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Abstract
In high-throughput studies involving genetic data such as from gene expression microarrays,
differential expression analysis between two or more experimental conditions has been a very
common analytical task. Much of the resulting literature on multiple comparisons has paid relatively
little attention to the choice of test statistic. In this article, we focus on the issue of choice of test
statistic based on a special pattern of differential expression. The approach here is based on recasting
multiple comparisons procedures for assessing outlying expression values. A major complication is
that the resulting p-values are discrete; some theoretical properties of sequential testing procedures
in this context are explored. We propose the use of q-value estimation procedures in this setting. Data
from a gene expression profiling experiment in prostate cancer are used to illustrate the methodology.

1 Introduction
Genomic technologies have permeated scientific experimentation, especially in the area of
cancer research (Ludwig and Weinstein, 2005). One of the major tasks using these assays is
to find genes that are differentially expressed between two experimental conditions. The
simplest example is to find genes that are up- or down-regulated in cancerous tissue relative
to healthy tissue. Assessing differential expression in this setting leads to a massive multiple
comparisons problem that results from performing thousands of univariate tests for each gene.
This has led to an explosion of literature on statistical methods for differential expression in
genomic studies; see Ge et al. (2003) for a recent review on the topic.

Many authors have advocated for control of the false discovery rate (FDR) (Benjamini and
Hochberg, 1995) relative to the traditional familywise type I error (FWER). Less thought has
been provided on the choice of test statistic to use. The two most commonly used statistics in
the two-sample problem are the t-test and the Wilcoxon rank sum test.

Recently, Tomlins et al. (2005) identified a gene fusion in prostate cancer. They discovered it
by making the following observation. For certain genes, only a fraction of samples in one group
were overexpressed relative to those in the other group; the remaining samples showed no
evidence of differential expression. They used a method called Cancer Outlier Profile Analysis
(COPA) to rank such genes using expression data generated by microarrays. Using such a score
identified one of the genes involved in the fusion event. Tomlins et al. (2005) proposed a
statistic but gave no way of assessing its significance statistically. Recently, Tibshirani and
Hastie (2007) and Wu (2007) have proposed modifications of two-sample t-tests to address
the same problem. Ghosh and Chinnaiyan (2009) have cast these procedures into a general
statistical framework.
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In this article we consider discretized versions of the procedures given in Ghosh and Chinnaiyan
(2009). They linked outlier detection to the multiple testing problem. While many authors have
studied and developed methods for controlling the false discovery rate and related metrics (e.g
Efron et al., 2001; Genovese and Wasserman, 2004), they all presume that the test statistics
being used come from a continuous distribution. Consequently, under the null hypothesis, the
p-values for the test statistics are distributed as a Uniform(0,1) random variable. This fact no
longer holds when the test statistics are discrete. One key issue we address here is how to
perform multiple testing with discrete test statistics. We review previous work and show that
sequential testing procedures are unstable in a particular technical sense. We then describe
algorithms that effectively smooth the discrete p-values in order to perform false discovery
rate estimation, for which we prove results about asymptotic conrol of the false discovery rate.

We also consider the situation of more than two groups. This was studied by Liu and Wu
(2007) using modifications of two-sample testing methodologies. In this article, we address
the problem in two different directions. The first is that we will use multiple testing metrics
for identification of outliers. As in Ghosh and Chinnaiyan (2009), we cast the relevant statistical
problem as one of outlier detection and propose a hypothesis testing framework for outlier
detection. Note that while outlier has a very specific statistical interpretation as being aberrant
from the usual population, for our purposes, genes with high degrees of ‘outlyingness’ are of
great interest. Second, we will again have discrete test statistics, so the multiple testing
adjustments proposed by Liu and Wu (2007) do not apply here.

The paper is structured as follows. In section 2, we describe the data setup and formulate the
statistical model for outlier detection. We also show how to formulate outlier detection as a
hypothesis testing problem, which leads to a natural link with multiple testing procedures.
Section 3 reviews previous methods for multiple testing with discrete statistics and discuss a
notion of instability for sequential testing procedures. We then propose a false discovery rate
estimation procedure in Section 4, along with its extension to multiple groups and a result
proving that it asymptotically controls the false discovery rate. In Section 5, the proposed
methods are applied to data from a prostate cancer gene expression study. Results from a limited
simulation study are given in Section 6. We conclude with some discussion in Section 7.

2 Preliminaries
2.1 Data and outlier detection/multiple testing paradigm

The data consist of (Ygji), where Ygji is the gene expression measurement on the gth gene for

the ith subject in group j, g = 1, …, G, j = 0, …, (J − 1), i = 1, …, nj. Let . The
indexing for j is such that we have J groups. We will refer to the group with j = 0 as the baseline
group.

For a given gene g, we wish to identify the samples that have outlying values with respect to
the gene. We assume that we will use the samples with j = 0 (i.e., the baseline group) as the
baseline distribution with which to assess ‘outlyingness.’ Following what was done in Tomlins
et al. (2005), we will examine outliers in one direction. This is done because of the idea that
biologically, oncogenes might be either overamplified or underamplified but not both. This
implies that the tests will be one-sided.

We can phrase this as the following hypothesis testing problem: test the hypothesis : the
ith individual does not have outlying expression values of gene g relative to the baseline
population against : the ith diseased individual does have outlying expression values of gene
g relative to the baseline population. For each gene we can perform such a test. We can
summarize the results of nj such tests for the jth group (j = 1, …, J − 1) in Table 1:
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In Table 1 everything is unobserved except for nj and (R, Q). This is because the rows of the
table represent the true status of the samples and are unknown to the data analyst. Table 1
shows a correspondence between outlier detections with testing multiple hypotheses. Based
on the table, we can construct appropriate error measures to control. There are two kinds of
errors that can be made, corresponding to the off-diagonal elements in Table 1. One error is to
declare a sample to be an outlier when it is not an outlier in truth. The second is to not declare
a sample as an outlier when in fact it is an outlier. Most error rate measures control the first
type of error. Two popular error measures to control are the familywise type I error (FWER)
(Shaffer, 1995) and the false discovery rate (FDR) (Benjamini and Hochberg, 1995). In words,
the FWER is the probability of making at least one false declaration of a sample being an
outlier, while the FDR is the average number of false outliers among the samples declared to
be outliers. Using the notation of Table 1, FWER equals Pr(V ≥ 1), while the FDR is E[V/Q|
Q > 0]Pr(Q > 0).

We will use multiple testing ideas to develop outlier detection procedures. Everything is done
for a fixed gene g. We first estimate F0g using the empirical cumulative distribution function
of Ygi in the baseline population, i = 1, …, n0. This yields an estimator

. Then we transform the gene expression measurements for the
other samples by p̃gji = 1 − F̂0g(Ygji), j = 1, …, (J − 1). We then use the p̃gji to test  versus

; in particular smaller values indicate evidence against  for the gth gene in group j. Note
that if F0g were known and continuous, then 1 − F0g(Ygji) would have a uniform(0,1)
distribution under  and a distribution of a stochastically smaller random variable under .

For a fixed gene, we can use multiple testing ideas to identify outliers. Three popular
approaches are Bonferroni’s method, Sidák’s procedure and the Benjamini-Hochberg method.
Bonferroni’s procedure declares observation i an outlier if p̃gji ≤ α/nj. Sidák’s procedure
declares it to be an outlier if p̃gji ≤ 1 − (1 − α)1/nj. Finally the Benjamini-Hochberg procedure
proceeds as follows:

1. Set an error rate α.

2. Sort the p̃gji in increasing order, p̃gj(1) ≤ p̃gj(2) ≤ ··· ≤ p̃gj(nj).

3. Take as outliers the samples corresponding to p̃gj(1), …, p̃gj(k̂), where k̂= max{1 ≤ i ≤
nj: pgj(i) ≤ iα/nj}. If no such k̂ exits, conclude that there are no outliers.

Conditional on F̂0g, all the tests for outliers are independent. This implies that the Bonferroni
and Sidák procedure will control the FWER, while the Benjamini-Hochberg procedure will
control the FDR exactly for the multiple outlier hypothesis tests for a fixed gene. Observe that
the multiplicity being adjusted for in this step of the algorithm is the number of samples in
group j.

Suppose we now wish to make gene-specific inferences regarding outlierness. If we use the
Bonferroni procedure, we compute for j = 1, …, (J − 1).

(1)

For the Sidák procedure, it is

Ghosh Page 3

J Biopharm Stat. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

while for the Benjamini-Hochberg procedure the score would be

(3)

defined in the previous paragraph.

To derive the null distribution of (1), (2) and (3), we adopt a conditional approach in which we
permute the labels of the jth group versus the baseline group conditional on the observed row
and sum totals corresponding to Table 1. This is analogous to a Fisher’s exact test-type in which
a hypergeometric distribution is used to calculate a p-value. To be precise, for gene g in group
j (g = 1, …, G; j = 1, …, (J − 1)), we apply a one-sided Fisher’s exact test to the contingency
table

where the superscript M refers to B, S or BH. This leads to p-values , g = 1, …, G, j = 1, …,
(J − 1).

For a fixed j, we now have G p-values for which we need to account for multiple comparisons;
the multiplicity is now the number of genes. This is the more familiar domain for differential
expression analyses and multiple testing adjustments. There are two notable differences. First,
we used the estimated distribution in the group j = 0 to calculate the “p-values” so that a known
theoretical distribution is not being used. This is different from much of the previous literature
on multiple testing. A second major difference is that the p-values obtained are highly discrete.
For example, if nj = 10 for all j, then the p-value distribution will be discrete and only take one
of ten possible values. Examples of discrete p-value distributions can be found in the data
analysis done in Section 5. The majority of the recent statistical literature on multiple testing
has not dealt with this situation, with some notable exceptions, which we describe next.

3 Multiple testing procedures with discrete data
3.1 Sequential testing procedures

In this section, we assume that J = 2 and thus drop the j subscript from the definitions of 

and  in the previous section. It is possible to come up with a more powerful testing procedure
by exploiting the discrete nature of the test statistics. This was also done by Tarone (1990) and
Gilbert (2005) in related settings. To do this, first note that the minimum achievable
significance level for a score is
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Note that the significance level is one-sided, as outlyingness is based on extreme expression
measurements in one direction.

We now review the modified procedures proposed by Tarone (1990) and Gilbert (2005). The
modified Bonferroni procedure would work in the following way. For each g = 1, …, G, let n
(g) be the number of tests for which , and let N be the smallest value of g such that n

(g) ≤ g. Let . For i ∈ RN, one rejects the ith null hypothesis if
. By the arguments in Tarone (1990), this procedure will control the FWER. The

modified Sidák procedure would work in a similar way, except that we would reject the ith
null hypothesis if . Both procedures control the FWER and also the FDR.
The modified Benjamini-Hochberg procedure (Gilbert, 2005) would proceed in the following
way:

• For i ∈ RN, sort the p-values in increasing order , where R is the
cardinality of RN.

• Reject the null hypotheses corresponding to , where

If no such D exists, no hypotheses are rejected.

Assuming the same conditions as in Benjamini and Hochberg (1995), the modified procedure
will also control the false discovery rate at level α.

Before describing our proposed multiple testing procedure, we discuss one issue that has not
been explored very much in the mutliple testing literature, which we term stability.

3.2 Stability
While we have proposed several multiple testing procedures for gene-specific inference, one
issue we have not considered so far is their variability. It is desirable to have testing procedures
that have small variability. One comment about the Benjamini-Hochberg procedure is that it
is claimed to be more powerful than a single-step procedure like the Bonferroni or Sidák
procedure because the former controls the FDR, while the latter controls FWER. However,
there is a certain instability in the Benjamini-Hochberg procedure that does not exist for the
Sidák or Bonferroni procedure. Assume that R is known. For ease of presentation, we assume
that J = 2 and that R = n1. The multiple testing procedure can be expressed as a function f: [0,
1]R → Z, where Z is the set {0, 1, 2, …, R}. The function f inputs the n1 –dimensional vector
of p-values and outputs the number of hypotheses rejected. We have the following result:

Proposition—Let ε > 0 be an arbitrary constant (a) For the Bonferroni and Sidák procedures,
for all p and all ε > 0,
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where  with the ith component equaling pi + ε.

(b) For the Bejamini-Hochberg procedure, there exists p such that for all ε > 0,

Proof—For (a), perturbing the ith p-value only affects its rejection decision and not that of
the other hypotheses. We prove (b) by construction. Define a configuration of p-values whose
jth component is pj ≡ α. Then the Benjamini-Hochberg procedure will reject all hypotheses,
since the maximal index k for which p(k) ≤ kα/R is in fact R. However, if we now consider pi

with any ε > 0, then the Benjamini-Hochberg procedure will fail to reject any null hypotheses.
This because pi will consist of (R − 1) p-values equalling α and the largest p-value equalling
α + ε.

Remark 1: The result of the proposition suggests that there is an inherent stability of sequential
multiple testing procedures. In particular, part (b) of the proposition implies the possibility of
a slight perturbation in the p-values can lead from rejecting all null hypotheses to rejecting no
hypotheses. By contrast, part (a) shows that this will never happen for a single-step testing
procedure. This instability will potentially manifest itself in the Benjamini-Hochberg
procedure having a greater variance in terms of the number of hypotheses rejected relative to
a single-step procedure.

Remark 2: The result of the proposition applies to any multiple testing error metric. In
particular, this result applies to FWER and generalized FWER procedures as well.

Remark 3: The proposition makes no assumption about the dependence structure among the
p-values. Observe that f itself has a distribution. If we wished to make distributional statements
about f (e.g., its mean and variance), then this would require making assumptions on the joint
distribution of the p-values.

Remark 4: The proposition is valid for any sample size. An implication of the proposition is
that the Benjamini-Hochberg procedure is not ‘continuous’ in a certain sense; it is possible for
a small and local perturbation in the p-values to lead to a drastically different result in terms
of the number of hypotheses rejected. By contrast, this never happens for the single-step
(Bonferroni and Sidák methods) because the local perturbation only affects the decision to
reject one p-value. It turns out that the problem does not happen to be with the error rate being
controlled (FDR versus FWER) but rather the use of sequential multiple testing methods versus
single-step procedures.

Remark 5: If p-values were continuous, then the configuration described in the proof of part
(b) of the proposition will have probability zero because ties have zero probability. However,
with discrete p-values, the probability of ties is nonzero, which leads to the instability issue.

Remark 6: A referee brought up the interesting issue of whether the stability problem of the
Benjamini-Hochberg procedure is because of the discreteness of the test statistics or because
of the dependence of the tests. A recent result by Hall and Wang (2009) establishes a result
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about asymptotic tail independence for joint distributions of test statistics. However, they
present a counterexample in their Section 2.1. when their result is not applicable which for our
setting corresponds to the p-value equalling one with a positive probability. Since this is
possible here due to the discreteness of the tests, it appears that the discreteness of the test
statistics would invalidate the Hall and Wang (2009) result.

In particular, the stability argument also applies to the method of outlier detection described
in the previous section. This is because in our experience, for the discrete test statistics, we
have found that the Benjamini-Hochberg procedure described in Section 2.1 tends to yield
much higher variability results than the Bonferroni and Sidák methods, so here and in the
sequel, we will use the Bonferroni method for outlier detection.

Other criticisms of the approach of Gilbert were brought up by Pounds and Cheng (2006). We
will adapt their approach for false discovery rate estimation to our problem. Unlike Pounds
and Cheng (2006), our null distribution is estimated from the data, while they will either use
a parametric model or permutation testing to derive their null distribution.

4 Proposed Outlier Detection Methodology
4.1 Two groups

We first consider the case when J = 2, i.e. there are two groups. Then we can apply the algorithm
of Pounds and Cheng [18] for multiple testing. The algorithm proceeds as follows.

1. Let p̃1, …, p̃d denote the d unique p-values from the original p-values p1, …, pG, and
let the corresponding number of p-values equal to p̃i (i = 1, …, d) be denoted as mi.
Note that we expect d to be much less than G due to the discrete nature of the p-values.

2. Define the estimator of the expected proportion of tests with a p-value less than α as

where .

3. Define the estimated proportion of true null hypotheses as π̂ = min(1, 8c), where

and min(a, b) denotes the minimum of a and b.

4. Estimate the false discovery proportion as

As described by Pounds and Cheng (2006), what this calculation does is to count
every p-value greater than 0.5 as if it were testing a true null hypothesis and count it
towards the numerator of the false discovery proportion.
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5. Compute t̃l = Ŵ (p̃l)/F̂ (p̃l), l = 1, …, d.

6. Smooth t̃l using a robust regression algorithm and rank interpolation; details are given
in Pounds and Cheng (2006).

7. Construct q-values using the predicted values of t̃l from the previous step.

This algorithm has been coded by Pounds and Cheng in R and is available at the following
URL: www.stjuderesearch.org/depts/biostats/.

What is novel in our problem is that we are using the observed data in the baseline group to
calculate the ‘p-values’ p̃gji. This is identical to what was done in Ghosh and Chinnaiyan
(2009). After implementing the algorithm, we can select genes whose q-value is less than a
pre-specified threshold. This is referred to as the control paradigm by Pounds and Cheng
(2006). They provide extensive simulation evidence to show that the rule of rejecting all genes
whose q-value is less than α will control the false discovery rate at level α.

4.2 Asymptotic Error Rate Control: Heuristics
In Pounds and Cheng (2006), no proof of error control in either a finite-sample or an asymptotic
setting is given. If the null distribution is known, it turns out that one can use the arguments in
Ferreira (2007) to show that the rule described in the previous paragraph will asymptotically
control the false discovery rate. However, the null distribution was assumed to be known,
whereas in our problem, it is actually estimated from the data. We give a sketch of the proof
that the proposed procedure asymptotically controls the FDR under certain assumptions.

Let p̂1, …, p̂G denote the G p-values obtained from the Benjamini-Hochberg procedure
described in Section 4.1. Let p1,…, pG denote the p-values of the G genes if the null distribution
were known (i.e., we used F0g instead of F̂0g). Of the G genes, we assume that G0 truly have
no evidence of outlying expression and G1 truly have evidence of outlying expression. Let
these two populations have cumulative distribution functions denoted by F0 and F1. We define
the binary random variable OEg to denote outlying expression for gene g (i.e., OEg = 1 if there
is evidence of outlying expression, 0 otherwise). We make the following assumptions:

A. Ygij share common support;

B. For g = 1, …, G, F0g and F1g are continuously differentiable, and their density
functions f0g and f1g are also continuous; furthermore, f0g is bounded on every compact
subset of (0, 1) and is positive on {t: 0 < F0g(t) < 1}.

C. n0 and n1 go to infinity such that n1/n → λ ∈ (0, 1).

D. Convergence of empirical cdfs:

E. uniformly in t.

By assumption D), we can use the result of the main proposition in Ferreira (2007) to show
that the Benjamini-Hochberg procedure applied to p1, …, pG controls the FDR at the
appropriate level. By algebraic manipulation,
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Assumptions A)–C) imply that the first summand on the right-hand side of the equality sign
converges almost surely to zero uniformly in t, while by assumption D), the second summand
converges almost surely to F0 uniformly in t. An appeal to the arguments in the proof of the
main proposition in Ferreira (2007) can then be used to show that the Benjamini-Hochberg
procedure applied to p̂1, …, p̂G also asymptotically controls the FDR at the correct level.

4.3 More than two groups
We now consider the situation where we have more than two groups, i.e. J > 2. Outlier detection
for the multigroup case has been considered recently by Liu and Wu (2007). Their methodology
was primarily based on using F –statistics. As noted by Ghosh and Chinnaiyan (2009), such
regression-based statistics only use information on the first two moments, which might lose
power in situations where the data are far from normality.

We seek to extend the discrete version of the previous section here. Note that for each gene,
we will have a vector of p-values. Again, the p-values are estimated using the distribution of
values in the baseline group rather than based on permutation or a theoretical null distribution.
Ploner et al. (2006) propose a multivariate density estimation for the local false discovery rate
of Efron et al. (2001), while Chi (2008) proposes multivariate extensions of the Benjamini-
Hochberg procedure. However, the latter author uses a mixture model for multiple testing that
is an extension of that proposed by Genovese and Wasserman (2004). An implication of such
a model is that the distribution of p-values is continuous, which is not the case here.

Our approach is the following. First, we convert the multivariate p-values to multivariate q-
values applying the Pounds-Cheng algorithm to each component. We now describe two types
of hypotheses we might wish to test:

1. Subtype hypothesis: This would be looking for genes that show evidence of outlier
expression in at least one group relative to the baseline group.

2. Uniform effect hypothesis: This would correspond to genes that consistently show
evidence of outlier expression across all groups relative to baseline.

For the first hypothesis, for each gene, we can simply test if the minimum p-value across the
(J − 1) dimensions is less than α/(J − 1), where α is the FDR we wish to control. The procedure
would be to then declare all genes for which this condition holds as satisfying the subtype
hypothesis.

For the second hypothesis, we can test if the average of the q-values is less than or equal to α
for each gene. In the case where the tests are independent across groups, it is easy to show that
both procedures will control the FDR. While this will not be exactly true because F̂0 is used
to derive p-values, we can argue that FDR control holds conditional on F̂0.

Similarly, we can rank genes under the first hypothesis by the smallest q-value across the groups
and by the average q-value in the second situation. It is more complicated to adapt the approach
of Ploner et al. (2006) for these two hypotheses, as it would require taking their
multidimensional FDR estimator and integrating it over the appropriate regions. This is an
interesting problem that we leave open for future work.
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5 Prostate Cancer Data
The example we use is from a prostate cancer gene expression study, a slightly different version
from that considered previously in Ghosh and Chinnaiyan (2009). In this example, there are
J = 3 groups, non-cancer, localized prostate cancer and metastatic prostate cancer samples (24,
10, and 6, respectively). While the platform is a two-color gene expression array originally
containing 20000 genes, we remove all genes that have any missing measurements, this yields
a total of G = 8350 genes.

We first begin by collapsing the two types of cancer sample and compare them to the non-
cancer samples so that we deal with J = 2 groups. A histogram of the p-values for the Bonferroni
statistic , g = 1, …, 8350 is given in Figure 1. Based on the plot, we see the extremely discrete
nature of the p-value distribution. At a significance threshold of 0.05, the method proposed
here calls 136 genes significant. The FDR for these genes are given in Table 2.

Based on the genes that were found to have a q-value less than or equal to 0.05, we then searched
the Census of Cancer Genes database (Futreal et al., 2004) to determine if there are oncogenes
that are found by our analysis. Two genes were found: FANCD2 and TSC2. The first gene,
FANCD2, is involved in the disorder Fanconi anemia. Fanconi anemia (FAN) is a genetically
heterogeneous recessive disorder characterized by cytogenetic instability, hypersensitivity to
DNA crosslinking agents, increased chromosomal breakage, and defective DNA repair.
FANCD2 encodes for one of the proteins that makes up a common nuclear protein complex
with other proteins encoded by other FAN genes. FANCD2 is known to interact with the
BRCA1 and BRCA2 genes (Garcia-Higuera et al., 2001), which are major oncogenes involved
in the etiology of breast cancer. Also, in leukemia, FANCD2 is mutated in the germline. The
other gene, TSC2 (tuberous sclerosis 2), is a tumor suppressor gene that is a component of
membrane microdomains and mediates caveolin-1 localization in post-Golgi transport (Jones
et al., 2004). It is mutated in the germline in cancer, primarily in renal cell carcinomas.

The next step is to do the analysis with J = 3 groups. We will use the non-cancer samples as
the baseline distribution. Note that the uniform effect hypothesis is equivalent to the analysis
comparing cancer samples to non-cancer samples, so we instead focus on genes that satisfy
the subtype hypothesis. The distribution of p-values for the localized and metastatic prostate
cancer (PCA) samples are given in Figure 2. The distribution for the metastatic PCA samples
is more discrete due to the smaller sample size. After having applied the Pounds-Cheng
algorithm to derive multivariate p-values, we select genes based on the rule that the minimum
q-value is less than 0.025. Such an analysis leads to selection of 186 genes. Again repeating
the Census of Cancer Genes database, another known oncogene, TCL6, is found. The function
of TCL6 has not yet been defined; however, this protein may play a role which is similar to or
complementary to other T-cell leukemia/lymphoma proteins during early embrogenesis. The
association of this gene with T-cell leukemia chromosome translocations implicates this gene
as a candidate for leukemogenesis.

Notice that while the cancer samples come from subjects with prostate cancer, this analysis
has uncovered oncogenes that have been found in other cancers. An implicit assumption is that
oncogenes are common across all cancers. This is in keeping with a model for tumorigenesis
as posited by Hanahan and Weinberg (2000). They posited that there existed oncogenes that
regulated or were dysregulated in the following mechanisms: self-sufficiency in growth
signals; insensitivity to anti-growth signals; evading apoptosis (cell death); limitless replicative
potential; sustained angiogenesis; tissue invasion and metastasis.
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6 Simulation Study
In this section, we assessed the performance of various methods proposed in Sections 3 and 4
in terms of the variability of the testing procedures. All procedures controlled the FDR at the
appropriate level. We instead specifically compare the following methods in terms of the
variance of the numbers of hypotheses rejected: the methods of Tarone (1990), Gilbert
(2005) and the FDR-based estimation procedure outlined in Section 4.1.

Data were generated as correlated multivariate normal measurements with a block correlation
structure and positive correlation of ρ = 0.5 and ρ = 0.2. We considered n = 100, 1000 and
10000 genes, made up of 10 blocks of correlated genes. A fraction of the genes were
differentially expressed between the two groups; we took the fractions to be 0.1 and 0.30; for
these genes, the difference between the two groups was 1.5 units on the standard deviation
scale. We considered m = 20 and m = 40, distributed equally between two groups. The test
statistics were rounded to the nearest tenth decimal place to simulate discreteness. We
considered procedures controlling the false discovery rate at α = 0.05. A total of 1000
simulation samples were generated for each simulation scenario. The results are given in Table
3.

Based on the results, we find that the proposed method yields the smallest variability across
all scenarios considered. It is clear that the methods of Tarone (1990) and Gilbert (2005)
demonstrate much greater variability in terms of the number of hypotheses rejected relative to
the proposed method.

7 Discussion
In this article, we have explored the issue of mutliple testing with discrete test statistics in the
context of finding genes that have outlying differential expression in one group relative to a
baseline group. We have given an argument favoring the so-called direct estimation procedures
relative to sequential testing methods. In addition, we have developed nonparametric testing
procedures that do not rely on normality. An inspection of previous methods reveals that these
methods will be most powerful when a Gaussian assumption can be made; their performance
is less clear when there is departure from this distributional assumption. We have focused on
one-sided tests, but modifying the methodology to handle two-sided tests is straightforward;
in particular, we would take as outliers values whose standardized values in [0, 1] differed from
0.5 in either direction.

For the data example in Section 5, we excluded genes with any missing values. We did this for
illustration of the method. In practice, this is not very feasible. In theory, there should be nothing
wrong with applying the methodology to the available gene expression measurements and thus
having q-values that depend on variable numbers of measurements. Such a complete-case
analysis would be valid under an assumption of the data being missing completely at random
(Little and Rubin, 2002). One approach that might be practically implementable would be to
combine an imputation method such as k-nearest neighbors imputation (Troyanskaya et al.,
2001) with the methods proposed in the paper. While the method found 3 genes from the Cancer
Census database, it is also possible that many of the other genes found might be undiscovered
oncogenes that have never been biologically validated. This illustrates one of the limitations
of using a database of known true positives for validation of a method.

While we have described the discreteness in a problem involving gene expression, technologies
such as next-generation sequencing platforms and single nucleotide polymorphism arrays offer
discrete measurements of molecular activities. Thus, we view the issue of dealing with discrete
data in genomics as one that will not go away anytime soon. Further thought is needed on how
to develop multiple comparison procedures for this setting.

Ghosh Page 11

J Biopharm Stat. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
The author would like to acknowledge the support of the National Institutes of Health and the Huck Institute for Life
Sciences. He would also like to thank two anonymous reviewers whose comments substantially improved the
manuscript.

References
1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. Journal of the Royal Statistical Society Series B 1995;57:289–300.
2. Chi Z. False discovery control with multivariate p-values. Electronic J Statist 2008;2:368–411.
3. Efron B, Tibshirani R, Storey JD, Tusher V. Empirical Bayes analysis of a microarray experiment.

Journal of the American Statistical Association 2001;96:1151–1160.
4. Ferreira JA. The Benjamini-Hochberg method in the case of discrete test statistics. International Journal

of Biostatistics 2007;3(1) Article 11.
5. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census

of human cancer genes. Nature Reviews Genetics 2004;4:177–183.
6. Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D’Andrea

AD. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Molecular Cell
2001;7:249–262. [PubMed: 11239454]

7. Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. Test
2003;12:1–44.

8. Genovese CR, Wasserman L. A stochastic process approach to false discovery control. Annals of
Statistics 2004;35:1035–1061.

9. Ghosh D, Chinnaiyan AM. Genomic outlier profile analysis: mixture models, null hypotheses and
nonparametric estimation. Biostatistics 2009;10:60–69. [PubMed: 18539648]

10. Gilbert PB. A modified false discovery rate multiple-comparisons procedure for discrete data, applied
to human immunodeficiency virus genetics. Applied Statistics 2005;54:143–158.

11. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70. [PubMed: 10647931]
12. Hall P, Wang Q. Strong approximations of level exceedances related to multiple hypothesis testing.

2009 Unpublished technical report.
13. Jones KA, Jiang X, Yamamoto Y, Yeung RS. Tuberin is a component of lipid rafts and mediates

caveolin-1 localization: role of TSC2 in post-Golgi transport. Exp Cell Res 2004;295:512–24.
[PubMed: 15093748]

14. Little, RJA.; Rubin, DB. Statistical Analysis with Missing Data. 2. Wiley; New York: 2002.
15. Liu F, Wu B. Multi-group cancer outlier differential gene expression detection. Computational

Biology and Chemistry 2007;31(2):65–71. [PubMed: 17392030]
16. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment. Nature Reviews

Cancer 2005;11:845–856.
17. Ploner A, Calza S, Gusnanto A, Pawitan Y. Multidimensional local false discovery rate for microarray

studies. Bioinformatics 2006;22(5):556–565. [PubMed: 16368770]
18. Pounds S, Cheng C. Robust estimation of the false discovery rate. Bioinformatics 2006;22:1979–

1987. [PubMed: 16777905]
19. Shaffer J. Multiple hypothesis testing. Annual Reviews of Psychology 1995;46:561–584.
20. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proceedings of the National

Academy of Sciences USA 2003;100:9440–9445.
21. Tarone RE. A modified Bonferroni method for discrete data. Biometrics 1990;46:515–522. [PubMed:

2364136]
22. Tibshirani R, Hastie T. Outlier sums for differential gene expression analysis. Biostatistics 2007;8:2–

8. [PubMed: 16702229]
23. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, et al. Recurrent fusion of TMPRSS2 and ETS

transcription factor genes in prostate cancer. Science 2005;310:644–648. [PubMed: 16254181]

Ghosh Page 12

J Biopharm Stat. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



24. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB.
Missing value estimation methods for DNA microarrays. Bioinformatics 2001;17:520–525.
[PubMed: 11395428]

25. Wu B. Cancer outlier differential gene expression detection. Biostatistics 2007;8:566–75. [PubMed:
17021278]

Ghosh Page 13

J Biopharm Stat. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Histogram of p-values from prostate cancer data. Even though G = 8350, the number of discrete
p-values d = 22.
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Figure 2.
Histogram of p-values from prostate cancer data broken up by cancer subtype: (a) localized
prostate cancer (PCA); (b) metastatic prostate cancer. The baseline group is the non-PCA
samples.
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Table 1

Outcomes of n tests of hypotheses regarding outlyingness

Decide Outlier Decide Non-outlier Total

True Non-Outlier W V N0

True Outlier T A N1

R Q nj

Note: The rows represent each sample being a true outlier or a true non-outlier. In the columns, Decide Outlier means that we reject ; Decide Non-

outlier means that we fail to reject . These are the results for a single gene; dependence on gene is suppressed in the notation.
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Table 2

Estimated FDR (q-value) of 136 genes found significant at the 0.05 threshold for the prostate cancer data

FDR # Genes

0.0004 3

0.001 1

0.002 2

0.003 4

0.006 5

0.009 7

0.012 12

0.016 21

0.036 29

0.042 31

0.048 21
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