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Abstract
In differential expression analysis of microarray data, it is common to assume independence among
null hypotheses (and thus gene expression levels). The independence assumption implies that the
number of false rejections V follows a binomial distribution and leads to an estimator of the empirical
false discovery rate (eFDR). The number of false rejections V is modeled with the beta-binomial
distribution. An estimator of the beta-binomial false discovery rate (bbFDR) is then derived. This
approach accounts for how the correlation among non-differentially expressed genes influences the
distribution of V. Permutations are used to generate the observed values for V under the null
hypotheses and a beta-binomial distribution is fit to the values of V. The bbFDR estimator is compared
to the eFDR estimator in simulation studies of correlated non-differentially expressed genes and is
found to outperform the eFDR for certain scenarios. As an example, this method is also used to
perform an analysis that compares the gene expression of soft tissue sarcoma samples to normal
tissue samples.
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1 Introduction
Microarrays simultaneously measure the RNA expression of thousands of genes and are widely
used in contemporary scientific investigation. Numerous methods have been proposed for the
analysis of data from such studies (Mehta et al., 2004). Many of these methods are designed
to perform differential expression analysis of gene expression data, i.e., to identify genes with
significantly different mean or median expression across one or more distinct biological
groups. In such analyses, a hypothesis test is performed for each of m genes. In practice, m is
typically greater than 1,000. Thus, it is necessary to address the issue of multiple tests.

Traditional multiple-testing procedures attempt to control the family wise error rate (FWER).
The FWER is defined as Pr(V>0), where V is the number of Type I errors incurred in the
analysis. Thus, traditional approaches are typically rejection procedures that are developed to
ensure that the FWER is kept below a threshold that is pre-specified by the user. It is widely
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recognized that control of the FWER is too conservative in differential gene expression analysis
because m is so large that strict control of the FWER usually does not reject any hypothesis,
i.e., does not declare any gene to be significantly differentially expressed.

Subsequently, the false discovery rate (FDR; Benjamini and Hochberg 1995) has been accepted
as a more practical way to measure the number of Type I errors than the FWER for differential
expression analysis. The FDR is defined as E(Q), i.e., the expected value of ratio Q of the
number V of Type I errors (false discoveries) to the total number R of rejections. For R = 0,
Q is defined to be equal to 0. The FDR is a more flexible measure of the prevalence of false
discoveries incurred in an analysis. Unlike the FWER, which penalizes any Type I error, the
FDR allows for some Type I errors to occur so long as they are not overly abundant among the
set of results declared to be significant.

Benjamini and Hochberg (1995) introduced a step-down p-value adjustment procedure that
controls the FDR at a pre-specified threshold under the assumption that p-values for true null
hypotheses are independent uniform (0,1) random variables. They demonstrated that their
method of FDR-control is more powerful than several methods to control the FWER. Storey
(2002) noted that it can be difficult in practice to pre-specify an appropriate level for the FDR.
Thus, he suggested that it may be more practical to estimate an FDR-type measure as a function
of the p-value threshold used to determine significance. He developed a method that uses the
observed p-values to estimate the positive false discovery rate [pFDR, defined as E(Q|R>0)]
as a function of the p-value significance threshold.

Subsequently, numerous additional methods have been proposed to estimate or control the
FDR or related measures. Allison et al. (2002) and Pounds and Morris (2003) propose beta-
uniform mixture (BUM) models for the p-values and use maximum likelihood techniques to
fit these models to the observed p-values. The fitted models then provide estimates of the FDR
and other multiple-testing error metrics. Pounds and Cheng (2004) proposed the spacings
LOESS histogram as a nonparametric technique to generate estimates of similar error metrics.
Cheng et al. (2004) propose a spline-based estimation technique. Pounds (2006) provides a
non-technical review of the area, and Cheng and Pounds (2007) give a comprehensive technical
review of these and other similar methods.

Each of the reported methods implicitly assumes that the p-values for non-differentially
expressed genes are independent uniform (0,1) observations. Some methods additionally
assume that all p-values are independent. However, it is well-known that genes operate
cooperatively in regulatory and signaling pathways (Storey and Tibshirani 2003). Thus, the
expression levels of genes are correlated due to natural biological processes. Therefore, from
a biological perspective, the independence of p-values is violated. The methods of Benjamini
and Hochberg (1995) and Storey et al. (2004) are robust against certain forms of dependence
of the test statistics (and hence the p-values) in terms of conservativeness (Benjamini and
Yekutieli 2001; Storey et al. 2004). However, the robustness of existing methods in terms of
power remains largely unknown. Consequently, a method that explicitly models the
dependence of p-values may give better performance in terms of power than existing methods.

Tsai et al. (2003) proposed to model U, the number of false null hypotheses that are rejected
at a specific p-value threshold, with a beta-binomial (BB) distribution. They did this in addition
to assuming the binomial distribution for U and compared the results of the two assumptions
for several values of the variables of interest in FDR studies. The BB distribution allows for
the rejection of individual false null hypotheses to be correlated events. However, for both
cases of U, they assumed that rejection of individual true null hypotheses are independent
events and thus model V with the binomial distribution. Then the number of rejections R = V
+ U is what they term the “convolution” of two distributions. They compared the distribution
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of R and that of the conditional false discovery rate (cFDR) between the two assumptions and
found that for the dependence model, the distribution of R has longer and heavier tails than
that for the independence model. They also found that the cFDR for the independence model
is monotonic, while the cFDR for the dependence model exhibits more of a U-shaped pattern.
In the simulation portion of their paper, Tsai et al. used their independence model for R and
also a bootstrap-proposed alternative to estimate R. They then compared the performance of
the two approaches on data simulated from both the independence and dependence FDR
models. They did not assess the performance of the dependence model for R as a method of
FDR-estimation.

Here, we propose to account for correlation of p-values testing true nulls by using the BB
distribution to model the number V of Type I errors incurred at a specified p-value threshold.
The model leads to a beta-binomial false discovery rate (bbFDR) estimator. In Section 2, we
describe the proposed model and how to compute the bbFDR estimator. In Section 3, we present
simulation studies that compare the performance of the bbFDR estimator to the empirical false
discovery rate (eFDR) estimator, which is based on independence of p-values testing true nulls.
Section 3 also includes the application of our method to the differential expression analysis of
a microarray data set from a gene expression study that compared the expressions of samples
of patients with soft tissue sarcoma to normal tissue samples. Section 4 concludes with the
discussion of our proposed method and of future research.

2 Methods
The general problem is to simultaneously test m null hypotheses. Let m0 be the number of true
null hypotheses and m1 be the number of false null hypotheses. Note that these definitions
imply m=m0 +m1. Furthermore, assume that each test is performed at the same level α. Let V
be the number of true null hypotheses that are incorrectly rejected, S be the number of true null
hypotheses that are correctly not rejected, U be the number of false nulls that are correctly
rejected, and T be the number of false nulls that are incorrectly not rejected. As described in
Benjamini and Hochberg (1995), Table 1 summarizes the outcome of the analysis in terms of
V, S, U, T, m0, m1, and m.

Because each hypothesis test gives one of two outcomes (reject or fail to reject the null
hypothesis), we can consider each of the variables V, S, U, and T in Table 1 to be the sum of
the number of successes (or failures) in a series of Bernoulli trials. More specifically, if rejection
of the null hypothesis is defined as a “success”, then V is the total number of successes in a
series of m0 Bernoulli trials. If the actual level equals the nominal level of each of the m0 tests
of a true null hypothesis, then the expected value of V is m0α. Under the assumption that p-
values testing true null hypotheses are independent uniform (0,1) random variables, V follows
a binomial distribution with success probability α and number of trials m0. As previously
mentioned, many methods make these assumptions which ignore the biological reality of
intergene correlations. Our approach allows for dependence among the m0 p-values testing true
nulls and similarly for dependence among the m1 p-values testing false nulls. We assume that
each set of p-values has the same structure of dependence, but that each set of p-values is
independent of one another.

2.1 The Beta-binomial Distribution
We propose to model V with the BB distribution. That is, V has the following density function:

(1)
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where B(a, b) = Γ(a)Γ(b)/Γ(a + b), μ =a/(a + b), and φ = (a+b+1)−1, 0< μ <1, 0< φ <1. Here E
(V) = m0μ, the number of Type I errors, or the number of false rejections, is the BB mean (μ is
the expected Type I error rate) and φ is the BB positive intra-hypotheses correlation for the
m0 true null hypotheses, i.e., φ = Corr(Vi, Vj), i,j = 1, …, m0, i ≠ j, where Vi and Vj represent
the ith and jth, respectively, indicators of false rejections among the m0 true null hypotheses.

We can reparameterize equation (1) in terms of only μ and φ to equate to the following density
function:

(2)

Equation (2) is a common formulation of the BB density function when one is interested in
estimating the mean parameter and the correlation parameter, which in this case are μ and φ,
respectively. These parameters are easier to interpret than the original parameters in (1); see
Appendix A for the details of the derivation of (2). Now that the density function (2) is in terms
of μ and φ (with m0 assumed to be known), let us assume that we have a BB process in which
N realized values of V, say ν1,…, νN, exist. Then the BB log-likelihood function l is given as
the follows:

(3)

To use equation (3), we first need an estimate for m0, the number of true null hypotheses, for
each set of beta-binomial trials.

2.2 The Mean Differences Method
To estimate m0, we use the mean differences method proposed by Hsueh et al. (2003). They
compared this method to four other methods for m0 estimation via a simulation study. Their
results showed that this method (as well as the least squares method) performed better than
the other methods for estimating m0, whether independence or dependence was the assumed
underlying correlation structure among the m hypotheses. In their simulation study, Tsai et al.
(2003) used the mean differences method for m0 estimation under both the independence and
dependence assumptions and their results similarly illustrated that this method estimates m0
very well.

The mean differences method starts with taking the ordered p-values p(1), …, p(m),
corresponding to the m hypotheses; we obtain these p-values the traditional way by performing
m two-group comparisons (t-tests) on the m sets of gene expression levels. Assuming that
p(0) = 0 and p(m+1) = 1 and that the largest (m+ 1−m0) p-values come from the true null
hypotheses, then define the differences as di = p(i) − p(i−1) [for i = (m−m0) + 1,,…, m+1].
Assuming pi-independence, then the di differences are independent identically distributed beta
(1, m0) with mean E(di) = 1/(m0+1); then

(4)
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where . Starting with j = m+1 and d̄j = [1− p(m−j+1)]/j,
sequentially, the process stops at the first occurrence of d̄j−1 ≤ d̄j. Then the estimate of m0
(m ̂0) is 1/d̄j − 1.

2.3 The Permutation Procedure
To maximize (3), we will need realized values for V, the number of false rejections. To
accomplish this, we propose the following approach. Given phenotype data that corresponds
to expression microarray data for m genes, let E be the gene expression matrix in which the
rows represent subjects and the columns represent the various genes. Also, let m ̂0 be the
estimated number of true nulls obtained from applying the mean differences method, described
in Subsection 2.2, to the data and let r be the observed number of rejections based on some
pre-specified α. Then the following steps outline our process for generating realized values for
V:

1. Permutation

Randomly permute the rows of E, keeping the row labels in tact. Call this permuted
matrix EP. This permutation simulates the setting with all m hypotheses being truly
null.

2. Hypothesis Testing

Perform the set of m hypothesis tests on EP.

3. False Rejections

Treat the number of observed rejections ν1 as the number of false rejections. As shown
in Table 1, ν ≤ min(r, m ̂0) should be true. ν1 satisfies this condition, then use the
generated value for ν1; if r<ν1 ≤ m ̂0, then set ν1 = r; and if ν1 > m ̂0, then repeat steps
1 and 2 until ν1 ≤ m ̂0.

4. Iteration

Repeat steps 1 through 3 until N values ν1, …, νN are generated.

The set of values v1, …, νN, in addition to m ̂0, can now be used in the log-likelihood function
given by equation (3). The next task is to maximize equation (3) to obtain estimates for μ and
φ. Once we get the set of values {m ̂0, ν1, …, νN}, then we can use the betabin function from
the R version 1.1.8 package aod (Lesnoff and Lancelot, 2005). This function yields estimates
for the BB parameters μ and φ. The bbFDR is given by the following formula:

(5)

where V is the number of false rejections from a BB distribution with parameters μ and φ.

3 Results
We tested the performance of our proposed method on a microarray data set from a study
comparing soft-tissue sarcomas and normal tissue samples and also in a simulation study. For
the actual data, we estimated the eFDR and applied the methods described in Section 2 to
calculate the bbFDR estimate. Then, we compared the two approaches. In the simulation study,
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we ran various simulations under different conditions to see how well the BB method
performed as compared to the empirical approach.

3.1 Example: Soft-Tissue Sarcoma study
We applied the proposed model to an example from a microarray experiment that investigated
using the expression of angiogenesis-related genes to classify soft-tissue sarcomas (Yoon et
al., 2006). In the experiment, the gene expression patterns of soft-tissue sarcoma tissue samples
and those of normal tissue samples were quantified and analyzed using oligonucleotide
microarrays. An array consisted of more than 22,000 probe sets representing somewhat more
than 14,000 genes. We extracted the data from the GEO database
(http://www.ncbi.nlm.nih.gov/projects/geo/), accession number GSE2719. From this database,
we found 39 soft-tissue sarcoma sample arrays and 15 normal tissue sample arrays. Hence, our
analysis is based on this data set of 54 samples.

In their microarray experiment, Yoon et al. (2006) conducted hierarchical cluster analysis to
classify soft-tissue sarcomas and normal tissues into groups on the basis of their gene
expression levels. They did this first for both entire set of genes, and then for a subset of
angiogenesis-related genes. Their results indicated several clusters for the sarcomas and one
cluster for the normal sample, with the normal tissue samples clustering into their own group
completely exclusive from any of the sarcoma clusters in both cluster analyses. However, Yoon
et al. did not use a statistical approach to estimate FDR. Using their data, we assessed the
differential expression by estimating the eFDR and bbFDR and compared the two.

As previously mentioned, the formula for the eFDR is eFDR = E(V)/r = (m0α)/r. Using this
formula, for a pre-determined α, with r being the observed number of rejections, the only task
is to estimate m0. Recall that we used the mean differences method described in Subsection
2.2. Setting α = 0.01, from the set of m = 22,283 probes of the sarcoma data set, the observed
number of rejections is r = 3,909, which is about 17.5% of the hypotheses rejected. The mean
differences method yields m ̂0 = 18, 935, so the estimated eFDR, i.e., (m ̂0α)/r, is about 0.048.

Assuming the BB distribution for V, we estimated the parameters μ and φ. With the given m ̂0
= 18,935 and r = 3,909, we followed the four permutation steps outlined in Sub-section 2.3 to
generate realizations for V based on a sample of N = 1,000 permutations. With V assumed to
have the BB density function given by equation (2), for the data set {ν1, …, v1000} and m ̂0 =
18,935 used in place of m0, we estimated the BB parameters μ and φ by maximizing l in equation
(3). Our maximization yielded the following estimates: μ̂ =0.0138 (SE=0.0002) and φ ̂ =0.0043
(SE=0.0002). Thus, our approach yields a Type I error estimate (μ̂ =0.0138) that was slightly
higher than the nominal α =0.01 and a non-zero estimate of BB correlation. Using (5), the
bbFDR estimate was about 0.067. Our BB approach yielded an estimate of the FDR that was
about 2% higher than that of the eFDR (0.048).

3.2 Simulation study
As in the application, we did not know the underlying correlation structure; thus, we conducted
a simulation study to assess the performance of our BB approach to estimate the FDR and to
determine how well the empirical approach maintains its ability to estimate under a stronger
correlation structure. We used the following approach to generate correlated gene expression
level values.

Assume that the microarray data is organized into an expression matrix En×m, where n is the
total number of samples and m is the total number of hypotheses, which equates to the total
number of genes. The sample size n = n1+n2, where n1 is the size of the control group and n2
is the size of the threated group. Hence, the jth hypothesis is as follows: H0j:μ1j = μ2j vs. Haj:
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μ1j ≠ μ2j; j=1, …, m; here, μ1j and μ2j are the average jth gene expression values for the control
and treated groups, respectively.

As in Hsueh et al. (2003), we generate the same pairwise correlation structure within each set
of m0 true null and m1 false null hypotheses. Next, we generated the expression values for the
matrix En×m. For the ijth entry of E, let the expression level be represented by Eij = Zi + εij.
The following describes how we generated the ij entries of E:

• For i=1, …,n; j=1, …, m0, let Zi ~ N(0, ρ) and εij ~ N(0,1 − ρ).

• For i =1, …, n1; j= m0 +1, …, m, let Zi ~ N(0, ρ) and εij ~ N(0,1− ρ).

• For i = n1 +1, …,n; j= m0 +1, …, m, let Zi ~ N(2, ρ) and εij ~ N(0,1 − ρ).

There is no differential gene expression among the first m0 genes, hence all n samples, whether
from the control or treated group, have the same distribution. For the m1 differentially expressed
genes, the n1 control samples have a N(0, ρ) for Z and the n2 treated samples have a N(2, ρ) for
Z. Based on the described approach, the pairwise correlation for two expression levels, Eij and
Eij′, is given by ρ = Corr(Eij, Eij′), where j and j′ are either both in the set {1, …, m0} or both
in the set {m0 +1, …, m}. See Appendix B for details on deriving the correlation ρ.

In our simulations, for the set m={1000, 3000} of hypotheses, we assumed the number of true
nulls m0 to be from the set m0 ={0.8m, 0.9m, 0.95m}. We looked at two different sample-size
scenarios: n =20 (n1 = n2 = 10) and n=40 (n1 = n2 = 20). Within each (m, m0) combination, we
assumed five different underlying correlation structures: ρ =0 (independence), and ρ =0.10,
0.25, 0.50, and 0.75. We set the nominal Type I error rate α =0.01 for all simulations. For each
combination presented in this paragraph, we simulated 1,000 microarray representations of
E and employed the permutation approach described in Subsection 2.3. We used N=300
permutations to determine the BB estimates at each simulation, and we averaged the estimates
over all simulations. We reduced the number of permutations from 1,000 (used in the sarcoma
example) to 300 (for these simulations). We had found that our results using 1,000 or 300
permutations were comparable and using the smaller number reduced computing time. Tables
2 through 5 present the results of our simulations.

For each simulation scenario, the FDR (the 4th column in each table) was found by calculating
Q (recall Q = 0 for R = 0) for each simulation run, and then averaging over all simulations.
Similarly, the eFDR and bbFDR entries were found by calculating the estimates of each
simulation run, then averaging over all runs. In Tables 2 through 5 and at the lowest value of
m0, the eFDR is less biased than the bbFDR, except for two cases in which ρ = 0.75 (Tables 2
and 4),. However, as the value of m0 increases, the bbFDR begins to outperform the eFDR at
the lower values of ρ. For example, in Table 2 at m0 = 800, the bbFDR is less biased for only
the highest value of ρ = 0.75; then at m0 = 900, it is less biased for ρ = 0.50 and 0.75; and finally
at m0 = 950, it is less biased for all five values of ρ. A similar pattern occurs in the other tables.
Also, note that the eFDR tends to increase monotonically with ρ and therefore diverges from
the FDR. This finding implies that the eFDR breaks down at high gene-expression correlations.

Tables 2 and 3 represent findings from analyses using the same number of hypotheses (m =
1,000), but with different sample sizes (n = 20 and n = 40, respectively). Both eFDR and bbFDR
are less biased for the 40-sample size scenarios as compared to their corresponding 20-sample
size scenarios. In comparing Table 4 to Table 2 (and Table 5 to Table 3), we observed a similar
pattern. Therefore, increasing the number of hypotheses (genes) from 1,000 to 3,000 resulted
in comparable results. We also ran a few scenarios with 5,000 genes and the results were still
comparable to their corresponding 1,000-gene and 3,000-gene scenarios. We realized that after
a certain value of m is attained, the number of genes m becomes less of a factor, and the
proportion of true nulls π0 (and sample size) that has the greater effect on the results.
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To correlate the simulation study with the sarcoma study, given in Subsection 3.1, we must
first recall that m0 was estimated to be 18,935 in the example. Of the total of 22,283 probe sets
from the example, this m0 corresponds to having about an 85% rate of true null hypotheses;
this falls in between the 80% and 90% rates corresponding to the first two (m, m0) combinations
in Tables 2 through 5. Also, recall that the estimate of the BB correlation φ was 0.0044, which
according to the tables would correspond to values of ρ between 0.10 and 0.25. This means
that for the sarcoma study, these results are in the region of the parameter space where the
bbFDR begins to better estimate the FDR, though the bbFDR is slightly more biased than the
eFDR. That is, approaching a 90% true null rate and having somewhat low but possibly
moderate correlation, the sarcoma study is an example where the bbFDR begins to show
improved estimation.

3.3 Figures
We generated probability mass function (pmf) plots for the sets of simulations in Table 2 to
illustrate the change in the distribution of V with the change in the correlation φ. These plots
are presented in Figure 1. As can be seen in each row of plots, as φ increases, the distribution
of V becomes more right-skewed. The FDR is roughly positively related to E(V). Hence, as the
right-skewness increases, E(V) decreases, and because the number of rejections r remains stable
for a given m0, then the FDR also decreases (Table 2).

Noticeably from Tables 2 through 5, we see a strong relationship between ρ and φ. This is
reasonable, because as the correlation among genes increases, we expect that the corresponding
hypotheses, in terms of acceptance and/or rejection, would also increase. In addition to the
noticeable relationship between φ and ρ, there also appears to be an inverse relationship
between φ and π0, i.e., the corresponding values of φ are smaller for larger π0 values. Figure 2
is a plot of the observed relationship between φ and ρ when the π0 values = 0.8, 0.9, and 0.95,
respectively.

We wanted to assess the validity of the BB model (2) over the binomial model for the
distribution of the number of false positives V generated from the permutation algorithm. To
accomplish this, we generated probability-probability (P-P) plots of the empirical distribution
function (EDF) of the permutation-generated data ν1, …, νN and the cumulative distribution
function (CDF) based on (2) and the binomial distribution. Figure 3 are the P-P plots for the
permutation-generated data from the sarcoma study; the BB CDF is much closer to the EDF
than is the binomial CDF. Figure 4 are the P-P plots for the permutation data for one case of
the simulation study: m = 1,000, n = 40, π0 = 0.90, and ρ =0.50; again, the BB CDF is the closer
to the EDF. Note that these two plots represent data from cases of low to moderate gene
expression correlations. These results indicate that the BB is a valid assumption for the
distribution of V.

4 Discussion
We have proposed an approach that models the inherent correlation between differential
expression analysis p-values that must exist due to the pathway-induced correlation among
gene expression levels. Our approach differs from traditional approaches that implicitly assume
a binomial distribution for the number of false rejections V. The BB model has the desirable
property of including a parameter that directly corresponds to the correlation of whether a p-
value is less than a chosen threshold. Therefore, in addition to significance level α, the
correlation becomes a factor in FDR estimation. In addition to the BB distribution, we
incorporated a permutation-based method into the model to generate pseudo-data to facilitate
the model fit. Results from both the application and simulations indicated that this method is
reasonable for FDR estimation.
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Our simulation studies indicated that the correlation among genes may introduce substantial
bias in the traditional FDR estimates that are derived under the assumption of p-value
independence. The magnitude of this bias depends on several parameters, including the strength
of gene-gene correlation, the number of hypotheses tested, and the proportion of null
hypotheses that are true. In general, it appears that traditional methods become more
conservatively biased as ρ increases while other parameters fixed. This bias can be very
detrimental in terms of statistical power. Although the actual FDR decreases as ρ increases,
the expected value of the eFDR estimate remains relatively constant or increases. On the other
hand, as ρ increases, the expected value of the bbFDR estimator decreases with the actual FDR.
This reduces the conservative bias and improves the power of the bbFDR estimator relative to
the eFDR estimator. Additionally, the bbFDR estimator showed conservative bias in most
simulation settings. The benefits of the bbFDR are realized even for moderate correlations
(between 0.10 and 0.25).

The extent of correlation among gene expression levels in practice and how that correlation
translates into correlation among p-values has not been thoroughly examined. Storey and
Tibshirani (2003) have suggested that gene-gene correlations are typically negligible in studies
that use genome-wide arrays but not so in studies that use specialized arrays that focus on a
specific pathway or disease genes. Our example application is consistent with this conjecture:
it utilized a genome-wide array and the correlation parameter estimate was small. Correlations
can be high (or low) if the important pathways are well (or poorly) represented on the array.

The results from our study indicates that, if there is indeed correlation among gene expression
levels in studies of microarray data, then there could be many cases where the FDR estimates
are biased. Certain caveats have to be considered, such as the degree of intergene correlation,
the number of genes m, and the proportion of true null hypotheses π0. Although our application
to the sarcoma study resulted in a rather low pairwise correlation in terms of the BB distribution,
the estimate was significant, and by comparing it to the BB correlation estimates from the
simulation study, we found that it may actually be comparable to moderate values for gene
expression correlations (between 0.10 and 0.25). In our study, we showed that at moderate
correlations under certain conditions, the BB method outperforms the empirical. Even with the
low correlation from the actual data, the FDR estimate increased from 5% to about 7%. Given
the large number of genes in microarray studies, this seemingly small increase in percentage
could be meaningful.

To assess the meaning of the application results and to generally determine the conditions under
which our proposed BB modeling approach would best estimate FDR, we conducted a
simulation study in which the data structure for many microarray studies was mimicked by
using data generated from assumptions of independence and dependence beamong hypotheses.
The results indicated that the BB approach obviously outperforms the empirical method at the
highest correlations and that at higher values of π0, it outperforms the empirical one at even
lower correlations. We also found that there was similarity in results across values of m, i.e.,
for a large enough m, the results are more affected by sample size and proportion of true nulls
than they are by m itself. This was illustrated by the fact that results from analyses with higher
values of m (3,000 and 5,000) were similar to the results for those with m = 1,000.

In our simulations, we generated data with common correlations within the group of m0 non-
differentially expressed genes and the group of m1 differentially expressed genes. In their
simulations under dependence, Hsueh et al. (2003) assumed an equicorrelated model where
the pairwise common correlations for both the group of m0 truly null genes and the group of
m1 differentially expressed genes; we assumed the same correlation structure. Tsai et al.
(2003) and Tsai et al. (2005) assumed equicorrelation among the m1 false null hypotheses.
Somerville (2004) assumed a multivariate t-distribution for the m test statistics, with a common
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correlation ρ. Benjamini et al. (1997) showed that the original Benjamini-Hochberg procedure
controls the FDR in the case of equicorrelated test statistics.

In a simulation study designed to assess the ability of the common correlation BB model to
estimate sample size in microarray experiments, Tsai et al. (2005) extended the assumption of
common correlation among m1 false nulls to two potential models of correlation that could
occur in practice: one where the genes occur in equicorrelated groups and one where there is
general correlation structure. They found that the BB assumption can underestimate the desired
sample size in these cases. Their BB model differs from ours in multiple ways. Their model
assumes R to be BB, while we assume V to be BB. Also, they simulated correlation only among
m1 false nulls, whereas we simulate correlation among the m0 true nulls as well. The more
complex correlation models definitely may have merit; therefore, future research should
explore how various methods perform under these more complex correlation structures.

Because intergene expression correlation being an intrinsic feature in studies of microarray
data, the BB distribution is a viable option for estimating the FDR. This distribution includes
the motivating characteristic of having a correlation parameter to estimate the correlation
among the hypotheses in these studies. We have shown that, with the existence of correlation,
our method yields an estimate for FDR that is less biased than the empirical estimate, which
inherently presumes independence across hypotheses, under certain conditions. Our results
illustrate the utility and the conditions under which our BB method outperforms the empirical
approach. The method appears to be a legitimate option for estimating the FDR in microarray
studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This research was partially supported by the NIH/NIGMS Pharmacogenetics Research Network and Database (U01
GM61393, U01GM61374, http://pharmgkb.org/) from the National Institutes of Health (CC), Cancer Center Support
Grant P30 CA-21765 (DLH, CC, SP), and the American Lebanese Syrian Associated Charities (ALSAC).

References
Allison DB, Gadbury GL, Moonseong H, Fernandez JR, Lee C, Prolla TA, Weindruch R. A mixture

model approach for the analysis of microarray gene expression data. Comput Statist Data Anal
2002;39:1–20.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J Roy Statist Soc Ser B 1995;57 (1):289–300.

Benjamini, Y.; Hochberg, Y.; Kling, Y. False discovery rate control in multiple hypotheses testing using
dependent test statistics. Dept. of Statistics and Operations Research, Tel Aviv Univ; 1997. Research
Paper 97-1

Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency.
Ann Statist 2001;29 (4):1165–1188.

Cheng C, Pounds S. False discovery rate paradigms for statistical analyses of microarray gene expression
data. Bioinformation 2007;1 (10):436–446. [PubMed: 17597936]

Cheng C, Pounds S, Boyett JM, Pei D, Kuo M-L, Roussel MF. Statistical significance threshold criteria
for analysis of microarray gene expression data. Statist Appl in Genetics and Molecular Biology 2004;3
(1) Article 36.

Hsueh H, Chen JJ, Kodell RL. Comparison of methods for estimating number of true null hypotheses in
multiplicity testing. J Biopharm Statist 2003;13 (4):675–689.

Hunt et al. Page 10

Comput Stat Data Anal. Author manuscript; available in PMC 2010 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pharmgkb.org/


Lesnoff, M.; Lancelot, R. aod: Analysis of overdispersed data. R package version 1.1–8. 2005.
http://cran.r-project.org/

Mehta T, Tanik M, Allison DB. Towards sound epistemological foundation of statistical methods for
high-dimensional biology. Nature Genetics 2004;36 (9):943–947. [PubMed: 15340433]

Pounds S. Estimation and control of multiple testing error rates for the analysis of microarray data.
Briefings in Bioinformatics 2006;7 (1):25–36. [PubMed: 16761362]

Pounds S, Cheng C. Improving false discovery rate estimation. Bioinformatics 2004;20 (11):1737–1745.
[PubMed: 14988112]

Pounds S, Morris SW. Estimating the occurrence of false positives and false negatives in microarray
studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics
2003;19 (10):1236–1242. [PubMed: 12835267]

Somerville PN. FDR step-down and step-up procedures for the correlated case. IMS Lecture Notes
Monograph Series 2004:100–118.

Storey JD. A direct approach to false discovery rates. J Roy Statist Soc Ser B 2002;64 (3):479–498.
Storey JD, Taylor JE, Siegmund D. Strong control, conservative point estimation, and simultaneous

conservative consistency of false discovery rates: a unified approach. J Roy Statist Soc Ser B 2004;66
(1):187–205.

Storey JD, Tibshirani R. Statistical significance for genomewide studies. PNAS 2003;100 (16):9440–
9445. [PubMed: 12883005]

Tsai C-A, Hsueh H-M, Chen JJ. Estimation of false discovery rates in multiple testing: application to
gene microarray data. Biometrics 2003;59:1071–1081. [PubMed: 14969487]

Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures
for correlated test statistics. J Statist Plan Infer 1999;82 (1):171–196.

Yoon SS, Segal NH, Park PJ, Detwiller KY, Fernando NT, Ryeom SW, Brennan MF, Singer S.
Angiogenic profile of soft tissue sarcomas based on analysis of circulating factors and microarray
gene expression. J Surgical Research 2006;135:282–29.

Appendix A. Deriving re-parameterized beta-binomial density
Recall from equation (1) that the density function for the beta-binomial distribution is given
by the following equation:

(A.1)

Now, given that B(a, b) = Γ(a)Γ(b)/Γ(a + b), then the density function becomes

(A.2)

Using the property of the gamma function Γ(·), i.e., for c>1, Γ(c) = (c−1)Γ(c−1) then (A.2)
simplifies according to the following steps:

(A.3)
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Dividing both the numerator and the denominator of (A.3) by (a + b)m0, we get

(A.4)

Because a/(a + b) = μ and 1/(a + b) = φ/(φ − 1), when we substitute into (A.4), we get

(A.5)

which is the same as equation (2).

Appendix B. Deriving correlation ρ for gene expression values
For sample i, within the set of m0 genes, the jth and j′th gene expression values are Eij = Zi +
εij and Eij′ = Zi + εij′, where Zi ~ N(0, ρ) and εij ~ N(0,1 − ρ). Now, the pairwise correlation for
these two expression values is

(B.1)

Because Eij and Eij′ have the same variance, then equation (B.1) becomes the following:

(B.2)

By substituting Zi + εij and Zi + εij′ in place of Eij and Eij′, respectively, (B.2) becomes

(B.3)

Z and ε are independent, and any two ε’s are also independent; thus, equation (B.3) becomes

(B.4)
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In a similar manner, this same correlation ρ can be derived for the set of m1 genes.
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Figure 1.
Pmf plots of the distribution of false rejections V. Plots, from left to right, correspond to rows
of Table 2, i.e., first row of five plots equates to first five rows of Table 2, etc. As the correlation
increases in the pmf plots, the distribution of false rejections becomes more right-skewed.
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Figure 2.
Plots of the observed relationship between φ and ρ when π0 = 0.8, 0.9, and 0.95.
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Figure 3.
P-P plots for the BB CDF (circles) and the binomial CDF (triangles) of the permutation data
(ν1, …, ν1000) from the sarcoma study.
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Figure 4.
P-P plots for the BB CDF (circles) and the binomial CDF (triangles) of the permutation data
(ν1, …, ν300) from the simulated data case m = 1,000, n = 40, π0 = 0.90, and ρ =0.50.
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Table 1

Hypothesis testing outcomes for m hypotheses

H0 rejected H0 not rejected Total

Null H0 true V S m0

Alternative Ha true U T m1

Total R W m
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