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Avançats (ICREA), Barcelona, Spain

Abstract: Exosomes are secreted cellular vesicles that
can induce specific CD4+ T cell responses in vivo when
they interact with competent antigen-presenting cells
like mature dendritic cells (mDCs). The Trojan exosome
hypothesis proposes that retroviruses can take advan-
tage of the cell-encoded intercellular vesicle traffic and
exosome exchange pathway, moving between cells in
the absence of fusion events in search of adequate target
cells. Here, we discuss recent data supporting this
hypothesis, which further explains how DCs can capture
and internalize retroviruses like HIV-1 in the absence of
fusion events, leading to the productive infection of
interacting CD4+ T cells and contributing to viral spread
through a mechanism known as trans-infection. We
suggest that HIV-1 can exploit an exosome antigen-
dissemination pathway intrinsic to mDCs, allowing viral
internalization and final trans-infection of CD4+ T cells. In
contrast to previous reports that focus on the ability of
immature DCs to capture HIV in the mucosa, this review
emphasizes the outstanding role that mature DCs
could have promoting trans-infection in the lymph node,
underscoring a new potential viral dissemination
pathway.

Introduction

Dendritic cells (DCs) scattered throughout the peripheral tissues

act like sentinels and recognize a wide range of microorganisms. At

this stage, DCs display an immature phenotype. When pathogen

invasion takes place, immature DCs (iDCs) can capture microor-

ganisms via endocytic surveillance receptors, resulting in the

classical intracellular lytic pathway that permits processing of

antigenic peptides [1]. The signaling through receptors or the

detection of proinflammatory cytokines prompts iDC activation

and migration from the periphery towards the secondary

lymphoid organs. Concurrently, co-stimulatory molecules are

expressed in the cell membrane, preparing DCs for competent T

cell priming. In the T cell areas of the lymph nodes, fully mature

DCs (mDCs) present pathogen-derived epitopes to CD4+ T or

CD8+ T lymphocytes. This way, DCs orchestrate immune

responses to invading pathogens and have a pivotal role during

infections [2].

However, viruses, including the human immunodeficiency virus

(HIV), have evolved different strategies to evade DC antiviral

activity. Indeed, it has been known for years that DCs exposed to

HIV-1 transmit a vigorous cytopathic infection to CD4+ T cells

[3]. Although the frequency of HIV-1-infected DCs is often 10- to

100-fold lower than that of CD4+ T cells [4], DCs do not need to

be productively infected to transmit the virus and spread it in an

infectious form [5], which is in contrast to other HIV-1 target cells

such as CD4+ T cells or macrophages. Notably, separate pathways

mediate the productive infection of DCs and their ability to

capture and internalize HIV-1 in the absence of viral fusion [6].

The latter mechanism involves binding and uptake of HIV-1,

traffic of internalized virus, and its final release, allowing transfer

to CD4+ T cells, a process known as trans-infection [5,7].

Trans-infection has been related to the ability of C-type lectin

receptors like DC-SIGN expressed in certain DCs to tightly bind

to the HIV-1 surface envelope glycoprotein gp120 [8] and

endocytose viral particles [9]. The initial identification of DC-

SIGN as an HIV receptor permitting trans-infection of T cells led

to the ‘‘Trojan horse’’ hypothesis, which relates the preliminary

establishment of HIV-1 infection to the ability of iDCs to capture

the virus via DC-SIGN in the peripheral tissue and then migrate to

the lymph nodes, where HIV-1 transferred to CD4+ T cells could

easily start the spread of infection [5,7,10].

Knowing the antigen-presenting capabilities of DCs, one would

expect that after HIV interaction with surveillance receptors like

DC-SIGN, endocytosed virus would end up in classical lysosomic

pathways (Figure 1), where viral antigens are degraded and

presented in MHC-II molecules to CD4+ T cells [11,12].

Furthermore, part of the internalized virus could also gain access

to the cytoplasm and be processed throughout the proteasome,

finally being crosspresented in MHC-I molecules to CD8+ T cells

[13,14]. However, in the specific case of HIV interaction with
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et al. (2010) HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan
Horse? PLoS Pathog 6(3): e1000740. doi:10.1371/journal.ppat.1000740

Editor: Marianne Manchester, University of California San Diego, United States of
America

Published March 26, 2010

Copyright: � 2010 Izquierdo-Useros et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Funding: Work in the laboratory of J.M.-P. is supported by the Spanish Ministry
of Education and Science through grants SAF2004-06991 and SAF2007-64696, the
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iDCs, it has been proposed that part of the internalized virus

escapes these degradation routes and is maintained in endosomal

acidic compartments, retaining viral infectivity for the long periods

required to promote efficient HIV-1 transfer to CD4+ T cells [5,9].

Despite this preliminary model of viral retention, recent studies

have demonstrated that iDCs show rapid degradation of captured

viral particles, which do not last more than 24 hours before being

processed [14–17]. These studies suggest a two-phase mechanism

of viral transmission mediated by iDCs: one restricted to a short

period through the trans-infection process, and a later one due to a

long-term transfer of de novo viral particles produced after iDC

infection [15,16,18].

Trojan Horses and HIV Transmission: Mature DCs
Win the Race

Several results ([17,19–21], reviewed in [22]), indicate that iDCs

have reduced trans-infection ability. Conversely, mDCs are much

less vulnerable to viral fusion events and productive HIV infection

than iDCs [23,24], while displaying a greater ability to capture

incoming virions [17,21,25], retain them in an infectious form,

and transmit them to target T cells through trans-infection [17,19–

21]. The location of internalized virions is dramatically different in

immature and mature DCs [25]. Strikingly, the poorly macro-

pinocytic mDCs [2,26,27] sequester significantly more whole,

structurally intact virions into large vesicles within the cells,

whereas the endocytically active iDCs not only retain fewer

internalized virions, but also locate them closer to the cell

periphery [25]. This internalization view has been previously

challenged, suggesting that cell-surface-bound HIV is the

predominant pathway for viral transmission mediated by DCs

[28]. However, a recent report on this topic reconciles these two

models by demonstrating that HIV resides in an invaginated

domain within DCs that is both contiguous with the plasma

membrane and distinct from classical endocytic vesicles [29].

Collectively, these results favor a model in which both direct

infection and trans-infection abilities coexist to a different extent in

immature and mature DC subsets. Maturation of DCs enhances
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Figure 1. Antigen presentation and trans-infection of a CD4+ T cell mediated by a DC. Viral binding to distinct cellular receptors allows viral
endocytosis via a non-fusogenic mechanism (1). The virus is retained in the multivesicular body compartment (MVB), where it is enriched in
tetraspanins such as CD81 and CD63. Part of the virus is degraded in the lysosomes (2), and viral antigens are presented via MHC-II to the T cell
receptor (TCR) of CD4+ T cells (3) through the formation of an immunological synapse. If an endocytosed virus gains access to the cytoplasm of the
DC, it can be processed by the proteasome and crosspresented via MHC-I to CD8+ T cells (4). Viral transmission takes place when part of the virus
evades classical degradation pathways. MVB recycles back and fuses with the plasma membrane, allowing the liberation of entrapped virus and the
productive infection of DC-interacting CD4+ T cells (5), a mechanism known as trans-infection. The contact area between an uninfected DC bearing
HIV infectious particles and a CD4+ T cell is termed the infectious synapse.
doi:10.1371/journal.ppat.1000740.g001
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viral capture activity and trans-infection capacity while diminishing

viral fusion events [24] and productive infection [23]. Under these

circumstances, iDCs would preferentially transmit de novo

synthesized virus upon productive infection [15], and the mDC-

enhanced trans-infection ability would play a key role in the lymph

nodes, mediating viral transmission to new target CD4+ T cells

(Figure 2).

Given the unique capability of mDCs to promote HIV-1

infection of CD4+ T cells in vitro, we hypothesize that in vivo,

mDC trans-infection could augment viral dissemination in the

lymphoid tissue and significantly contribute to HIV disease

progression. mDCs have a greater ability to stimulate CD4+ T

cell proliferation than iDCs [30,31]. Accordingly, mDCs present-

ing viral antigens could activate HIV-specific naı̈ve CD4+ T cells

in the course of their first encounters in the lymph node. As a

result, HIV-specific naı̈ve CD4+ T cells would undergo several

rounds of division during their initial expansion and differentiation

into effector CD4+ T cells, becoming highly susceptible to actual

HIV infection, as has been previously demonstrated [32]. Notably,

the viral dissemination that mDCs can potentially mediate in vivo

is enormous: T cells approach mDCs randomly and make

exploratory contacts that last only minutes, enabling DCs to

contact many T cells per hour [33]. Thus, since viral transmission

through trans-infection does not rely on antigen presentation, many

CD4+ T cells could be exposed to mDC virus; however, only after

antigen presentation would naı̈ve CD4+ T cells be activated and

their subsequent proliferation render these cells more susceptible

to HIV infection.

Once infected, these activated CD4+ T cells are known to have

short half-lives in vivo, lasting fewer than two days [34]. Therefore,

under rapid T cell turnover, DCs could be indispensable to

permitting continuous infection of new CD4+ T cells [35]. Recently,

it has also been suggested that simultaneous priming and infection of

T cells by DCs is the main driving force behind the early infection

dynamics, when activated CD4+ T cell numbers are low [36].

In vivo, the contribution of mDCs to HIV spread might be also

supported by the levels of circulating lipopolysaccharide (LPS),

which are significantly augmented in chronically HIV-infected

individuals, due to the increased translocation of bacteria from the

intestinal lumen early after primo infection [37]. The bacterial

components released could stimulate DCs systemically, contribut-

ing to their maturation and therefore enhancing viral spread while

creating the pro-inflammatory milieu associated with chronic HIV

infection. This hypothesis is further supported by another report

showing that in individuals with HIV-1 viremia, DCs from blood

have increased expression levels of co-stimulatory molecules (the

hallmark of maturation status) that only diminish when highly

active antiretroviral therapy suppresses the viral load [38].

Although the plasma LPS concentration found in HIV+ patients

is lower than the one used to mature DCs in vitro [17,19–21,39], it

is conceivable that in vivo, higher amounts of LPS could

accumulate in the most compartmentalized areas of the mucosa

or in the adjacent tissues. Therefore, future experiments should

address whether the physiological amounts of LPS found in tissues

can trigger the same DC maturation status and viral transmission

efficacy described in different reports [17,19–21,39].

Figure 2. Proposed major roles of iDCs and mDCs during HIV disease progression. Productive infection of iDCs allows viral transmission in
the peripheral tissues, while mDC viral capture leads to trans-infection in the lymphoid tissues.
doi:10.1371/journal.ppat.1000740.g002
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Prior infection with other sexually transmitted pathogens is

strongly associated with the sexual transmission of HIV [40]. This

implies that the probability of a person acquiring HIV infection is

increased when there is a preexisting infection or inflammation of

the genital epithelium. Under these circumstances, it is quite likely

that mucosal inflammation arising from other sexually transmitted

pathogens could directly activate and mature DCs in vivo,

promoting HIV settlement and favoring the subsequent spread

of the viral infection. Interestingly, a recent report shows that in

vitro–activated CD34-derived Langerhans cells mediate the trans-

infection of HIV [39], suggesting a potential role for these mature

cells during the establishment of HIV infection.

Unfortunately, recent failures in HIV prophylactic vaccine trials

provide additional corroboration of the prominent role mDCs

could be playing during HIV infection in vivo. The STEP HIV

vaccine trial evaluated a replication-defective adenovirus type 5

(Ad5) vector, which is a weakened form of a common cold virus,

modified to carry HIV genes into the body to induce HIV-specific

immune responses. This clinical trial was recently stopped due to

the vaccine’s lack of efficacy and the 2-fold increase in the

incidence of HIV acquisition among vaccinated recipients with

increased Ad5-neutralizing antibody titers compared with placebo

recipients [41]. Of note, a recent report demonstrates that the Ad5

vector, with its neutralizing antiserum (present in people with prior

immunity), induced a more marked DC maturation than the

vector alone, as indicated by increased CD86 expression levels,

decreased endocytosis, and production of tumor necrosis factor

and type I interferons [42]. Furthermore, when the Ad5 vector

and the neutralizing antiserum were added to DCs pulsed with

HIV, significantly enhanced viral infection was observed in DC–T

cell co-cultures compared to controls lacking the neutralizing

antiserum. That is why these authors postulate that mDCs from

people with prior immunity to Ad5 virus might have activated

CD4+ T cells in vivo, augmenting their susceptibility to HIV

infection [42].

Overall, these results highlight the functional relevance that DC

maturation could possess under physiological settings, providing

the basis for a chronic permissive environment for HIV-1

infection.

Maturation Also Enhances Presentation Skills

Why would mDCs accumulate viral particles instead of degrade

them? This paradoxical retention mechanism could in fact aid

immunological surveillance, allowing mDCs to have a source of

antigen to present to T cells in the absence of surrounding virus,

sustaining immune responses for prolonged periods. Intriguingly

enough, DCs have an inherent mechanism to control endosomal

acidification to preserve antigen cross-presentation over time [43].

We hypothesize that HIV-1 could be exploiting this preexisting

cellular pathway of antigen uptake and retention inherent to

mDCs, favoring and enhancing viral trans-infection of CD4+ T

cells. If this is indeed the case, mDC viral uptake would not rely on

the recognition of specific viral proteins, but depend on more

ubiquitous signals.

Interestingly, we have recently identified an HIV gp120-

independent mechanism of viral binding and endocytosis that is

upregulated upon DC maturation [17], further supporting distinct

works that have demonstrated that DC-SIGN is not responsible

for HIV-1 binding to all DC subsets [21,44–53], and clearly

highlighting that additional HIV-1 binding molecules remain to be

identified.

Furthermore, several lines of evidence suggest that viral

envelope–independent capture of HIV by DCs can allow antigen

presentation and induce cytotoxic and humoral immune respons-

es. It has been previously shown that DCs can endocytose viral-like

particles (VLPs) and induce immune responses through an

endosome-to-cytosol cross-presentation pathway [54]. These VLPs

do not have the envelope glycoprotein, meaning that the uptake

mechanism could be the same as the one we have shown for virus

lacking the envelope glycoprotein [17]. In iDCs, HIV envelope

and DC-SIGN-dispensable pathways account for about 50% of

the antigen presentation through MHC-II molecules [12]. DCs

are also able to capture envelope-pseudotyped HIV Gag VLPs

through a DC-SIGN-independent pathway, activating autologous

naı̈ve CD4+ T cells that are then able to induce primary and

secondary responses in an ex vivo immunization assay [55].

Overall, these findings reinforce the idea that envelope-indepen-

dent capture pathways allow viral antigen presentation, thus

favoring immune responses.

The Role of Exosomes during Antigen
Presentation

Although the current view of DC functionality has iDCs

encountering an antigen in the periphery and carrying it to

lymphoid organs, DCs migrating from the periphery may not

always be the ones that present the captured antigen in the lymph

nodes. Rather, migrating DCs may transfer their captured

antigens to other DCs for presentation. The transfer could occur

either by the phagocytosis of antigen-loaded DC fragments by

another DC [56] or by the release of antigen-bearing vesicles

termed exosomes [57]. During periods of pathogen invasion, these

exosomes could act as real couriers, increasing the number of DCs

bearing a particular epitope, thus amplifying the initiation of

primary adaptive immune responses [58].

Interestingly, as it happens with viral particles, exosomes are

also internalized and stored in endocytic compartments by DCs, a

prerequisite needed to induce different immune responses.

Notably, exosomes do not induce naı̈ve T cell proliferation in

vitro unless mDCs are also present, indicating that exosomes do

not overcome the need for a competent antigen-presenting cell to

stimulate T cells. Exosomes from cultured DCs loaded with

tumor-derived epitopes on MHC-I molecules are able to stimulate

cytotoxic T lymphocyte–mediated anti-tumor responses in vivo

[59]. Moreover, it has been demonstrated that tumor cells secrete

exosomes carrying tumor antigens, which, after transfer to DCs,

also mediate CD8+ T cell–dependent anti-tumor effects [60].

Therefore, distinct studies have shown that exosomes carrying

tumor epitopes provide a source of antigen for cross-presentation

by DCs.

In addition, exosomes are also able to stimulate antigen-specific

naı̈ve CD4+ T cell responses in vivo [58,61]. This stimulation can

take place either by reprocessing the antigens contained in the

captured exosomes or by the direct presentation of previously

processed functional epitope–MHC complexes exposed in the

exosome surface [58,61]. These alternative pathways were

characterized when it was observed that mDC populations could

be devoid of MHC-II molecules and still stimulate CD4+ T cells,

because MHC-II molecules were already present on the exosomes

[61].

In summary, distinct studies have shown that exosomes can be

internalized in DCs, allowing final antigen presentation in the

absence of lytic degradation. We suggest that HIV and other

retroviruses could be exploiting this exosome antigen dissemi-

nation pathway intrinsic to mDCs, allowing the final trans-

infection of CD4+ T cells (Figure 3). In particular, HIV could be

hijacking a pathway that exosomes produced by antigen-
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Figure 3. HIV can exploit a preexisting exosome trans-dissemination pathway intrinsic to mDCs, allowing the final trans-infection of
CD4+ T cells. (A) Exosomes can transfer antigens from infected, tumoral, or antigen-presenting cells to mDCs, increasing the number of DCs bearing
a particular antigen and amplifying the initiation of primary adaptive immune responses through the MHC-II pathway, cross-presentation, or the
release of intact exosomes, a mechanism described here as trans-dissemination. (B) HIV gains access into mDCs by hijacking this exosome trans-
dissemination pathway, thus allowing the final trans-infection of CD4+ T cells. Adapted from [63] � The American Society of Hematology.
doi:10.1371/journal.ppat.1000740.g003
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presenting cells can follow upon capture by mDCs, mediating

the indirect activation of CD4+ T cells by presenting functional

epitope–MHC-II complexes through a trans-dissemination mech-

anism [58,61]. Our data supports the Trojan exosome

hypothesis that proposes that retroviruses take advantage of a

cell-encoded intercellular vesicle traffic and exosome exchange

pathway, moving between cells in the absence of fusion events

[62,63].

Are Trojan Exosomes Riding the Trojan Horse?

Upon maturation, DCs capture large amounts of HIV-1, HIV-

Gag VLPs, and Jurkat-derived exosomes, accumulating these

particles in the same intracellular compartment (Figure 4) that

stains for tetraspanins such as CD81, is characteristic of multive-

sicular bodies, and is devoid of LAMP-1 lysosomic markers [63], as

previously reported for HIV-1 [64,65]. These data are in agreement

Figure 4. Capture and transfer of HIV-1 particles by mDCs converges with the exosome-dissemination pathway. (A) Binding. Electron
microscopy images of mDCs simultaneously pulsed with HIVNL43 and Jurkat-derived exosomes. Particles displaying viral morphology (with an electro-
dense core; green arrows) or exosome morphology (with lighter core; red arrows) accumulated in the same area of the membrane. (B) Capture. Left.
Electron microscopy as in (A), showing HIVNL43 and Jurkat-derived exosome accumulation within the same vesicles. Middle. Confocal images of a
section of an mDC exposed to HIVvpr-eGFP/NL43 and Jurkat-derived exosomes labeled with DiI for 4 h and stained with DAPI. Top images show the
mDC, where the red and green fluorescence merged with DAPI either with or without the bright field cellular shape are presented. Bottom images
show magnification of vesicles containing these particles where individual green and red fluorescence and the combination of both are depicted.
Right. Confocal microscopy analysis of an mDC pulsed simultaneously with HIV Gag-eGFP VLPs and Jurkat-derived exosomes labeled with DiI and
then stained with DAPI. Composition of a series of x-y sections of an mDC collected through part of the cell nucleus and projected onto a two-
dimensional plane to show the x-z plane (bottom) and the y-z plane (right). (C) Transfer. Infectious-like synapses could also be observed in co-
cultures where mDCs were previously pulsed either with HIV Gag-eGFP VLPs (Top) or Jurkat-derived exosomes labeled with DiI (Bottom),
extensively washed, and then allowed to interact with Jurkat CD4+ T cells. Images shown, from left to right, depict the red and green fluorescence
channels merged with DAPI, the bright field cellular shape, and the combination of both.
doi:10.1371/journal.ppat.1000740.g004
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with our previous findings regarding internalization of virus lacking

envelope glycoprotein in mDCs and mature myeloid DCs [17].

Therefore, if exosomes use the same trafficking pathway in

mDCs as HIV, the receptors dragged from the membrane of

infected cells during viral budding that ultimately lead to viral

capture should also be present in the membrane of exosomes.

Interestingly, both exosomes and HIV can bud from particular

cholesterol-enriched microdomains in the T cell plasma mem-

brane [66–68], sharing glycosphingolipids and tetraspanin pro-

teins previously used as bona fide lipid raft markers [64,69,70].

These similarities in composition and size are a strong argument

for the Trojan exosome hypothesis, which suggests that retrovi-

ruses are, at their most fundamental level, exosomes [62].

We have further confirmed the existence of a common entry

mechanism in mDCs by observing direct competition between

different particles (HIV-1, HIV-Gag VLPs, MLV-Gag VLPs, and

exosomes) derived from similar cholesterol-enriched membrane

microdomains, which could not be inhibited by viral-size

carboxylated beads or pronase-treated vesicular stomatitis virus

particles budding from non-raft membrane locations [71].

Therefore, we consider that budding from lipid raft domains is

essential to include specific mDC recognition determinants that

allow viral and exosome capture [63].

Interestingly, a previous study revealed an association between

endocytosed HIV-1 particles and intraluminal vesicle-containing

compartments within iDCs [72]. However, the mechanism we

propose differs from this previous paper in two fundamental

aspects. First, the earlier work focuses on iDCs, and second, in

their case, virus was endocytosed into the compartment where

iDCs typically produce exosomes by reverse budding, thus

contrasting with the gather mechanism of exosome and HIV

uptake that we propose for mDCs. However, our findings concur

because HIV-1 particles captured by iDCs were exocytosed in

association with exosomes and could mediate trans-infection of

CD4+ T cells [72]. Analogously, we found that mDC capture of

HIV-1, VLPs, and exosomes allowed efficient transmission of

captured particles to target T cells (Figure 4) [63].

The Role of Glycosphingolipids during Capture

Our data also revealed that internalization of HIV-1, VLPs, or

exosomes could not be abrogated with an effective protease

pretreatment of either of these particles or mDCs [63].

Nevertheless, this observation does not exclude the potential role

of proteins during viral or exosome capture, and might just reflect

that the molecular determinants involved in capture were not fully

processed by the proteases employed. However, treatment of

virus-, VLP-, or exosome-producing cells with inhibitors of

sphingolipid biosynthesis (such as fumonisin B1 and N-butyl-

DNJ) extensively reduced particle entry into mDCs without

interfering with their net release from producer cells. Although it

has been previously shown that certain ceramide inhibitors

diminish the infectivity of released HIV-1 particles after treatment

of virus-producer cells [73] and can block HCV replication in vitro

[74], at the viral input used in our study differences in infectivity

were moderate. Moreover, treatment with a different agent that

specifically blocks glycosphingolipid biosynthesis (N-butyl-DNJ)

did not affect viral infectivity at all, while inhibiting viral mDC

capture. Therefore, our findings establish a critical role for

glycosphingolipids during mDC binding and endocytosis of

particles derived from cholesterol-enriched domains such as HIV

and exosomes [63,75]. These data could imply a direct interaction

of the glycosphingolipids with the plasma membrane of mDCs.

Alternatively, the glycosphingolipids could maintain the structural

entities required for viral and exosome binding to mDCs, allowing

the interaction of pronase-resistant proteins with the mDC

membrane surface. Further studies will help to clarify which of

the two models our data support actually accounts for particle

endocytosis.

Concluding Remarks

The capture of retroviruses and exosomes is upregulated upon

DC maturation, leading internalized particles into the same

CD81+ intracellular compartment and allowing efficient transmis-

sion to CD4+T cells. This novel capture pathway, where

retroviruses and exosomes converge, has clear implications for

the design of effective HIV therapeutic vaccines. Although mDCs

pulsed with inactivated virus could stimulate specific CD8+ T cell

immune responses in infected patients, as reviewed in [76], these

injected mDCs could also mediate trans-infection of new CD4+ T

target cells, amplifying viral dissemination. Therefore, the safety of

these strategies should be carefully evaluated, and preferentially

explored in patients with undetectable viral load. Regarding

prophylactic HIV vaccines, the proposed exosomal origin of

retrovirus predicts that HIV poses an unsolvable paradox for

adaptive immune responses [62]. Further work should address the

specific differences between retroviral particles and exosomes to

overcome these difficulties.

Taken as a whole, our results suggest that mDCs, which have a

greater ability than iDCs to transmit the virus to target cells and

interact continuously with CD4+ T cells at the lymph nodes—the

key site of viral replication—could play a prominent role in

augmenting viral dissemination. Underscoring the molecular

determinants of this highly efficient viral capture process, where

retroviruses mimic exosomes to evade the host immune system,

could lead to new therapeutic strategies for infectious diseases

caused by retroviruses, such as HIV-1, and T lymphotropic agents

such as HTLV-1. Furthermore, this knowledge can help in the

design of safer candidates for use in a DC-based vaccine.
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