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Abstract
Many hormones are secreted in pulses. The pulsatile relationship between hormones regulates many
biological processes. To understand endocrine system regulation, time series of hormone
concentrations are collected. The goal is to characterize pulsatile patterns and associations between
hormones. Currently each hormone on each subject is fitted univariately. This leads to estimates of
the number of pulses and estimates of the amount of hormone secreted; however, when the signal-
to-noise ratio is small, pulse detection and parameter estimation remains difficult with existing
approaches. In this paper, we present a bivariate deconvolution model of pulsatile hormone data
focusing on incorporating pulsatile associations. Through simulation, we exhibit that using the
underlying pulsatile association between two hormones improves the estimation of the number of
pulses and the other parameters defining each hormone. We develop the one-to-one, driver-response
case and show how birth-death MCMC can be used for estimation. We exhibit these features through
a simulation study and on the relationship between luteinizing and follicle stimulating hormones.

1 Introduction
Hormones in the endocrine system interact to regulate important functions such as the growth,
stress, and reproduction (Sherwood, 2005). Many of the hormones in these systems are pulsatile
hormones, where the hormone is secreted into the circulatory system via boluses of hormone,
called pulses. To understand the mechanisms behind endocrine diseases, endocrinologists and
other biomedical investigators are most interested in characterizing the features that define the
pulsatile secretion in a time series of hormone concentrations. To study pulsatile hormones,
blood samples are collected from subjects every 5–15 minutes over a period of 6 to 24 hours.
Hormone assays are run on the samples resulting in time series of hormone concentrations.
Traditionally, each individual hormone series on each subject is characterized separately in
analysis. Then, in a second stage analysis, the pulsatile characteristics (pulse frequency, pulse
mass, total secretion, and half-life) are compared between groups of subjects. Various statistical
models have been developed to characterize a single hormone series on a subject (Guo, Wang,
and Brown, 1999; Kushler and Brown, 1991; Veldhuis and Johnson, 1992; Johnson, 2003; Liu
and Wang, 2006). By far, the most commonly applied approach is based on deconvolution
(Veldhuis and Johnson, 1992).

The above methods work well in characterizing pulsatile hormones such as luteinizing hormone
(LH) and growth hormone (GH), but there are various hormones where pulse detection and
parameter estimation is still difficult. For adrenocorticotropic hormone (ACTH) and cortisol
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the coefficient of variation is larger than that seen with LH and GH. In the case of follicle
stimulating hormone (FSH), the pulse mass relative to the half-life is small and the signal-to-
noise ratio is small, making pulse detection and parameter estimation additionally challenging
using existing methods.

Driver-response pulsatile associations are known to exist between many sets of hormones
(Clarke and Cummins, 1982; Clarke et al., 1984; Dorin et al., 1996; Marshall et al., 1992). In
a driver-response model of pulsatile association, a pulse in one hormone results in a pulse in
another hormone after a short period of time. Despite the possible estimation benefits when
incorporating these known pulsatile associations, development of bivariate models has been
limited because of the complexity of jointly estimating two sets of pulsatile parameters. To our
knowledge, there is only one model that includes a pulsatile association component (Guo and
Brown, 2001). This model is limited in that it assumes an instantaneous pulse secretion and
only has a discrete measure of the temporal association between the pulses. These restrict the
hormones to which this model can be applied. Other bivariate approaches for hormone data
relate hormone concentrations or the underlying circadian rhythms (Diggle, 1990; Wang, Guo,
and Brown, 2000). They are not appropriate for modeling pulsatile associations when decay
rates or secretion lengths differ between the hormones, as is the case with most hormone pairs.

In this paper, we develop a new bivariate model of pulsatile hormones. We focus on
incorporating a pulsatile association component because it is the major component of
association in pulsatile hormone time series and is the mechanism that biologically ties together
pairs of hormones most strongly. We show that in situations where there is known to be an
association between pulses, incorporating the pulsatile association improves estimation of the
pulsatile parameters. This is especially true in hormones that are difficult to estimate
univariately. In Section 2 we develop the one-to-one driver-response pulsatile association
model. We describe the birth-death MCMC (BDMCMC) estimation algorithm for the one-to-
one driver-response model in Section 3. In Section 4, we apply the model to our motivating
data set, a pair of LH-FSH series, in which FSH pulsatility is characterized poorly when fitted
alone. In Section 5, we investigate the estimation properties and improvements over a
univariate BDMCMC fitting algorithm for simulated data similar to LH and FSH. Discussion
and model extensions is offered in Section 6.

Before defining the model, we note that in this paper driver-response terminology, which often
implies causality, is not meant to imply that the underlying association in the model must be
causal. The application of the following models is equally viable in situations where one series
exhibits a temporal association such that pulses in one series are followed in time by pulses in
another series with no causal element. This also implies that this class of models cannot be
used to prove or disprove causality.

2 The bivariate deconvolution model
Deconvolution is the most widely used model to fit pulsatile hormones and is applicable to a
wide range of hormones (Dorin et al., 1996; Kasa-Vubu et al., 2002; Matt et al., 1998). This
makes the interpretation of the parameters familiar to clinical investigators. It is for these
reasons that we base our association model on this mathematical framework; however, other
frameworks are equally plausible. The general forms of the deconvolution approach for
pulsatile hormone data are covered in detail by Veldhuis and Johnson (1992) and more recently
extended to the Bayesian framework by Johnson (2003). Thus, we move to our bivariate
deconvolution model. In this section we focus on developing the one-to-one model, where the
driver and response pulses exist in pairs. It is the most common pulsatile association and
applicable to our motivating example. However, the model is generalizable to non-one-to-one
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driver-response associations. Extensions are discussed in Section 6 and implementation is
considered future work.

2.1 The one-to-one deconvolution model
Let {xt} be the time series of concentrations of the driver hormone and {yt} be the time series
of concentrations of the response hormone for one subject, where t = 1, …, n. Parameters and
functions subscripted by x will refer to the driver hormone. Parameters and functions
subscripted by y will refer to the response hormone.

In the deconvolution framework, the observed hormone concentrations are represented by the

convolution integral plus error:  and .
Sy(·) define the hormone secretion functions, Ex(·) and Ey(·) define the hormone elimination
functions, and εxt and εyt are the errors consisting of both biological and technical components.
The hormone concentration is modeled on the log scale to account for the fact that hormone
concentrations are positive. Alternatively, one could model the hormone concentration on the
natural scale and assume a constant coefficient of variation (CV) error structure. In further
development, the secretion and elimination representations are similar for the driver and
response hormone but with the subscript of y replacing the subscripts of x. Thus, we only
describe, in detail, the driver hormone.

In deconvolution models of hormone data, the secretion function is specified by,

. The first part of the sum, bx, is a non-pulsatile, basal secretion
rate and assumed constant over time, as is the case for most hormones. Each component in the
summation defines one of the k pulsatile secretion events. Each pulse is defined by a rate
function, fxi{t; θxi(t)}, where θxi(t) is a set of pulse specific parameters (such as the location
and pulse mass) where the complete set of pulse specific parameters is denoted as θx = (θx1,
…, θxk). In this implementation, the secretion rate functions had a similar Gaussian form for

each hormone and each pulse; . Each Gaussian curve has
the set of pulse specific parameters θxi(t) = (txi, Axi), where the ith pulse is centered at the
location, txi and has mass Axi. The pulse width  is assumed common across pulses because
estimation in noisy series is difficult. The Gaussian form has been the most commonly used
functional form of the pulsatile secretion; however, other positive functional forms could easily
be considered in the Bayesian framework.

In implementation, an initial concentration, C0x is added to the model to represent the
concentration at the start of observation that is due to pulsatile secretion occurring, but not
completely decaying, before the start of observation. Essentially C0x represents the components
of the sum that occurs before the first pulse in the observation period (i.e., i ≤ 1). Finally, we
assume that the elimination function, Ex(t), is modeled as a single exponential decay where
λx is the constant decay rate.

When explicitly combining the model specifications, we arrive at the following model of
hormone concentration for the driver hormone:
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2.2 Priors
To complete the Bayesian specification of the model, we define a set of priors and hyperpriors
and assume that some of the priors depend upon a set of hyperparameters, ω, such that the prior
factors as follows:

(1)

We note that the prior on the pulse specific parameters is a joint prior and used to define the
pulsatile association component of the model.

There are two association components relating the pulse locations, tx and ty, and the pulse
masses, Ax and Ay. Given the close timing of the driver and response pulses in a one-to-one
model, the one-to-one assumption results in the same number of pulses in each series. Thus,
in the model, we assume for each driver pulse there exists a response pulse such that tyi = txi +
τi where τi ~ Gamma(α, β), i.e., the lag time between the driver and response pulses is a random
effect with hyperparameters α and β. In addition, the pulse masses, log(Axi) and log(Ayi), are
linearly associated. We impose the linear association by assuming that the masses are random
effects with a bivariate log normal distribution, (log(Axi), log(Ayi))′ ~ BivNormal(log(μmx,
μmy)′, Σm). The log normal distribution was chosen to accommodate the positivity constraint
of the pulse masses. Other distributions, such as a truncated normal or t-distribution are equally
plausible. With these specifications the prior on the pulse component factors as:

.

2.3 Parameter specification in the Priors
In implementing the one-to-one model we specified the following priors. We assumed, a priori,
that the distribution of the number of pulse pairs was a truncated Poisson(λ), truncated at 50.
This upper boundary is above the number of pulses that occur in pulsatile hormone series in
one day. In the LH-FSH example, λ = 23 and λ = 13 in the simulation. These values were based
on previous research. However, the estimation is not sensitive to the value of λ.

Conditional on the number of pulse pairs, k, the driver locations, txi, are distributed as a random
permutation of every third order statistic from 3k + 2 i.i.d. uniform(−40,T+10) random variates
(Green, 1995; Stephens, 2000a; Johnson, 2003). This choice increases the probability that each
pulse is modeled as one Gaussian without becoming too periodic. To accommodate partial
pulses at the beginning and ending of a series, we choose values for pulse locations slightly
before and after the start and end of observation (T).
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Table 1 contains information about the priors on the common parameters and association
components. For the lag distribution, we focused on estimating the mean and assumed that the
mean and the variance are the same in the lag distribution (i.e., β = 1). We used the congugate
hyperpriors for the pulse mass distribution and the pulse mass variance-covariance matrix. The
hyperpriors on the mean of the log(pulse mass) were vague with a mean of 1.5 for the driver
(LH) and 0 for the response (FSH). The variance-covariance matrix in the hyperprior of the
pulse masses was set as a 2 × 2 diagonal matrix with diagonal components (10, 000, 10, 000).
The priors and hyperpriors on the variances of the random effects are shown in Table 1. The
priors on the variance-covariance matrix of the masses and widths were informative to reflect
our belief that the mass and widths are similar. We chose the actual values based on Johnson
(2003) and scaled the values to match modeling the log of the pulse masses. For the baseline,
decay rates, and initial concentration we choose uniform priors over ranges that are much larger
than biologically plausible values (see Table 1). For example, the baseline cannot be larger
than the maximum of the data, so we chose a value higher than the maximum of both datasets.
C0 would be unlikely to be much more than the maximum of the data or the size of a few pulses
depending on the decay rate. Here the maximum of the data was larger than the pulse masses
and we conservatively took a multiple of the maximum hormone concentration. The half-life
is well defined for many hormone so we set a boundary that was 4 times that the larger of the
reported value in the literature of the two hormones under study.

The parameters choices for the univariate analyses were analogous to what was defined above.

3 Estimation of the 1-1 model
To estimate the posterior distribution we used BDMCMC (Stephens, 2000a). The major
assumption of BDMCMC is that the joint posterior of the pulse specific components and the
number of pulse pairs must be exchangeable. In our situation, the exchangeable assumption
implies that the labeling of the pulse pairs be unimportant. In the examples in this paper, the
biological process (i.e., the parameters) does not change over the course of one day of study.
Thus, the labeling of the pulse pairs is not important. In the one-to-one setting, the pulse specific
parameters can be represented as a pair (e.g., (Axi, Ayi) and (txi, τi)) and Johnson’s (2003)
BDMCMC algorithm can be extended with just a larger set of parameters associated with each
birth or death in the process.

The mathematical derivations of the birth-death stage of the algorithm can be found in the
Supplemental Material. In the MCMC stage, we used a Metropolis-Hastings/Gibbs sampler
(Tierney, 1994) to update the parameters conditioned on the number of pulses at the end of the
birth-death stage. When full conditionals did not have a closed form, we used a random walk
Metropolis-Hastings sampler to simulate the distributions.

For the univariate models, the BDMCMC estimation algorithm was applied as described in
Johnson (2003).

3.1 BDMCMC implementation
For the LH-FSH example and each of the simulated bivariate and univariate series, we ran the
BDMCMC chain for 250,000 iterations. The birth rate, λb, and the simulation time, t0, between
MCMC updates in the BDMCMC algorithm are related and fairly arbitrary. We set t0 = 1 and
λb = mean number of pulses in the Poisson prior on the number of pulses. We investigated the
sensitivity of our choice of t0 and λb on a subset of the simulated series. As expected, when
t0 was larger, the time in the birth-death simulation was longer; however, the results did not
change. The results for λb were similar for values in a wide range of λb. We discarded the first
20,000 iterations as burn-in. Every 50th iteration was saved and used for summarizing the
posterior distributions. The variances in the proposal distributions for the Metropolis-Hastings
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steps were chosen to obtain acceptance rates between 25 and 50%. We assessed convergence
and mixing visually using serial plots of the draws.

We initialized the algorithm by assuming there was one pulse, i.e., k = 1. We started the chains
at various points over reasonable ranges of the parameters to assess the sensitivity of the starting
value. As long as the values were not extreme, the results were similar. For both real data
example and the simulations, we used historical knowledge about the values of the half-lives
(Schally, et al., 1971) of LH and FSH (LH=60 minutes and FSH=240 minutes). The pulse
widths were initialized at 10 and 30 minutes2 for LH and FSH, respectively based on
preliminary univariate analyses. The minimum of the data was used to guide the starting value
for the baseline. When initializing the pulse masses, pulses were more likely to be modeled as
one component if the initial mean pulse mass in the pulse mass hyper-prior was larger than
truth. We initialized the mean of the pulse mass distribution at a value approximately 0.25 log
(concentration) units larger than truth.

Our modeling situation is similar to modeling mixtures of distributions which results in label
switching. Label switching means at different iterations the same pulse pairs will be labeled
with a different index. Usually the pulses are adequately separated in time such that sorting by
their location in time resolves most of the label switching; however, when one pulse is modeled
as two components, ordering via time does not always resolve the issue. In post-simulation
processing, we resolved this situation by combining pulse specific parameters when the driver
locations occurred within 4 sampling units of one another. This minimized the remaining label
switching. The algorithm that was used to combine the secretion events is presented in the
Supplemental Material. Alternate approaches to post simulation processing may also be applied
(Johnson, 2003, 2006; Stephens, 2000b).

To assess model fit we generated a sample from the posterior predictive distribution and
calculated the χ2 discrepancy as outlined by Gelman, et al (1995).

4 Motivating real data example
LH and FSH are two pulsatile hormones of interest in the reproductive system. In general, LH
pulses are more clearly defined, but FSH pulses are often difficult to detect and characterize
because of the smaller pulse masses and longer half-life. In a natural setting, both LH and FSH
are driven by GnRH (Schally et al., 1971; Marshall et al., 1992). Thus, we would ideally use
the GnRH-FSH driver-response relationship to characterize FSH. However, GnRH hormone
levels are often below assay sensitivity in human blood. Thus, GnRH pulse detection is not
possible in human studies. Since both LH and FSH are driven by GnRH and the LH response
to GnRH is earier than FSH, the LH-FSH pair of series can be modified to exhibit a driver-
response association (without the causal element). In this example, we focus on improving the
estimation of FSH pulatile characteristics by using the LH-FSH relationship. In our example,
blood was collected every 7.5 minutes for 24-hours. We shifted the LH observations two
sampling units backward in time (15 minutes) prior to analysis to guarantee FSH pulses occur
after LH pulses regardless of any noise in estimating the locations.

Figure 1 shows the observed and fitted values along with the joint posteriors of the pulse
locations for both fits for the LH-FSH series. For LH, we note that the pulse locations are
similar between the univariate and bivariate fits. The fitted lines are also similar for both
methods of fitting LH and both fit the observed data well indicating that adding the less clean
FSH series to the model does not degrade the fit for LH. For FSH, the number and precision
of the pulse locations is less in the univariate fit compared to the bivariate fit. The univariate
fit shows that the larger trends are being fitted with many pulses being smoothed through. None
of the fits indicated significant lack of fit using the posterior predictive distribution.
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Table 2 contains the mean and 95% equal tails credible intervals for the parameters estimates
for the two fits. The parameter estimates and credible intervals are similar for the LH series.
Notable differences for FSH include the substantially fewer number of pulses in the univariate
fit and much less precision in the locations of the pulses. This results in a much lower estimate
of the total pulsatile secretion. In addition, the half-life and pulse width estimates for FSH are
much higher than the bivariate fit and much higher than is usually considered biologically
plausible by endocrine investigators. This along with the large difference in the number of
pulses between LH and FSH are the major indictors that something may be incorrect in the
univariate fit of FSH and would suggest alternative models might be useful. When studying
the pulses that are detected in the bivariate fit and not in the univariate fit, we note that the
pulses were not systematically smaller and were not essentially zero (Supplemental Table 1).
In fact, the average size of the missing pulses was only slightly lower with an average of 0.5
concentration units compared to 0.6 concentration units for the pulses detected in the univariate
FSH fit. This reassures the authors that the one-to-one model is valid.

5 Simulation
To further assess the bivariate model and to confirm our use of the bivariate model in the LH-
FSH case, we simulated 100 bivariate hormone series under a one-to-one driver-response
association. We fitted each set of series with the bivariate model and also fit each univariate
series with the analogous BDMCMC univariate model and fitting algorithm. The parameters
in the simulation were chosen to represent hormone profiles similar to LH and FSH data
presented in the previous section. In the simulation, we assumed a sampling interval of 7.5
minutes for a duration of 24 hours. The pulse masses were drawn simultaneously from a
bivariate log normal distribution with a mean of 1.24 for the driver hormone and −0.74 for the
response hormone. The variance of the driver masses was 0.15 and 0.14 for the response
hormone. The masses had a correlation of 0.85. The pulse widths were 10 minutes2 for the
driver and 30 minutes2 for the response. The half-lives (λ•/log(2)) were 60 minutes and 240
minutes for the driver and response, respectively. The baselines (b•=λ•) were 0.65
concentration units for the driver and 3.0 concentration units for the response, where a • is used
when the driver or response designation is not important. For the driver series, the inter-pulse
interval was drawn from a gamma distribution with a mean of 98 minutes (13 sampling units)
and a variance of 52.5 minutes2 (7 sampling units2) (Mauger et al., 1995). In addition, a
minimum inter-pulse interval of 4 sampling units was imposed to prevent two pulses from
occurring simultaneously. The time between a driver and response pulse was drawn from a
gamma distribution with a mean of 15 minutes and a variance of 20.0 minutes2. Finally, for
both series, the errors were drawn independently from two Gaussian distributions with a
variance of 0.05 for the driver hormone and a variance of 0.005 for the response hormone.

5.1 Simulation results
Table 3 contains the true parameter values and the summarizations of the posterior
distributions, average biases, and equal tails 95% credible intervals. We used the mode of the
posterior distribution of the pulse number after post-simulation processing to summarize false
positives and negatives for the pulse locations. For the bivariate model there were 27 false
negatives out of 1463 pulses (1.8% false negative rate) and 3 false positives (1 in each of 3
series). There were an average of 14.6 pulse pairs per series. Sixteen series had 1–3 pulses
missing (average=1.3) and one had 6 missing. The average frequency of the model of the
posterior distribution of the number of pulses was 71%. The estimates of the common pulse
parameters and the pulse specific parameters had minimal bias with the exception of the
response half-life and pulse width, which are both biased high. However, the bias and precision
are improved using the bivariate fit. The total pulse secretion was estimated well and the
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coverage is good for all parameters. There was no evidence of lack-of-fit based on the posterior
predictive density and the χ2-discrepancy statistic.

For the univariate deconvolution method, the driver series has a slightly higher false negative
rate of 3% (44 false negatives) and a slightly higher false positive rate of 0.5% with 7 series
having one false positive each. The false negatives were spread across 20 series with 1–6 false
negatives each (mean=2.2 pulses). The mode of the posterior distribution of the number of
pulses had an average frequency percentage of 66%, slightly lower than the bivariate fit. The
parameter estimation was similar between the bivariate and univariate fits, with the parameter
estimates having minimal bias. This confirms that going with a bivariately fitting when one
series is not well defined does not decrease the estimation performance of a fairly clean series.
In fact, there is some indication that bivariate fitting may help to define the parameter estimates
and the number of pulses slightly better.

For the response series, only 2 series had the correct number of pulses estimated. There were
1–9 pulses missing in each series with an average of 5 pulses missing in each series. The
posterior distribution of the pulse mass was wide and the posterior mode had an average
frequency percentage of only 22%. The parameter estimate is quite biased for the half-life and
pulse width, such that the estimates are moving into non-biologically plausible ranges. The
coverage is low for the half-life (60%) and the width of the 95% credible interval is very wide
for the pulse width. The total secretion is biased low and the estimate is on average only
estimating 50% of the true pulse secretion in the series.

Figure 2 contains the simulated and expected values for one example simulated pairs of series.
Supplemental Table 2 contains the parameter estimates for the example in Figure 2. The fitted
hormone concentrations are essentially identical for the driver series. In general, the driver
series is fitted well with both methods. However, the size of the fifth pulse is underestimated
in both fits because randomly the noise resulted in consistently low hormone concentration
values. For the response hormone, neither models produce the close fit to the observed data
compared to LH, which is an artifact of the low signal-to-noise ratio in the response series.
However, the bivariate model represents the more classical pulsatile fit we expect, while the
univariate fit seems to be overly smooth and modeling the more global trends in the data. In
addition, the bivariate model is fitted the true concentration curve quite closely. However, none
of the fits exhibit lack of fit using the posterior predictive distribution.

6 Discussion
In this paper, we presented a new model of a pulsatile driver-response association between two
hormones. The framework behind the model is more flexible than the exist bivariate model
because it incorporates both temporal and pulsatile mass associations. Although we focused
on a one-to-one pulsatile association, the model framework is not restricted to a one-to-one
associations. Two examples of non-one-to-one driver-response associations include an
imperfect driver association where a response pulse is more likely to occur for larger driver
pulses and a two driver situation where, in truth, there are two drivers of the response hormone
but only one driver was collected in the experiment. In the first case, there would be missing
response pulses and in the second case, there would be missing driver pulses relative to the
one-to-one model. These extensions might be incorporating by the introduction of an indicator
function, ri. For the imperfect driver model, when ri = 1, a corresponding response pulse is
generated according to p(Ayi|Axi) based on the bivariate log normal defined in the one-to-one
model. The response pulse location would be generated according to one-to-one timing model.
If ri = 0, (Ayi, tyi) is missing. The probability of a response pulse occurring could be modeled
by a logit: logit[p(ri = 1)/{1 − p(ri = 1)}] = a + bAxi.
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For the two-driver model, the response hormone contains more information than the driver
hormone and the model would be conditioned on the response mass. Although this does not
follow the temporal ordering of the biology, all pulses are observed at the time of analysis.
Thus, one may condition on either the driver or mass information when modeling the
association. In this extension, if ri = 1, there is a corresponding driver pulse generated according
to p(Ayi|Axi), which is based on the bivariate normal defined in the one-to-one model and the
driver pulse location is generated using a slight variation of the one-to-one timing model: txi =
tyi −τi. When ri = 0, (Axi, txi) are missing. The probability of a driver pulse being observed could
be modeled by a logit: logit[p(ri = 1)/{1−p(ri = 1)}] = c+dAyi.

In further extensions to the model, one could consider associations between the non-pulsatile
components, such as the baseline or decay rates. However, the pulsatile associations are often
of most interest to the investigator. In addition, the secretion mechanism is thought to be most
tightly linked as the elimination kinetics are farther down the pathway. Although the single
subject model is easily extended to incorporate additional pulsatile associations, the estimation
extension likely requires modeling all subjects together on series of 24 hours or less in length
to provide enough pulses for adequate estimation. Modeling all subjects together has yet to be
accomplished in with pulsatile hormone series. Thus, we focused on the one-to-one model,
which is estimable using a single bivariate series. We leave the model extensions as future
work.

For the one-to-one driver-response case, we showed that by using the underlying biologic
pulsatile association, one is able to improve estimation of the number of pulses. This results
in less biased estimates of other parameters for hormones that are not estimated well
univariately. Bivariate fitting may be particularly useful when neither the driver nor response
hormones are accurately characterized when analyzed alone. Although, we focused on the
situation where one series is very difficult to characterize to match with the data we had
received.

It is interesting to note that the global measure of fit is not sensitive to detecting differences
between the bivariate and univariate fits. This may be because of the flexibility and almost
over parameterization of all pulsatile hormone models. This implies that model fit may not be
most useful in helping to identify the appropriate association structure and deciding when to
use a bivariate model. Many other aspects of the estimation offer clues to whether the one-to-
one association assumption is appropriate. First, it is reassuring that the bivariate model cannot
be used to claim pulsatility in a series when there is none. When fitting series where at least
one of the series was not pulsatile (i.e. random noise around a mean), the estimation algorithm
does not run in almost every case. In the rare instance that the program does not hang, the
MCMC chains do not converge.

Additionally, when the user fits two pulsatile series that are not associated assuming a one-to-
one association, the mean of the pulse lag distribution is usually very large (50–75 minutes for
over half the series fitted in our simulation) and the correlation between the masses is zero or
negative. On close inspection the user would also find pulses of size zero (or essentially zero)
in one or both of the series matching with larger pulses in the corresponding series indicating
an artificial association. Finally, it is likely that the univariate pulse locations would not be a
subset of the bivariate fit. Similar problems arise when a pulsatile association exists but it is
not one-to-one. Although there was strong biology behind the one-to-one assumption for the
LH-FSH example, we did compare the pulses detected in the bivariate fit but not in the
univariate fit. As one might expect, the pulses detected in the bivariate fit are slightly smaller
on average(as is likely the reason they weren’t detected univariately), but they are not
systematically below the univariate fit and certainly not close to zero. However, formally
testing these concepts requires population models.
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So, how might one determine when a bivariate association might be of use? The usual indication
that something isn’t correct in the univariate fit lies in the estimates of the parameters, mainly
the half-life and pulse width. Much is known about the half-life of our hormones and endocrine
investigators would certainly claim that the parameter estimates in the univariate fit of FSH
are not biologically plausible. In addition, the number of pulses differs vastly between two
hormones that are known to work in tandem. Finally, the fitted curves in the univariate fit
appear overly smooth compared to the usual pulsatile models in a hormone that is known to
be pulsatile. In conclusion, using the known pulsatile association between two pulsatile
hormone series can help with the parameter estimation of pulsatile series that are difficult to
fit univariately. The general underlying idea of incorporating biological associations may also
be useful in many other areas of physiological modeling.
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Figure 1.
Observed and expected LH and FSH concentrations for one subject. The top figure is LH, and
the bottom is FSH. The solid grey lines are the observed hormone concentration profiles and
the solid black line is the mean of the posterior predictive distribution for the bivariate fit and
the dashed black line is the expected curve for the univariate fits. The histograms on the bottom
axes represent the joint posteriors of the pulse locations for the univariate fit (top) bivariate fit
(bottom). The data are from Pincus et al. (1998).
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Figure 2.
An example expected and simulated hormone concentrations. The top figure is the driver
hormone, and the bottom the response hormone. The true pulse locations are the ticks just under
the observed series. The grey lines with the “dots” are the observed data, the solid grey lines
are the true hormone concentrations. The solid black lines are the expected bivariate fits and
the dashed black lines the expected univariate fits. The histogram below each series is the joint
posterior distribution of the pulse locations for the univariate fit (top) and the bivariate fit
(bottom).
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Table 1

Prior information for the simulation and LH-FSH example. A “•” is used when the values were similar for the
driver and response hormones.

b•/λ• Unif(0, 50]

λ• Unif(0, 1000]

C0• Unif{0, 2 × max(xi)}, Unif{0, 2 × max(yi)}

∑m
−1

Wishart4[Sm]

Sm
−1

diag(20, 20)

α Gamma(1.5, 0.1)

∑e
−1

Wishart2[Se]

Se
−1

diag(100, 100)
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Table 2

Summary statistics for the common parameters for the example LH-FSH series from the bivariate and univariate
fits: Mean=mean of the posterior and CI=credible interval

LH FSH

Bivariate Univariate Bivariate Univariate

Parameter Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

No. Pulses 22.60 (21,24) 23.55 (23,25) – 11.33 (5,16)

No. Secretion Events 28.62 (27,31) 28.20 (25,31) 28.6 (27,31) 11.6 (5,16)

Baselinea 0.98 (0.2,1.6) 1.03 (0.2,1.6) 2.25 (0.31,3.81) 2.95 (0.6,4.5)

Half-Lifeb 53.47 (44.19,65.06) 53.70 (44.41,65.69) 253.73 (110.56,460.90) 438.64 (143.31,804.41)

Secretion Widthc 8.20 (4.43,12.58) 8.72 (4.61,13.79) 40.67 (1.07,127.77) 76.67 (2.62,302.32)

Total pulse sec.a 87.19 (81.46,93.67) 88.00 (81.12,95.71) 13.02 (9.91,17.12) 6.23 (2.96,9.62)

Mean of Lag Dist’nb 15.39 (10.73,20.25) – – –

Mean Log(Sec.) Mass 1.02 (0.82,1.20) 1.03 (0.81,1.24) −0.88 (−1.30, −0.54) −0.74 (−1.79, −0.24)

Log(Sec.) Mass Var 0.20 (0.10,0.38) 0.25 (0.12,0.48) 0.18 (0.041,0.53) 0.47 (0.015,2.63)

Mass Correlation 0.61 (0.13,0.87) – – –

a
units=ng/mL

b
units=minutes

c
units=minutes2
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