in the number of CD45-positive immune cells, particularly  
and  T cells, in adult mice (Figs. 5 B and Fig. S3 A). This 
was confirmed by immunofluorescence, and an increased num-
ber of CD45-positive cells was already seen at P36 (Fig. S2 C).  
In contrast, no significant difference in the number of macro-
phages and neutrophils was detected using antibodies against  
CD11b and F4/80 or Ly-6G, respectively (Fig. 5 B and Fig. S3 A). 
The lack of a macrophage or neutrophil infiltrate was also con-
firmed by immunohistochemistry (unpublished data).

B cells do not accumulate in the skin, but their activation 
in adult K5-R1/R2 mice was demonstrated by the presence of 
enhanced levels of Igs G1, G2a, and E in the dermis and of IgE 
in the serum (Fig. 5 C).

These results demonstrate that the loss of FGFR1 and 
FGFR2 in keratinocytes initiates an inflammatory response. 
This is also reflected by enhanced levels of phosphorylated  
(activated) and total nuclear factor B (NF-B) in the epidermis 
of aged mutant mice. Levels of total and phosphorylated STAT3 
were also higher compared with controls, whereas expression 
and activation of p38 were not affected (Fig. 6 A).

Real-time RT-PCR analysis of RNAs from dermis and  
epidermis of aged mice revealed enhanced expression of the 
pro-inflammatory cytokines TNF, interleukin-1 (IL-1), and  
of IL-1 family member 8 (IL-1F8), a new member of the IL-1  
family (Fig. 6 B; Barksby et al., 2007). We also found up-regulation  
of S100A8 and S100A9, which are expressed by activated  
keratinocytes in hyperproliferative epidermis of psoriatic patients 
and in epidermal skin cancers and which act as chemoattrac-
tants for inflammatory cells (Gebhardt et al., 2006). In addi-
tion, intercellular adhesion molecule 1 (ICAM-1) was strongly 
expressed in the dermis (Fig. 6 B). This reflects the progressive 
skin inflammation in K5-R1/R2 mice.

Role of keratinocyte- and  T cell–
derived cytokines in the initiation of the 
inflammatory response
To identify the factors that initiate the inflammation in  
K5-R1/R2 mice, we determined the expression of the above- 
mentioned cytokines at P18 using RNA from isolated epidermis.  
The efficient separation of epidermis from dermis was veri-
fied by RT-PCR for K14 (epidermal marker) and vimentin 
(dermal marker; unpublished data). At P18, the loss of FGFR 
expression was almost complete (Fig. 1 B), but the epidermis 
was not yet hyperthickened (Fig. 3 B). We found a strongly 
increased expression of the genes encoding S100A8, S100A9, 

Figure 3.  Progressive loss of skin appendages in K5-R1/R2 mice.  
(A–D) Longitudinal paraffin sections from back skin of K5-R1/R2 female mice 
and control (ctrl) female littermates at P5, P18, 1 mo (1M), or 6 mo (6M) 
were stained with H/E. Bars, 100 µm. (E) Paraffin sections from the tail skin 
of control, K5-R1/R2, and K5-R2/FGFR1IIIb animals were stained with 
H/E. D, dermis; E, epidermis; HF, hair follicles. Bars, 22 µm.

http://www.jcb.org/cgi/content/full/jcb.200910126/DC1
http://www.jcb.org/cgi/content/full/jcb.200910126/DC1
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Magne et al., 2006). In addition, increased mRNA levels of 
TGF-, hepatocyte growth factor (HGF), and FGF7 were ob-
served in response to IL-1F8 treatment (Fig. 7 C). Most impor-
tantly, these mitogens were also overexpressed in the dermal 
compartment of K5-R1/R2 skin, particularly in aged mice, 
together with granulocyte colony-stimulating factor (G-CSF; 
Fig. 7 D). Although the FGFR1/2-deficient keratinocytes can 
no longer respond to FGF7, the other growth factors are likely 
to contribute strongly to the hyperproliferative phenotype.

Epidermal barrier function is disturbed in 
K5-R1/R2 mice
Because cutaneous inflammation frequently results from a defect 
in epidermal barrier function (Segre, 2006), we analyzed the 
transepidermal water loss (TEWL) that reflects the status of the 
permeability barrier (Fluhr et al., 2006). At P18, TEWL was 
slightly increased in K5-R1/R2 mice. This phenotype strongly 
increased with age, and the TEWL was significantly higher in 
the double knockout mice compared with control animals at the 
age of 6 mo (Fig. 8 A). This is consistent with their high  
consumption of drinking water (unpublished data) as well as 
with the dry and fragile appearance of the skin.

Epidermal barrier function is conferred by the cornified 
envelope (Segre, 2006) and by tight junctions (Pummi et al., 2001; 
Brandner et al., 2002; Furuse et al., 2002; Langbein et al., 2002). 

by keratinocytes and up-regulated in this cell type in K5-R1/R2 
mice, whereas IL-1F8 was predominantly expressed by   
T cells, particularly in the knockout mice (Fig. 6 D). Therefore, 
both keratinocytes and  T cells appear to contribute to the 
inflammatory phenotype.

IL-1F8 stimulates keratinocyte 
proliferation and production of  
keratinocyte mitogens by stromal cells
IL-1 released from keratinocytes is a potent inducer of keratino-
cyte mitogens in fibroblasts, resulting in keratinocyte prolifera-
tion through a double paracrine loop (Szabowski et al., 2000). 
To determine if IL-1F8 plays a similar role, we injected IL-1F8 
or BSA as a control intradermally into the skin of wild-type 
mice. 24 h later, increased keratinocyte proliferation was ob-
served in IL-1F8–injected mice as determined by BrdU labeling 
as well as by staining of skin sections with an antibody against 
proliferating cell nuclear antigen (PCNA; Fig. 7 A). To deter-
mine if this is a direct effect of IL-1F8 or mediated via stro-
mal cells, we treated murine keratinocytes with recombinant 
IL-1F8 at concentrations used in previous studies (Magne  
et al., 2006) and found a mild pro-mitogenic effect of this cyto-
kine (60% increase; Fig. 7 B). Treatment of serum-starved  
murine fibroblasts with IL-1F8 induced the expression of IL-6 
and IL-8, as described previously (Fig. 7 C and not depicted;  

Figure 4.  Enhanced keratinocyte prolifera-
tion in aged K5-R1/R2 mice in vivo but not  
in vitro. K5-R1/R2 mice and control littermates 
were injected with BrdU at P18 or 3 mo of 
age. Tail skin sections were stained with a 
peroxidase-conjugated antibody against BrdU. 
(A) Representative sections from 3-mo-old mice 
are shown. Bars, 100 µm. (B) The number 
of BrdU-positive cells/mm of basement mem-
brane was counted using at least 10 sections 
per mouse. Error bars indicate mean ± SD.  
n = 8 control and 6 K5-R1/R2 mice for P18; 
n = 4 control and 6 K5-R1/R2 mice for 3 mo 
(3M). *, P ≤ 0.05; **, P ≤ 0.005. (C) Primary 
keratinocytes of control and K5-R1/R2 mice 
were isolated at P3 or P23, seeded at equal 
density, and labeled with BrdU. The percent-
age of BrdU positive cells was determined. 
Error bars indicate mean ± SD. n = 4 per 
genotype for P3 and n = 3 for P23. At least 
two microscopic areas were counted per dish.
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Figure 5.  Immune cell infiltrate in the skin of K5-R1/R2 
mice. (A) Back skin sections from 6-mo-old (M6) con-
trol and K5-R1/R2 mice were stained with antibodies 
against the  T cell receptor. The white dotted line in-
dicates the basement membrane. In addition, sections 
were stained with toluidine blue to identify mast cells. 
The number of  T cells and mast cells/mm of basement 
membrane was counted using at least five sections per 
mouse. n = 5 mice per genotype for  T cells and 7 mice  
per genotype for mast cells. Bar, 33 µm. (B) Cells from 
the dermis of 12-mo-old mice were analyzed by FACS 
using antibodies against different inflammatory cell 
markers. n = 4 mice per genotype. The frequencies of 
the individual inflammatory cells are shown. Original 
FACS data are shown in Fig. S3 A. (C) Dermal pro-
tein lysates (n = 3 control and 4 K5-R1/R2 mice) or 
serum (n = 3 per genotype) of mice at the age of 12 mo 
were analyzed for the levels of IgG1, IgG2a, and IgE 
by ELISA. Error bars indicate mean ± SD. *, P ≤ 0.05; 
**, P ≤ 0.005.

http://www.jcb.org/cgi/content/full/jcb.200910126/DC1
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Figure 6.  Progressive inflammation in the skin of K5-R1/R2 mice through production of cytokines by activated keratinocytes and  T cells. (A) Epidermal 
lysates from control and K5-R1/R2 mice at the age of P18 and 5 mo (5M) were analyzed by Western blotting for the levels of phosphorylated and total 
NF-B (p65), Stat3, Erk1/2, and p38. (B) RNAs from isolated dermis and epidermis of K5-R1/R2 mice and littermate controls (8M) were analyzed for 
expression of inflammatory markers using real-time RT-PCR. Gapdh mRNA was used for normalization. Results are shown in the table. , not detectable; 
+, weak expression; ++, moderate expression; +++, strong expression. (C) RNAs from the epidermis of K5-R1/R2 mice and littermate controls at P18 
were analyzed for expression of inflammatory markers using real-time RT-PCR. Gapdh mRNA was used for normalization. Error bars represent mean ± SD.  
n = 3 per genotype. *, P ≤ 0.05; **, P ≤ 0.005; ***, P ≤ 0.001. (D) Keratinocytes and  T cells were purified from epidermal sheets by preparative 
FACS. Original FACS data are shown in Fig. S3 (A and B). RNAs from the purified cell populations were analyzed by RT-PCR for the expression of S100A8, 
S100A9, and IL-1F8. Ribosomal protein S29 (RPS29) mRNA was used for normalization; expression of keratin 14 and of the  T cell receptor was ana-
lyzed to verify the enrichment of the two cell populations.

Expression of loricrin was enhanced in the knockout mice 
(Fig. S1), and the mRNA levels of SPRR2A, another compo-
nent of the cornified layer, were up-regulated >30-fold  
(unpublished data). In contrast, expression of tight junction 
components was strongly reduced. The mRNA levels of clau-
din 3, claudin 8, and occludin were much lower in K5-R1/R2 
mice, as determined by real-time RT-PCR analysis of epider-
mal RNAs (Fig. 8 B). A strong down-regulation was already 

seen at P12 (2–18% of control). Western blot analysis of epi-
dermal lysates confirmed the down-regulation of claudin 3 
and occludin at the protein level and also revealed reduced 
claudin-1 expression in K5-R1/R2 mice (Fig. 8 C). Impor-
tantly, the down-regulation of tight junction gene expression 
preceded the onset of inflammation and hair loss, which strongly 
suggests that this is a direct consequence of the loss of FGFR1 
and -2.

http://www.jcb.org/cgi/content/full/jcb.200910126/DC1
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To determine if the down-regulation of claudin/occludin 
expression is a cell-autonomous effect, we analyzed the ex-
pression of these tight junction components in immortalized 
keratinocytes. Indeed, a strong down-regulation was observed 
in three independent cell lines from K5-R1/R2 mice compared 
with controls (Fig. 9, A–C). When confluent keratinocytes from 
wild-type mice were stimulated with FGF7, a slight increase in 
the levels of occludin and a stronger increase in claudin 1 and 
claudin 3 were observed, which indicates that these genes are 
targets of FGFs in keratinocytes (Fig. 9 B). Their regulation  
occurs at the RNA level because the mRNA levels of claudin 1 
and claudin 3 were 5- or 30-fold elevated in FGF7-treated  

As a consequence of the down-regulation of tight junc-
tion gene expression, only a rudimentary development of 
tight junctions was observed in the epidermis of K5-R1/R2 
mice using transmission electron microscopy (Fig. 8 E), 
whereas tight junctions were well developed in control mice 
(Fig. 8 D). In most of the sections from adult K5-R1/R2 ani-
mals, we also found bubble-like intercellular clefts between 
the keratinocytes of the stratum granulosum, which most 
likely result from water-filled cavities (Fig. 8 F). Enlarge-
ment of the intercellular gaps was already seen occasionally 
in mutant mice at P18, and the phenotype progressed upon 
aging (unpublished data).

Figure 7.  IL-1F8 stimulates keratinocyte proliferation and production of keratinocyte mitogens by fibroblasts. (A) IL-1F8 or BSA were intradermally injected 
into wild-type mice. 24 h later, proliferating cells were identified by BrdU labeling or by immunostaining with an antibody against PCNA. Bars, 33 µm.  
(B) Immortalized keratinocytes from wild-type mice were treated with 500 ng/ml IL-1F8 for 2 h and labeled with BrdU. The percentage of BrdU-positive cells 
was determined. Error bars indicate mean ± SD; n = 3. (C) Immortalized embryonic fibroblasts were starved overnight in medium with 0.1% FCS and sub-
sequently treated for 15 min or 3 h with 500 ng/ml IL-1F8. RNA was isolated from these cells before and after IL-1F8 treatment and analyzed by real-time 
RT-PCR for the mRNA levels of different keratinocyte mitogens as indicated. Gapdh mRNA was used for normalization. Bars represent means from duplicate 
determinations. The IL-1F8–induced expression of keratinocyte mitogens was reproduced with an independent fibroblast cell line. (D) RNA from the dermis 
of 8-mo-old (8M) control and K5-R1/R2 mice was analyzed by real-time RT-PCR for the mRNA levels of different keratinocyte mitogens as indicated. RPS29 
mRNA was used for normalization. Error bars represent mean ± SD. n = 3 per genotype (5 for TGF-). *, P ≤ 0.05; **, P ≤ 0.005; ***, P ≤ 0.001.
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Figure 8.  Impaired barrier function in K5-R1/R2 mice. (A) TEWL was determined in control and K5-R1/R2 mice at the age of P18 or 5 mo (5M). Error 
bars indicate mean ± SD. n = 6 control mice at P18 and 9 K5-R1/R2 mice at P18; n = 4 mice per genotype at 5M. *, P ≤ 0.05. (B) RNA from isolated 
epidermis of mice at P12, P18, or 8 mo was analyzed by real-time RT-PCR for expression of different claudins and occludin. RPS29 mRNA was used  
for normalization. n = 3–5 per time point and genotype. Expression in control mice was arbitrarily set as 100%. Error bars represent mean ± SD. 
(*), 0.05 < P < 0.06; *, P ≤ 0.05. (C) Epidermal lysates of control and K5-R1/R2 mice (P18 or 8 mo old [8M]) were analyzed by Western blotting for the 
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purpose, we measured the transepithelial electrical resistance 
(TER) of confluent immortalized keratinocytes from control 
and K5-R1/R2 mice because tight junctions restrict paracellular 
diffusion of ions. Indeed, the TER was reduced by >50% in 
three independent cell lines from FGFR-deficient mice com-
pared with control mice (Fig. 9 D and not depicted). The  
same difference was observed on several consecutive days  
(unpublished data).

Taken together, our results suggest that reduced expres-
sion of several tight junction components disrupts the epidermal 

keratinocytes compared with nontreated cells (unpublished data). 
EGF also induced their expression under these conditions (un-
published data), but it can obviously not compensate for the loss 
of FGF receptors because expression of claudin 1, claudin 3, 
and occludin was reduced in keratinocytes of K5-R1/R2 mice, 
which were cultured in the presence of EGF (Fig. 9 B).

Finally, we determined if the reduction in claudin/occludin 
expression is functionally important. Because of the lack of 
a functional assay to determine tight junction permeability in 
adult mice, we addressed this question in vitro. For this  

levels of claudin 1, claudin 3, occludin, and total ERK (loading control). (D–F) High-magnification ultrastructure revealed a typical desmosome–tight junction 
(arrow) complex between keratinocytes of the stratum granulosum in a 4-mo-old control mouse (D), whereas only a rudimentary cell–cell contact is formed 
adjacent to a desmosome of a 4-mo-old K5-R1/R2 mouse (E). In these animals, bubble-like clefts (asterisk) were frequently seen between the keratinocytes 
in the stratum granulosum, particularly in aged mice (F, 6-mo old mouse). D, desmosome. Bars: (D and E) 150 nm; (F) 250 nm.

 

Figure 9.  Reduced expression of tight junction proteins in cultured keratinocytes from K5-R1/R2 mice reduces the TER. (A) RNAs from cultured, immortal-
ized keratinocytes of control and K5-R1/R2 mice were analyzed by real-time RT-PCR for expression of different claudins and occludin. RPS29 mRNA was 
used for normalization. Bars represent means from duplicate determinations. The down-regulation of these tight junction components in K5-R1/R2 cells 
was reproduced with two independent cell lines from control and mutant mice. (B) Cultured keratinocytes of control and K5-R1/R2 mice were starved for 
24 h and incubated for 96 h in starvation medium with or without FGF7. Lysates were analyzed by Western blotting for expression of claudin 1, claudin 
3, occludin, or GAPDH (loading control). (C) Cultured primary keratinocytes were grown to confluency and analyzed for the expression of claudin 3 by 
immunofluorescence (green). Bars, 33 µm. (D) TER was measured using immortalized keratinocytes from control and K5-R1/R2 mice that had been grown 
to confluency and incubated in differentiation medium until stable values were obtained. A representative measurement is shown using six independent 
filters with cells from each genotype. Error bars represent mean ± SD. The result was reproduced at different days and with two independent cell lines from 
control and K5-R1/R2 mice. **, P ≤ 0.005
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dermal papilla during the transition from early to late telogen. 
Functional in vitro studies suggested that this results in stimula-
tion of hair germ cells adjacent to the papilla and subsequent hair 
cycle activation (Greco et al., 2009). The failure of K5-R1/R2 mice 
to regenerate hair follicles is fully consistent with this predicted 
function. The reason for the subsequent hair loss is presently 
unclear. It may well be that the progressive inflammation con-
tributes to this phenotype, but this needs to be further studied 
in the future.

Keratinocyte hyperproliferation in K5-R1/R2 
mice is mediated via the stroma
A particularly striking and unexpected phenotype of the  
K5-R1/R2 mice is the progressive acanthosis, which results 
from enhanced proliferation of keratinocytes. This was surpris-
ing because FGFs are potent mitogens for keratinocytes, and  
because epidermal hypotrophy was observed in the skin of  
newborn mice lacking FGFR2IIIb in all cells (Petiot et al., 2003) 
as well as in the skin of adult mice expressing a dominant- 
negative FGFR2IIIb mutant in keratinocytes (Werner et al., 
1994). In fact, we also observed a slight epidermal hypotrophy 
in very young K5-R1/R2 mice (Fig. 3 A), but this reversed upon 
aging, and the reversal correlated with the onset of inflamma-
tion. Therefore, we propose that loss of FGFRs in keratinocytes  
results in activation of immune cells, which subsequently disrupts 
cutaneous homeostasis.

FGFs regulate tight junction components
Several mechanisms may be responsible for the activation of 
immune cells, including direct FGF-mediated suppression of 
pro-inflammatory cytokine expression, inflammation mediated 
by degenerating hair follicles, or a defect in barrier function that 
results in dry skin and possibly invasion of irritants/allergens  
and bacteria. The first possibility seems unlikely because  
expression levels of S100A8/A9 and IL-1F8 were similar in 
cultured keratinocytes from mice of both genotypes. Inflamma-
tion as a result of hair follicle degeneration has been postulated 
for mice lacking 1 integrins in keratinocytes (Brakebusch  
et al., 2000). However, the macrophage infiltrate around the 
hair follicles that was seen in 1 integrin-deficient mice was 
not observed in K5-R1/R2 animals. Furthermore, the phenotype 
progressed upon loss of all follicles, which indicates that de-
generating follicles are not or at least not exclusively responsible 
for the development of skin inflammation. Therefore, the most 
likely explanation for the skin inflammation is the defect in the 
epidermal barrier. Surprisingly, expression of several genes  
involved in the formation of the cornified envelope was even  
increased (unpublished data). This was also the case for filaggrin,  
a gene that is mutated in a large percentage of patients with 
atopic dermatitis (Sandilands et al., 2009). In addition, the  
filaggrin protein was normally processed in K5-R1/R2 mice 
(unpublished data). In contrast, expression of several claudins 
and of occludin was much lower in the epidermis and in  
cultured keratinocytes of K5-R1/R2 mice. The reduced TER in  
vitro as well as the increased TEWL in vivo strongly suggest that 
the down-regulation of these tight junction components is func-
tionally important. Consistent with this hypothesis, changes in 

barrier, resulting in activation of keratinocytes and  T cells. 
To further test this hypothesis, we determined if disruption of 
the epidermal barrier causes a similar phenotype. Treatment 
of wild-type mice with acetone, which damages the epidermal 
barrier, caused the expected hyperproliferation of keratino-
cytes (Fig. 10 A; Proksch et al., 1991). Similar to the case of  
K5-R1/R2 mice, this was associated with a minor increase in the 
number of mast cells and with a significant increase in epider-
mal  T cells (Fig. 10 A). In a complementary experiment, we 
tested if treatment of the skin of K5-R1/R2 mice with a moistur-
izing cream ameliorates the phenotype. Although we could not  
observe a reduction in keratinocyte proliferation, the number of 
mast cells and of  T cells was significantly reduced (Fig. 10 B).  
Concomitantly, expression of IL-1F8 was reduced by 30%, 
whereas no obvious change in the expression of claudin 1,  
claudin 3, or occludin was observed (unpublished data).

Together, these findings support the hypothesis that a  
defect in the epidermal barrier initiates and maintains the  
cutaneous inflammatory response in K5-R1/R2 mice. This  
induces keratinocyte hyperproliferation through a double  
paracrine loop involving  T cell–derived IL-1F8, keratino-
cyte-derived S100A8 and A9, and several keratinocyte mitogens 
produced by dermal cells (summarized in Fig. 10 C).

Discussion
Cooperative functions of FGFR1 and 
FGFR2 in keratinocytes
We identified essential roles of FGFR1IIIb and FGFR2IIIb 
in the maintenance of skin appendages and epidermal barrier 
function. The responsible ligands are most likely FGF1, FGF7, 
FGF10, and FGF22, which are expressed in different com-
partments of the skin (Steiling and Werner, 2003). Our results 
identified FGFR2IIIb as the most important receptor for these  
ligands in keratinocytes, whereas FGFR1IIIb provides a back-up  
function. FGFR3 is also expressed in keratinocytes, particularly 
in the suprabasal layers (Logié et al., 2005). However, it binds 
a different set of FGFs than FGFR1IIIb and FGFR2IIIb (Zhang 
et al., 2006), which suggests distinct functions. Although mice 
lacking FGFR3 have no obvious skin abnormalities (unpublished 
data), it will be interesting to determine the consequences of the 
loss of all FGF receptors in keratinocytes.

Loss of FGFR1 and 2 in keratinocytes 
impairs hair regeneration
The loss of skin appendages that we observed in K5-R1/R2 
mice is consistent with the stimulatory effect of FGF7 on hair  
follicle growth, development, and differentiation (Danilenko et al., 
1995). However, only a rough hair coat but no hair loss was seen 
in FGF7-deficient animals (Guo et al., 1996), which indicates 
functional redundancy among FGF family members. It seems 
likely that FGF7 together with FGF10 and FGF22 cooperatively 
orchestrate hair regeneration via activation of FGFR1IIIb and 
FGFR2IIIb on hair follicle keratinocytes. This hypothesis is fur-
ther supported by the up-regulation of these FGFs in the anagen 
phase of the hair cycle (Kawano et al., 2005). It was recently 
reported that expression of FGF7 and FGF10 increases in the 
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Figure 10.  The epidermal barrier controls the number of mast cells and  T cells. (A) Topical treatment of wild-type mice with acetone enhanced  
keratinocyte proliferation and increased the number of mast cells and  T cells. (B) Topical treatment of K5-R1/R2 with moisturizing cream did not affect 
keratinocyte proliferation, but reduced the number of mast cells and of  T cells. Error bars indicate mean ± SD. n = 7 mice for acetone and 5 mice for 
moisturizing cream treatment. (C) Model describing the pathogenic mechanisms in the skin of K5-R1/R2 mice. Loss of FGFR signaling in keratinocytes 
results in reduced expression of tight junction components. The resulting defective epidermal barrier, together with the loss of sebaceous glands, causes 
skin dryness. This activates a stress response in keratinocytes, resulting in activation of  T cells and up-regulation of cytokine expression in activated  
T cells and keratinocytes. The latter stimulate keratinocyte proliferation directly (IL-1F8) and/or indirectly (IL-1F8 and S100A8/A9) through induction of a 
double paracrine loop involving several keratinocyte mitogens that are produced by stromal cells. In addition, invasion of foreign antigens and pathogens 
may further activate immune cells and accelerate the inflammatory response. *, P ≤ 0.05; **, P ≤ 0.005.
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hyperproliferative phenotype through an intra-epidermal paracrine 
mechanism. Most importantly, it induced the expression of keratino
cyte mitogens in fibroblasts. This is likely to be relevant for the 
in vivo situation because these mitogens were overexpressed in the 
dermis of K5-R1/R2 mice. Preliminary results also showed that 
intradermal injection of IL-1F8 induces expression of the same 
growth factors in vivo. Their up-regulation may then further  
promote keratinocyte hyperproliferation in a paracrine manner. 
The role of IL-1F8 in the induction of the hyperproliferative pheno-
type is consistent with the cutaneous inflammation, hyperkeratosis, 
and acanthosis seen in transgenic mice overexpressing IL-1F6 
in keratinocytes (Blumberg et al., 2007). Because IL-1F6 and 
IL-1F8 signal through the same receptors (Towne et al., 2004), 
the results from Blumberg et al. (2007) and from our study identify 
the novel IL-1 family members as major players in inflammatory/
hyperproliferative skin disease.

In summary, our study revealed novel roles of FGFR1 and 
FGFR2 in epidermal barrier function and cutaneous homeostasis  
through their regulation of tight junction components. The  
importance of the latter in human skin disease associated with 
hyperscaling and acanthosis is emerging, as reflected by the 
ichthyosis phenotype seen in patients with a claudin 1 muta-
tion (Hadj-Rabia et al., 2004) and by the abnormal expression/ 
distribution of tight junction proteins in psoriasis (Peltonen  
et al., 2007; Watson et al., 2007; Kirschner et al., 2009).  
Future studies will reveal if abnormal expression of FGFs and/or 
FGF receptors and their tight junction targets is associated with 
inflammatory skin diseases such as atopic dermatitis, which is 
also characterized by impaired barrier function (Proksch et al.,  
2006; Elias and Steinhoff, 2008) and which shows several 
similarities with the phenotype of K5-R1/R2 mice, particularly 
with regard to the inflammatory infiltrate and the epidermal 
thickening. In addition, the data presented in this manuscript 
suggest new therapeutic applications of FGFs in patients with 
impaired epidermal barrier function.

Materials and methods
Generation and maintenance of mice lacking FGFR1 and/or FGFR2  
in keratinocytes
Fgfr1flox/flox mice were mated with Fgfr2flox/flox mice (provided by A. Ramirez 
and J. Jorcano, Centro de Investigaciones Energéticas, Medioambientales y 
Tecnológicas, Madrid, Spain). After two generations of breeding, the  
Fgfr1flox/flox/Fgfr2flox/flox mice were mated with K5cre/wt transgenic mice. The 
male Fgfr1flox/wt/Fgfr2flox/wt K5Cre/wt mice obtained from this mating were 
then crossed with the Fgfr1flox/flox/Fgfr2flox/flox female mice. In addition, mice 
lacking FGFR1IIIb in all cells (provided by L.T. Williams, FivePrime Therapeu-
tics, San Francisco, CA) were mated with Fgfr2flox/flox and K5cre/wt. All mice 
were in a C57BL/6 genetic background. Mice were housed and fed accord-
ing to Swiss federal animal protection guidelines. All procedures were  
approved by the local veterinary authorities of Zurich, Switzerland.

Identification of genetically modified mice by PCR
The floxed Fgfr1 allele was detected by genotyping PCR using primers  
5-CGAATGGACAAGCCCAGTAAC-3 and 5-CTCCTGCTTCCTTCAG
AGC-3. PCR products of 200 bp or 300 bp were obtained for the  
wild-type or floxed allele, respectively.

Genotyping PCR for the Fgfr2 floxed allele was performed using 
primers FGFR2F5 (5-ATAGGAGCAACAGGCGG-3) and FGFR2F3  
(5-TGCAAGAGGCGACCAGTCAG-3). PCR products of 140 bp or  
200 bp were obtained for the wild-type or floxed alleles, respectively. The 
recombined allele was identified using primers FGFR2F5 and FGFR2rec  
(5-CATAGCACAGGCCAGGTTG-3). A 470-bp fragment was obtained.

the tight junction composition affected their permeability (Inai 
et al., 1999; Furuse et al., 2002; Tunggal et al., 2005). Unfortu-
nately, functional in vivo assays, such as biotin penetration, can 
only be performed in newborn mice, where the phenotype was 
not sufficiently developed. Therefore, a final proof for an in vivo 
deficit in tight junction permeability will await improved in vivo 
assays. Nevertheless, the rudimentary development of the tight 
junctions and the adjacent large gaps between the keratinocytes 
of the granular layer that we observed by electron microscopy 
strongly support our hypothesis of an increased tight junctional 
permeability that results in severe water loss. Down-regulation 
of tight junction proteins was already observed at P12, whereas 
enhanced water loss was only seen after P18. It may well be that 
a certain threshold of tight junction protein down-regulation 
must be reached to allow significant water loss. In addition, we 
found that expression levels of claudins and occludin strongly 
declined in control mice after P18 (Fig. S4). Therefore, a further 
loss in K5-R1/R2 mice might have more severe consequences 
in adults compared with young mice.

The down-regulation of tight junction gene expression in 
cultured keratinocytes from K5-R1/R2 mice together with the 
increased expression of these genes in wild-type keratinocytes 
in response to FGF7 treatment indicates that they are targets of 
FGFs. These results are consistent with the reduced expression 
of tight junction proteins in blood vessels and the defective 
blood–brain barrier function in FGF2/FGF5 double knockout 
mice (Reuss et al., 2003), with the FGF2-mediated preservation 
of the composition of tight junctions in organotypic cortical  
cultures of mice (Bendfeldt et al., 2007), and with the disassem-
bly of adherens and tight junctions in endothelial cells upon  
inhibition of FGFR signaling (Murakami et al., 2008). These 
findings indicate that maintenance of junctional integrity is a 
general but as yet poorly characterized function of FGFs.

Keratinocyte hyperproliferation is mediated 
via the stroma
The enhanced water loss seen in K5-R1/R2 mice resulted in  
severe skin dryness and fragility, which is likely to be aggra-
vated by the loss of sebaceous glands that release the mois-
turizing sebum. It was previously shown that low humidity 
stimulates keratinocyte proliferation and amplifies the hyper-
proliferative response to barrier disruption, causing dermal 
mast cell hypertrophy, their degranulation, and subsequent 
inflammation (Denda et al., 1998). In addition, it is likely to 
stress and damage keratinocytes, which results in activation and  
proliferation of  T cells (Jameson and Havran, 2007; Strid 
et al., 2009). The role of an impaired barrier and subsequent  
dryness in the skin phenotype is supported by the results ob-
tained with acetone-treated wild-type mice and by the beneficial 
effect of moisturizing cream on the inflammatory phenotype 
of K5-R1/R2 mice. In addition, it may well be that irritants/ 
allergens and bacteria can invade the dry and fragile skin,  
particularly at sites of minor injury, which results in immune 
cell activation and enhancement of the inflammatory response.

One of the responsible inflammatory mediators is most likely 
IL-1F8. We identified this cytokine as a keratinocyte mitogen, 
which suggests that  T cell–derived IL-1F8 contributes to the 

http://www.jcb.org/cgi/content/full/jcb.200910126/DC1
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starved overnight in medium without supplements and subsequently treated 
for 24 h with 10 ng/ml FGF7 (R&D Systems). Lysates were obtained before 
and after FGF7 treatment and analyzed by Western blotting for expression 
of tight junction components.

Measurement of TER
Three different immortalized keratinocyte lines from control and K5-R1/R2 
mice were grown to confluency on permeable supports (Costar Snapwell; 
Sigma-Aldrich) with 0.4-µm polycarbonate filter membranes in keratino-
cyte growth medium and subsequently cultured in differentiation medium 
(1:1 DME/F-12 supplemented with 10% FCS, penicillin/streptomycin, 
0.1 nM cholera toxin, 2 nM T3, 5 µg/ml transferrin, 0.4 µg/ml hydro-
cortisone, 25 µg/ml gentamycin, 5 µg/ml insulin, and 10 ng/ml EGF) 
for 7–14 d. TER measurements were performed daily using an epithelial 
tissue volt ohmmeter (World Precision Instruments) as described previously 
(Balda et al., 1996). For each cell line, 3–6 filters were analyzed daily.

Cell culture
Keratinocytes were isolated from pools of mice with different genotypes, as 
described previously (Braun et al., 2002), with the exception that cells 
were seeded at a density of 5 × 104 cells/cm2 on collagen IV (2.5 µg/cm2; 
Sigma-Aldrich)-coated dishes. The freshly isolated cells were incubated for 
30 min at 37°C. Thereafter, the medium was replaced and cells were 
grown in defined keratinocyte serum-free medium (Invitrogen) supple-
mented with 10 ng/ml EGF and 1010 M cholera toxin.

Analysis of FGF receptor-mediated signaling
Keratinocytes were suspended in defined keratinocyte medium at a cell 
density of 5 × 105 cells/ml and seeded in 6-well plates (400 µl/well). After 
overnight incubation, they were starved in defined medium without supple-
ments for 24 h and then treated for 10 min with 10 ng/ml FGF7, FGF10, 
or 20 ng/ml EGF (all from R&D Systems). Cells were harvested on ice and 
analyzed by Western blotting for the levels of signaling proteins and their 
phosphorylated forms.

RNA isolation and RNase protection assay
RNA isolation and RNase protection assays were performed as described 
previously (Werner et al., 1994). Fgfr3 and Fgfr4 cDNAs were used as 
templates (Steiling et al., 2003).

Real-time RT-PCR
Real-time RT-PCR was performed according to the manual of the Light 
Cycler 480 (Roche). The reverse transcription product obtained from 
0.5 ng RNA was used together with 10 µl of SYBRGreen reaction mix. 
The reaction was performed in 50 cycles (95°C for 10 min for initial 
denaturation; 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s for each 
cycle). Duplicate determinations were performed for each sample.

Primers used for RT-PCR
See Table II for the primers used.

Histological analysis
Skin samples were fixed overnight in 95% ethanol/1% acetic acid or in 4% 
PFA/PBS followed by paraffin embedding. Sections (7 µm) were stained 
with hematoxylin/eosin (H/E).

Quantification of hair follicles in mouse back skin
Hair follicles in the back skin were quantified by counting the number of dermal 
papillae in sections at 100× magnification. Seven serial images were counted 
for mice at P18, and 18 serial images were counted for mice at P36.

Electron microscopy
Mice were lethally anesthetized with 700 mg/kg pentobarbital and  
perfused with 4% PFA in PBS. Skin samples were kept overnight in fixation 
solution, then rinsed and stored in PBS. After washing in 0.1 M cacodylate 
buffer, pH 7.2, at 4°C, the specimens were either directly treated with 2% 
OsO4 for 2 h or first incubated in 1% tannin for 3 h and then treated with 
2% OsO4 for 2 h. After washing, they were stained in 1% uranyl acetate, 
dehydrated through series of graded ethanols, and embedded in araldite 
resin. Ultrathin sections (30–60 nm) were processed with a diamond knife 
and placed on copper grids. Transmission electron microscopy was  
performed using a 902A electron microscope (Carl Zeiss, Inc.).

Immunofluorescence and immunohistochemistry
After deparaffinization, skin sections were blocked with PBS containing 
3% BSA and 0.025% NP-40 for 1 h at room temperature, then incubated  
overnight at 4°C with the primary antibodies diluted in the same buffer. After 

The K5-Cre transgene was amplified using primers 5-AACAT-
GCTTCATCGTCGG-3 and 5-TTCGGATCATCAGCTACACC-3. A 420-bp  
fragment was obtained with DNA from transgenic mice.

Analysis of TEWL
Mice were shaved, and, after 30 min, TEWL was determined using a Tewame-
ter (Courage and Khazaka Electronic GmbH). The device was placed on the 
dorsal skin of mice, and 30 consecutive measurements were taken from four 
different places on the back as described by the manufacturer.

Separation of dermis and epidermis
Mice were sacrificed, then washed in 10 mM iodine solution, followed by 
70% ethanol and PBS, and a piece of back skin was excised. It was washed 
in gentamycin solution (1:200; Sigma-Aldrich) and then floated in dispase 
solution (Invitrogen) in defined keratinocyte serum-free medium (Invitrogen), 
including defined keratinocyte growth supplements for 2 h at 37°C. The epi-
dermal sheet was peeled off from the dermal layer using fine forceps. Iso-
lated dermis and epidermis were immediately frozen in liquid nitrogen and 
used for the isolation of RNA or preparation of protein lysates.

FACS analysis of cells from isolated dermis or epidermis and preparative 
sorting of keratinocytes and  T cells
Dermis and epidermis from mouse back skin were separated after overnight 
incubation in 0.2% trypsin in DME at 4°C. The epidermis was cut into small 
pieces and incubated for 20 min at 37°C in 0.2% trypsin in DME. The dermis 
was treated with DME containing 2.5 mg/ml collagenase II (Worthington 
Biochemical Corporation), 2.5 mg/ml collagenase IV (Invitrogen), 0.5 mg/ml 
DNase I (Sigma-Aldrich), and 1 mg/ml hyaluronidase (Worthington Bio-
chemical Corporation). A single cell suspension was prepared by passing 
the mix through a 70-µm strainer. DME/10% FCS was added to inactivate 
trypsin. Cells were washed with FACS buffer (PBS/0.2% BSA/5 mM EDTA), 
and an unspecific antibody binding was blocked with anti-CD32.

For preparative sorting of keratinocytes and  T cells, cells were 
stained for  T cell receptor, CD-45, and 7-amino-actinomycin D to deter-
mine viability. Analysis was performed using a cell sorter (Aria; BD). The 
fraction costained for the  T cell receptor and for CD45 contains pre-
dominantly  T cells, and the fraction that was negative for both markers 
consists predominantly of keratinocytes. RNA was isolated from the sorted 
cells using the RNeasy Micro kit (QIAGEN). cDNA was generated with the 
High-Capacity cDNA Reverse Transcription kit (Applied Biosystems).

Antibodies used for FACS
See Table I for the antibodies used.

Intradermal injection of IL-1F8
Wild-type mice were intradermally injected with 50 µl of a solution of 1 µg/ml 
IL-1F8 (R&D Systems) in 0.1% BSA in PBS or vehicle control. 24 h later,  
proliferating cells were analyzed using BrdU labeling as described below.

BrdU incorporation assay
Mice were injected intraperitoneally with BrdU (250 mg/kg in 0.9% 
NaCl; Sigma-Aldrich) and sacrificed 2 h after injection. Skin samples were 
fixed in 95% ethanol/1% acetic acid. Sections were incubated with a  
peroxidase-conjugated monoclonal antibody directed against BrdU (Roche) 
and stained with diaminobenzidine.

Analysis of tight junction protein expression in cultured keratinocytes
Primary keratinocytes from control and K5-R1/R2 mice were grown to con-
fluency in defined keratinocyte growth medium with 10 ng/ml EGF and 
1010 M cholera toxin, and subsequently lysed. Alternatively, cells were 

Table I.  Antibodies used for FACS

Antibodies Source

Anti-CD32 BD
Anti-CD45 BD
Anti- T cell receptor BD
Anti-CD11b eBioscience
Anti-Ly-6G eBioscience
1-A/1-E BD
Anti- cell receptor eBioscience
Anti-F4/80 Invitrogen
Anti-CD3 BD
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For immunofluorescence analysis of cultured cells, cells were fixed for 
10 min with ice-cold acetone/methanol (1/1) and subsequently treated as 
described above for sections. Stained cells were photographed using a con-
focal microscope (SP1-2; Leica) equipped with a 63 × 0.6–1.32 NA (Iris) 
Plan-Apochromat oil objective lens. For data acquisition, we used the LCS 
Software (Leica).

For immunohistochemistry, biotinylated secondary antibodies (Vecta-
stain ABC kit; Vector Laboratories) and diaminobenzidine were used, fol-
lowed by counterstaining with hematoxylin. Stained sections were 
photographed with a microscope (Axioskop 2) equipped with a camera 
(Axiocam HRc) and Plan-Neofluor (10×/0.3 NA, 20×/0.5 NA; all from 
Carl Zeiss, Inc.) objectives. For data acquisition, we used the Axiovision  
4.2 software (Carl Zeiss Inc.).

Antibodies used for immunofluorescence
See Table III for the antibodies used.

Staining of mast cells with toluidine blue
After deparaffination and rehydration, skin sections were stained with  
toluidine blue solution (0.5% toluidine blue and 0.5 N HCl, pH 2.3) for  
30 min. They were then washed with distilled water, dehydrated by a short 
incubation in 95% ethanol and two short incubations in 100% ethanol, and 
incubated twice for 3 min in xylene. Sections were then mounted with  
resinous mounting medium. Mast cells appear violet or purple.

Treatment of mouse skin with moisturizing cream
Moisturizing cream containing aluminum hydroxychloride and glycerol  
(Excipial Protect; Spirig Pharma AG) was applied to one side of the back 
skin of adult K5-R1/R2 mice, and the other side was left untreated.

Treatment of mouse skin with acetone
Adult female wild-type mice (C57Bl/6 background) were shaved, and the 
skin was rinsed with water-soaked tissues. One flank of the back was treated 
with 10 acetone wipes using delipidized, acetone-soaked swabs. The other 
flank was treated in the same manner with water and used as a control.

Western blot analysis
Cells were lysed in 2× Laemmli buffer. Frozen tissue was homogenized in a 
buffer containing phosphatase and protease inhibitors (Beyer et al., 2008).

Protein lysates were separated by SDS-PAGE and transferred to nitrocel-
lulose filters. Antibody incubations were performed in 5% nonfat dry milk in 

three washes with PBST (1× PBS/0.1% Tween 20), slides were incubated at 
room temperature for 1 h with the Cy2- or Cy3-conjugated secondary anti
bodies (Jackson ImmunoResearch Laboratories, Inc.) and 1 µg/ml DAPI 
as a counterstain, washed with PBST again, and mounted with Mowiol 
(Sanofi-Aventis). Sections were photographed using a microscope (Imager.
A1) equipped with a camera (Axiocam Mrm) and enhanced-contrast Plan-
Neofluar objectives (10×/0.3 NA, 20×/0.5 NA; all from Carl Zeiss, Inc.). 
For data acquisition, we used the Axiovision 4.6 software (Carl Zeiss, Inc.).

Table II.  Primers used for RT-PCR

Target gene Forward sequence Reverse sequence

FGFR1 5-CAACCGTGTGACCAAAGTGG-3 5-TCCGACAGGTCCTTCTCCG-3

FGFR2 5-ATCCCCCTGCGGAGACA-3 5-GAGGACAGACGCGTTGTTATCC-3

IL-1 5-ATGATCTGGAAGAGACCATCC-3 5-GGCAACTCCTTCAGCAACA-3

IL-1 5-CTGAAAGCTCTCCACCTC-3 5-TGCTGATGTACCAGTTGGGG-3

IL-1F8 5-GCCTGTCATTCTTAGCTTGAT-3 5-TGTCTACTTCCTTAAGCTGC-3

TNF 5-CCCCAATGTGTCCGTCGTG-3 5-GCCTGCTTCACCACCTTCT-3

Claudin 8 5-TCAGAATGCAGTGCAAGGTC-3 5-AGCCGGTGATGAAGAAGATG-3

Claudin 3 5-GCGGCTCTGCTCACCTTAGT-3 5-GACGTAGTCCTTGCGGTCGTA-3

Claudin 1 5-CTTCTCTGGGATGGATCG-3 5-GGGTTGCCTGCAAAGTACTGT-3

Occludin 5-TTGAAGTCCACCTCCTTACAGA-3 5-CCGGATAAAAAGAGTACGCTGG-3

SPRR2a 5-GAACCTGATTCTGAGACTCAA-3 5-GCACACTACAGGACGACAC-3

S100A8 5-GCCGTCTGAACTGGAGAAG-3 5-GTGAGATGCCACACCCACTTT-3

S100A9 5-CGCAGCATAACCACCATCAT-3 5-AAGATCAACTTTGCCATCAGC-3

HGF 5-ACTTGCAAGGCCTTCG-3 5-GCAAAAAGCTGTGTTCATGGG-3

TGF- 5-CTGAGTGACTCACCCGTGGC-3 5-GCGGAGCTGACAGCAGTGGAT-3

ICAM-1 5-TGTTTCCTGCCTCTGAAGC-3 5-CTTCGTTTGTGATCCTCCG-3

G-CSF 5-TGCACTATGGTCAGGACGAG-3 5-GGGGTGACACAGCTTGTAGG-3

Vimentin 5-CCTGTACGAGGAGGAGATGC-3 5-GTGCCAGAGAAGCATTGTCA-3

Keratin 14 5-AACCACGAGGAGGAAATGG-3 5-CCGGAGCTCAGAAATCTCAC-3

TcR-V3 5-GGGTCGACTCCTGGATATCTCAGGATCAG-3 5-GGGTCGACTTGTTTCAGCAGAAGAAGGAAG-3

GAPDH 5-TCGTGGATCTGACGTGCCGCCTG-3 5-CACCACCCTGTTGCTGTAGCCGTAT-3

RPS29 5-GGTCACCAGCAGCTCTACTG-3 5-GTCCAACTTAATGAAGCCTATGTCC-3

HGF, hepatocyte growth factor; ICAM-1, intercellular adhesion molecule 1; TCR, T cell receptor.

Table III.  Antibodies used for immunofluorescence

Primary antibody Host Source

Anti-CD3 IgG Rabbit DAKO
Anti-Ly6G IgG Rat BD 
Anti-F4/80 IgG Rat BMA Biomedicals
Anti-keratin 6 IgG Rabbit Covance
Anti-keratin 10 IgG Mouse DAKO
Anti-keratin 14 IgG Rabbit Covance
Anti-filaggrin IgG Rabbit Covance
Anti-loricrin IgG Rabbit Covance
Anti-claudin3 IgG Rabbit Invitrogen
Anti-BrdU IgG-POD Mouse Roche
Anti--TCR IgG Hamster BD 
Anti-PCNA IgG Rabbit Santa Cruz Biotechnology, Inc.
Anti-CD45 Rat BD
Secondary antibody
Anti–mouse-Cy3 IgG Goat Jackson ImmunoResearch 

Laboratories, Inc.
Anti–rabbit-Cy2 IgG Goat Jackson ImmunoResearch 

Laboratories, Inc.
Anti–rabbit-Cy3 IgG Goat Jackson ImmunoResearch 

Laboratories, Inc.
Anti–rat-Cy3 IgG Donkey Jackson ImmunoResearch 

Laboratories, Inc.

TCR, T cell receptor.
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