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Abstract

Background: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and
translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods
deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in
DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions,
associating transcription regulators with predicted transcription factor binding sites (TFBSs), identifying non-linearly
conserved binding sites across species, and providing realistic accuracy estimates.

Methodology/Principal Findings: We address these challenges by closely integrating proven methods for regulatory
network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery,
and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order
to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant
improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both
transcription factors (TFs) and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding
motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de
novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an
external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263
ChIP-seq data.

Conclusions/Significance: Using an integrative framework, we were able to address technical challenges faced by state of
the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-
discovery accuracy. We estimated the accuracy of our framework on a human B-cell specific test set, which may help guide
future methodological development.
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Introduction

Protein-DNA binding affinity is often characterized using

patterns in DNA (motifs), a key step toward TFBS discovery.

Computational methods [1,2] are essential components of any

motif discovery approach, but the general computational motif

discovery problem remains unsolved. Motifs are currently

available for less than fifteen percent of known human TFs

[3,4], and computational motif-discovery success rates are poor,

with recorded sensitivity rates below 20% in general, and

considerably lower than 20% for human TFs [5]. Here, we use

position-weight matrix motifs (PWMs) to model TFBSs [2,6], but

motifs may take a variety of forms including words [7,8] and

regular expressions [9,10]. We chose PWMs to summarize TFBSs

because validated PWMs are available from several sources [3,4],

and because PWMs are suitable for de novo discovery as they

provide a good tradeoff between binding site prediction accuracy

and the required volume of training data needed [11]. We study a

variation on the original formulation of the motif discovery

problem, which was introduced by Yoseph et al. [12]. They

discovered motifs that are enriched in a foreground sequence set

against a control set, and the advantage of their approach was

demonstrated using both regular-expression motifs and PWMs

[13,14].

Expression, binding, and cross-species conservation data have

all been used to guide motif discovery methods. Co-expression

with TFs was used to identify putative promoters that may contain

binding sites for TFs and could then be analyzed for TFBS

enrichment [15,16,17]. Cross-species conservation was used to

identify genomic regions that are more likely to be functionally
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important and thus enriched with TFBSs and other regulatory

elements [18,19]. Finally, some of the most successful motif and

TFBS discovery approaches use binding data and especially high-

throughput chromatin immunoprecipitation (ChIP-chip and

ChIP-seq) data to identify relatively short target DNA regions

with high likelihood for binding-site presence [20,21,22]. Howev-

er, due to limited antibody availability, cell-context specificity of

transcriptional interaction patterns, and the associated cost, the

assembly of complete binding site repertoires for the majority of

TFs is not a viable option.

Here, we show that a significant improvement in TFBS

discovery can be achieved by using an integrative work-flow

approach we call OmniMiner. First, we use ARACNe, a proven

reverse-engineering algorithm [23,24,25,26], to identify higher

likelihood transcriptional targets, and we demonstrate that the

inferred targets are more reliable than those predicted by co-

expression. Our results suggest that by using ARACNe-predicted

targets we significantly improve accuracy when compared to the

co-expression approach by removing false positives among high-

confidence and especially among low-confidence co-expressed

targets. Then, we identify cross-species conserved regions by

combining linear-alignment and pattern-discovery (alignment-free)

based approaches. Genome-alignment-based conservation [27]

can guide motif discovery [28] and help identify motifs and sites

for some regulators, but it may also obscure sites that are not

conserved linearly as is the case with binding-site turnover. We

correct for this and show that combining the two approaches leads

to significant prediction improvements. Finally, we use DME, a

proven deterministic motif discovery algorithm [11,14,20], to

discover de novo TFBS motifs for specific TFs and their co-factors.

In our experiments, the top OmniMiner de novo discovered motif

matched a known motif for more than 15% of the TFs in our

human B cell test set. OmniMiner’s recall was over 30% when the

criteria was expanded to include predictions where at least one of

the top five motifs matched a known motif for the TF; we note that

other top 5 significant motifs may describe the binding of a co-

factor. In total, our results suggest that OmniMiner’s performance

on unaltered human promoters is better than the performance of

methods described by Tompa et al. [5] on impregnated human

promoters despite the fact that motif discovery in the former is

widely considered to be more challenging.

To evaluate the performance improvement associated with

better target selection and cross-species conservation, we assem-

bled human promoter sets for genes predicted to be either co-

expressed with or direct transcriptional targets of a representative

collection of TFs. To evaluate binding site enrichment, we

measured the classification accuracy of verified TRANSFAC

binding motifs associated with the TF [3]. We used binding site

enrichment to compare recall rates across methods and to estimate

the accuracy of de novo discovery methods. Then, we showed that

while both our target-selection and cross-species-conservation

methods improve our ability to discover bona-fide TFBSs for

specific TFs, the greatest improvement arises from the integration

of both methods. We compared our de novo motif discovery

approach with GibbsModule [29], a method that was recently

proposed as the state-of-the-art in integration of co-expression and

cross-species conservation. While OmniMiner proceeds greedily,

by identifying cross-species conserved regions in each promoter

and patterns common to these conserved regions across promoters

of inferred targets of a given TF, GibbsModule simultaneously

identifies patterns conserved across species and across promoters

of inferred targets. The simultaneous approach has the potential to

maximize accuracy, but we show that OmniMiner’s greedy

approach produces significantly better results.

To support our estimate for prediction accuracy, we biochem-

ically validated predictions for three TFs. Sites matching a known

E2F1 motif were identified as the most enriched in predicted E2F1

targets and the second most enriched in JUND targets. Our

validation confirms the presence of predicted E2F1 sites in

promoters of predicted E2F1 targets, and it suggests that the

majority of JUND targets are occupied by both TFs, which is

consistent with the predicted co-factor role for E2F1. To

demonstrate the accuracy of OmniMiner’s de novo discovery, we

validated predicted BCL6 binding sites in conserved regions of

promoters of BCL6-predicted targets. Finally, to demonstrate

prediction accuracy using an external dataset, we tested de novo

discovered motifs in promoters of predicted ZNF263 targets for

enrichment in ZNF263-bound regions according to ChIP-seq

[30]. Our analysis showed that the three best de novo motifs are

significantly enriched in ZNF263-bound regions.

Results

Use of reverse-engineering methods to identify TF
targets

Co-expression has been widely used to infer regulatory

interactions between TFs and their targets [16,31,32,33], but co-

expression alone is not sufficient for determining direct interac-

tions. Gene sets that are co-expressed with a TF are generally

enriched in its targets but also contain a large proportion of non-

target and indirect targets, which substantially dilute enrichment.

Regulatory networks reverse engineering algorithms like ARA-

CNe, on the other hand, attempt to use additional properties of

the data to identify genes that are more likely to be direct

transcriptional targets of the TFs. Specifically, ARACNe uses the

Data Processing Inequality theorem of mutual information, as well

as direct knowledge of TF identity, to remove candidate regulatory

interactions that are likely to be of an indirect nature [24,25]. We

used ARACNe with 100 rounds of bootstrapping to construct a

regulatory network from 254 human B-cell gene-expression

profiles (see ARACNe Network Inference in Materials and
methods). Since activation and repression can be mediated by

distinct co-factors and binding sites [34], we concentrated strictly

on targets predicted to be activated by the TF; these constitute the

majority of the interactions in the reverse-engineered regulatory

network and extension to repressed subsets is straightforward. As a

representative TF set for performance analysis, we selected the 70

TFs with known DNA binding motifs in TRANSFAC [3] that

were predicted by ARACNe to be positive regulators of at least

thirty targets, thus allowing appropriate statistical power for

enrichment analysis. Thirty targets is also the suggested minimum

for motif discovery using DME [11]. We assembled promoter sets

for each of the 70 TFs using targets predicted by ARACNe, co-

expression, and co-expression*, and identified enriched TRANS-

FAC motifs in each of the (7063) sets. We refer to the ARACNe-

inferred promoter set as the conservation-free set because it is

assembled without regard to cross-species conservation. The co-

expression* set was identified by taking the top n most-co-

expressed genes, where n was the total number of targets identified

by ARACNe rather than based on a predefined p-value threshold

(see Co-expression in Materials and methods). Note that there

is no statistical threshold that could be used to reproduce the same

selection a priori. Hence the co-expression* set can only be defined

once ARACNe has been run and it was used only to determine if

ARACNe further improves over co-expression even if only the

most co-expressed targets are considered.

For each TF, the single most enriched motif was compared to

the TRANSFAC reported motifs for that TF. Success was

TF Binding Site Prediction
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reported if a match was found using matcompare [35]. The recall

rate for conservation-free, co-expression, and co-expression*, was

27/70 (39%), 13/70 (19%), and 25/70 (36%), respectively

(Table 1). In our experiments, ARACNe (conservation-free set)

significantly outperformed co-expression (p,0.05, by FET), and

more narrowly outperformed co-expression*. This result suggests

that ARACNe significantly improves over co-expression ap-

proaches by removing some false positives among high-scoring

co-expressed targets and many false positives among low-

confidence co-expressed targets. Overall, the conservation-free

set consistently had the highest recall rate, and its inferred targets

were used for all subsequent experiments. Note that selection of

the single most enriched motif for estimating recall is an

exceedingly strict criterion. Indeed, we show that ubiquitous co-

factors may in fact be more enriched than the TF-specific binding

motif itself. As a result, the correct motif can be recovered for

much more than 39% of the TFs if additional, statistically

significant motifs, are also considered. For instance, when the

criteria for correct identification was expanded to include the top 5

motifs (see Motif evaluation and discovery in Materials and
methods and Table S5), recall improved to 48/70 (68%).

Cross-species conservation analysis further improves
TFBS discovery

Many functional elements, including TFBSs, are conserved

across species [18,19], but the proportion of TFBS conservation

that can be identified directly from genome alignments is still

unknown. Ward and Bussemaker [22] and Xie et al. [29]

suggested using both alignment-based and alignment-independent

approaches to identify evolutionary conserved regions. We studied

the benefit of cross-species conservation in ARACNe-identified

promoters for 70 representative TFs. Analysis was performed by

sequence alignment, by pattern discovery using SPLASH [10,36],

and by a combination of the two methods. Since pattern discovery

is especially sensitive to the presence of repeats and large highly-

conserved regions, we first masked out repeats and coding exons.

We processed the sequence data using the same procedure as

described above to assess the recall rate for the known TFBS of the

70 representative TFs.

After masking repeats and coding exons, but before conserva-

tion analysis, the recall rate was slightly reduced, from 27/70

(39%) to 25/70 (36%), due to loss of some bona-fide TFBSs in

masked regions (see Tables 1 and S1). However, this loss is

requires for conservation analysis and is justified by the benefit of

cross-species conservation. Additionally, the affected motifs for the

two TFs were still ranked in the top five (see Table S1). In order to

study the benefit of alignment-based conservation analysis, we

used phastCons [27] to identify the most conserved sequence

fraction that would optimize recall (see Table 2), where this

fraction is defined as the percent of nucleic acids in the sequences

retained after masking poorly conserved regions. Surprisingly, the

optimal recall rate using alignment-based conservation was only

25/70 (36%) at 10% DNA coverage, showing no improvement.

We supplemented the alignment-based cross-species conservation

with pattern-discovery-based (alignment-free) analysis. Specifical-

ly, we first identified conserved patterns in each masked

orthologous promoter set with SPLASH. We then selected the

sequence fragments covered by the most statistically significant

SPLASH patterns until the desired DNA coverage was achieved.

This was also set to 10% to ensure results that are comparable with

alignment-based conservation analysis. We refer to the resulting

promoter fragment sets produced by the combination of

phastCons and SPLASH analysis as the combined-conservation set.

Analysis of the combined-conservation set improved the prediction

recall rate to 31/70 (44%). Finally, we merged motif enrichment

results independently produced by the conservation-free and the

combined-conservation sets, re-ranking motifs according to the

best classification relative-error rate achieved in either test (see

Figure 1). The resulting recall rate increased further to 35/70

(50%). Thus, use of cross-species conservation data, within an

integrative framework significantly (p,0.05, by FET) improved

recall rate, and joint use of alignment- and pattern-discovery-

based approaches yielded an additional statistically significantly

improvement (p,0.05, by FET) over either method in isolation.

Testing de novo motif discovery
To estimate OmniMiner’s accuracy and determine if our test set

has is rich enough for de novo motif discovery, we tested whether

TFBSs for the 38 TF, whose TRANSFAC motifs were correctly

identified in the previous subsection (on either conservation-free or

Table 1. Motif predictions comparison.

total
TFs

True Positives
(matched TFs) Recall

ARACNe 70 27 38.57%

Coexpression 70 13 18.57%

Coexpression* 70 25 35.71%

ARACNe-MRC 70 25 35.71%

We compared motif enrichment accuracy across promoters corresponding to
targets identified by the regulatory-network reverse-engineering algorithm
ARACNe, co-expression, and a combination of both methods (see Results).
ARACNe-MRC corresponding to ARACNe inferred target promoters with exons
and repeats masked; see Table S1 for expanded description.
doi:10.1371/journal.pone.0009878.t001

Table 2. Motif predictions based on conservation-free and
conserved promoters.

total
TFs

True Positives
(matched TFs) Recall

Conservation-free 70 27 38.57%

Alignment-based Conservation

5% 70 7 10%

10% 70 25 35.71%

20% 70 22 31.43%

25% 70 18 25.71%

Combined-conservation

10% 70 31 44.29%

Conservation-free and
Combined-conservation merged

70 38 54.29%

All promoters used in these predictions were inferred by ARACNe algorithm. We
compared motif enrichment accuracy across the original promoters and
conserved regions identified using alignment-based conservation with varying
DNA-coverage proportions, and a combination of alignment-based and
pattern-discovery based conservation. For alignment-based conservation, best
performance was achieved at 10% DNA coverage, and this was used in
conjunction with pattern-discovery based conservation at 10% DNA coverage
to produce combined-conservation. A test is considered as successful if the
most enriched motif identified using either the conservation-free or the
combined-conservation promoters matched the known motif for the TF. We
called it conservation-free and combined-conservation merged. The recall rate
at this level was significantly better than that using conservation-free alone.
doi:10.1371/journal.pone.0009878.t002
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combined-conservation sets) could also be identified de novo. We

also used the analysis of the combined-conservation set to compare

the performance of OmniMiner to that of GibbsModule.

Specifically, we ran DME [11] on both the conservation-free

and the combined-conservation sets and recorded p-values for

DME-identified motifs, reporting motifs with p,0.05 (see Motif

evaluation and discovery in Materials and methods). Follow-

ing the same procedure described for TRANSFAC motifs, we re-

ranked significant motifs based on the best classification relative

error rate achieved on either the conservation-free or the

combined-conservation sets. We considered DME to be successful

if a top de novo discovered motif matched a known motif for the TF

according to matcompare. Results are given in Figure 2. For 32/

38 (84%) of the TFs, we were able to discover significantly

enriched motifs that matched the reported TF motif in

TRANSFAC. Strictly matching significant motifs among the top

5 motifs per TF were recovered for 2/38, 13/38 and 10/38 of the

TFs on the conservation-free, combined-conservation, and the

combination of the two, respectively. The result suggests that,

likely because of their length and count, cross-species conservation

is required for de novo discovery on our promoter test sets.

In order to compare OmniMiner on combined-conservation

promoters to GibbsModule, we ran GibbsModule on the

conservation-free set with the orthologous promoters as additional

input. GibbsModule performs cross-species conservation analysis

internally, but it does not output p-value information or motif

ranking. In the absence of ranking, we used all GibbsModule-

discovered motifs, and for fairness, compared the 9 GibbModule-

discovered motifs both to the top 3 and to the top 9 DME-

discovered motifs with no p-value restriction. For 12/38 (31%) of

the TFs, one of the nine GibbsModule-discovered motifs matched

a known motif for the TF. This performance is significantly worse

Figure 1. OmniMiner’s motif discovery workflow. For each TF, we identified target genes for the TFs and assembled a set of promoters
corresponding to these genes. Cross-species conserved regions were identified in these promoters using alignment-based and pattern-discovery-
based methods and were combined to produce the combined-conservation set. Motif discovery was performed separately on the original promoters
and the combined-conservation set. The resulting motifs were merged and re-ranked according to their classification relative-error rate.
doi:10.1371/journal.pone.0009878.g001
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than DME’s recall rate of 21/38 (55%) when considering the top

nine ranking motifs, and it is also worse than the recall rate of 14/

38 (37%) when only the top three DME motifs are considered (see

Table 3).

To test DME-discovered motifs on an external data source, we

tested for site enrichment for the top three predicted ZNF263

motifs in the top 500 ZNF263-bound regions according to ChIP-

seq in K562 cells relative to unbound regions after size correction.

The results show that all top motifs are highly enriched in

ZNF263-bound regions with respective p-values of 2.35e-57,

3.80e-19 and 9.01e-3 (see Validation in Materials and
methods).

Test set clusters
We clustered test sets and motif discovery methods according to

motif discovery success; see Figure 3. The clustering results show

clear TF grouping according to binding site identification and

discovery methods, suggesting that, for some TFs, binding site

enrichment can be detected using most methods. However, for

some TFs, TFBS enrichment is only detectable when cross-species

conservation data is used. For example, STAT1, STAT2, STAT4,

STAT3, RELA, MAF, MYC and IRF7, which form one cluster,

were correctly classified with and without conservation analysis,

and using known motifs or de novo discovered motifs. Members of a

second cluster, including PAX9, POU2F1, CEBPA, MYB, PAX8,

E2F1, ARNT, and AHR1, were correctly classified with and

without conservation but not using de novo motif discovery. Finally,

members of a third cluster, including JUND, ETS1, ZNF42,

SMAD2, LEF1, TAL1, FOXC1, TGIF, and SMAD1, were

correctly classified with the help of cross-species conservation but

not in the original conservation-free promoter sets.

New predictions and biochemical validation
The TRANSFAC E2F1 DNA-binding motif M00918 was the

most enriched motif with sites in promoters of predicted E2F1

targets. As proof of principle, we tested top-scoring sites for

M00918 in seven randomly-selected promoters using quantitative

PCR of chromatin immunoprecipitation assays (qChIP). Our

results show that E2F1 binds to top predicted sites in the

promoters of RAD54L, MCM2, PKMYT1, FANCG and GTSE1.

We failed to show binding to top sites in the promoters of SAC3D1

and PPM1G (Figure 4A).

No motif was significantly enriched in the JUND conservation-

free promoter sets. However, both JUN and E2F-1 motifs (M00428

and M000172) were among the top 5 motifs for all JUND test sets,

and they were significantly enriched in the JUND combined-

conservation set, where the reported AP1 and E2F1 motifs were the

most enriched motifs. Consistent with these predictions, we show

that both E2F1 and JUND bind to the best matching sites in the

promoters of predicted targets C21orf2, PTDSR, KIAA0556 and

PER1, suggesting that this transcriptional co-binding pattern may

be pervasively used in human B cells. However, while we were able

to show that JUND binds to RPS29 and RPS25, we could not detect

enrichment of E2F1 antibody by qChIP at the top candidate sites in

their promoters. Similarly, we failed to show enrichment of either

TF’s antibody to the promoter of the predicted target DYRK1B

(Figure 4B). This suggests that either the qChIP analysis produced a

false negative result or that these sites were false positive predictions.

In total, we validated the top predicted sites for JUND binding in 6/

7 of the predicted JUND targets, and we validated E2F1 binding

sites in 4/6 of the JUND bound promoters.

Finally, we proceeded to predict de novo DNA-binding motifs for

twenty TFs with previously uncharacterized binding motifs. The

top three predicted motifs with p-value,0.05 (see Motif evaluation

and discovery in Materials and methods) for each TF are

given in Table S2; only two significant motifs were identified for

NME2 and EP300. Experiments on our test set suggest that de novo

motif discovery is able to identify significant binding motifs for the

vast majority of TFs. Because of antibody availability, we chose to

validate binding sites for the top BCL6-predicted motif. Our

results show that BCL6 binds to the promoters of LRMP, MKI67,

RGS13, STK39, BCL7, H2AFX and VGLL4 (Figure 4C).

Indeed, all tested promoters were validated for BCL6 binding.

The BCL6 motif was identified from the BCL6 combined-

conservation set, and matched a previously reported BCL6 half

site [37].

Discussion

Here, we proposed a novel integrative methodology that

combines reverse-engineering of transcriptional networks and

Figure 2. De novo motif-discovery accuracy measurement. De
novo motif-discovery was performed on the 38 TFs for which the known
TFBSs were enriched in the target genes. Predicted motifs were
classified into four classes. Class I: the top three predictions included a
significant classifying motif than matched the known motif for the TF.
Class II: a lower-ranking significant classifying motif that matched the
known motif for the TF. Class III: The most enriched motif was a
significant classifier, but no motifs matching the known motif for the TF.
Class IV: no significant classifiers were found.
doi:10.1371/journal.pone.0009878.g002

Table 3. Performance comparison of OmniMiner to
GibbsModule.

total TFs
True Positives
(matched TFs) Recall

DME-Total

(top 3) 38 11 28.95%

(top 3)* 38 14 36.84%

(top 9) 38 17 44.74%

(top 9)* 38 21 55.26%

GibbsModule

(best 9) 38 12 31.58%

We compared OmniMiner and GibbsModule recalls on our 38 TFs test set.
DME-Total used both the conservation-free and the combined-conservation
promoter sets.
*No p-value threshold was used for pruning motifs.
doi:10.1371/journal.pone.0009878.t003
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cross-species conservation analysis for TF binding-motif discovery.

We produced de novo motif predictions for 20 previously

uncharacterized TFs, and validated site predictions for the top

BCL6 motif and for co-binding patterns between E2F1 and

JUND. In order to compare methods, we produced an extensive

test set of co-regulated human genes and promoters in B cells;

these test sets are given in Table S3. Our results suggest that 50%

of the transcriptional regulators analyzed by ARACNe in a human

B cell context produce inferred target sets that are significantly

enriched in their bona-fide TF functional direct targets. This is a

lower-bound for the proportion of TFs for which bona-fide targets

can be identified since (a) only a relatively small region of the

promoter was considered, (b) some TFs are poorly characterized in

TRANSFAC, (c) only predicted activated targets were considered,

(d) some TFBS motifs are highly degenerate and may not be

reconstructed from enrichment analysis alone, and (e) we defined

success restrictively, requiring the top predicted motif to match a

known motif to the TF and disregarding the possibility of a match

to a co-factor motif.

The novelty in our approach was three-fold. First, we showed

that using a reverse-engineering algorithm instead of gene co-

expression to identify TFBS-enriched promoter sets significantly

improved prediction. Second, we showed that using a combination

of alignment- and pattern-discovery-based conservation analysis

approaches significantly improves prediction when compared to

using only one of the approaches. Third, we showed that by

combining the two approaches, we can further improve prediction

accuracy and almost doubled the 12/38 (31%) recall of another

recent integrative approach (GibbsModule). Finally, we produced

predictions for 20 TFs with previously unknown binding affinity

and validated predictions by quantitative Chromatin Immunopre-

cipitation assays (qChIP) and enrichment in ChIP-seq data. By

developing a unique test set of human promoters and conserved

regulatory regions, we were able to produce realistic estimates for

the quality of our de novo prediction method.

We used stringent criteria to test our input sets, requiring that

the most enriched TRANSFAC motif in a foreground set be

similar to a known motif for the TF. Based on this metric, even

before cross-species conservation is used, nearly 40% of the tested

TF motifs pass this criterion. This is a significantly higher recall

rate than the one observed when using co-expression. To

understand the source of this performance gap, we compared

the two methods to a hybrid method. Instead of using a p-value

cutoff for co-expression, we used the number of ARACNe

predicted activated targets as a cutoff. The hybrid method

performed only marginally worse than ARACNe, suggesting that

genes with expression profiles that are most similar to the TF’s are

the most likely targets and that ARACNe’s main advantage is in a

highly TF-dependent and accurate co-expression similarity cutoff

selection.

Figure 3. Classification of motif prediction. We classified the 38 TFs used as the test set and the motif discovery methods according to
enrichment and discovery success. DME_comb-cons stands for the comb-cons promoter set that was used for de novo motif discovery. DME-Total
represents the result from combining de novo motifs discovered in the conservation-free and combined-conservation sets. DME_cons-free stands for
the cons-free promoter set that were used for de novo motif discovery. Coexpr represents the promoter set inferred by Spearman correlation. Align-
based represents the promoter set in which the conservations were identified by alignment-based method. Cons-free represents the conservation-
free set. Coexpr* represents the promoter set inferred by the combination of the ARACNe and coexpression. MCR represent the conservation-free set
with exons and repeats masked. Comb-cons stands for the promoter set in which the conservations were identified either by a combination of
alignment-based and pattern-discovery-based methods.
doi:10.1371/journal.pone.0009878.g003
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Maybe the most surprising result in this study was that using

alignment-based conservation to identify regions enriched with

TFBSs did not improve recall. This suggests that removing less

conserved regions, in an effort to reduce background noise, may

lead to loss of regions containing bona-fide TF biding sites. On the

other hand, using non-linear pattern-discovery-based conservation

improved the performance considerably and use of both methods

in combination provided the best results. Cross-species conserva-

tion significantly improved recall, but only when jointly consid-

ering sequence fragments discovered both with alignment-based

and pattern-discovery-based analysis. For seven TFs, known motifs

were found to be the most enriched only when using the entire

promoter sequence, suggesting that evolution of their transcrip-

tional targets may be more recent and poorly conserved in

orthologous species or that our alignment techniques are not

sensitive enough for this task. Our conservation-free promoter sets

appear to be either too long or too few for de novo discovery, which

was successful only on the combined-conservation set, and for 18/

20 of the TFs for which we discovered de novo DNA-binding motifs,

including the validated BCL6, the top motifs were selected from

the combined-conservation set analysis.

Figure 3 suggests that our test sets can be clustered according to

motif discovery success, with one 8-test-set cluster consisting of

promoters that were correctly classified without conservation, with

the aid of alignment-free conservation, and by de novo motif

discovery. However, only 4/8 of the sets were correctly classified

using alignment-based cross-species conservation. Our findings

support the idea that TFBS conservation is fundamentally

different from coding-region conservation. This may be due to

operating distance flexibility, cis-regulatory module grammar, or

neutral mutations in site positions that correspond to low-

information motif columns.

Despite these significant advances, we could not identify known

TFBS motifs for several of the TFs, suggesting that these are either

poorly characterized in TRANSFAC, that binding for that

promoter is supported by heterogeneous mechanisms, or that

reverse-engineering may fail to appropriately characterize the

transcriptional targets of some TFs. This, in turn, affirms that the

problem of TF binding-site characterization is still open and much

remains unknown. It also suggests a set of TFs that may be

especially hard to characterize. An important point is that our

ability to characterize TF binding motifs is likely cell-context

dependent. We used a large gene expression profile dataset for

mature human B cells, which may have both improved our ability

to characterized some TFs as well as hinder the ability to

characterize others. Analyses of similar datasets from other cellular

contexts may help answer these questions.

Machine learning heuristics fall in one of three categories:

heuristics that search for good solutions in complete problem

domains but do not guarantee optimality, heuristics that discover

the best solutions in simplified problem domains, and those that

search in simplified problem domains but do not guarantee

optimality. GibbsModule arguably falls in the first category, while

DME, SPLASH and OmniMiner belong to the second category.

We previously showed that DME outperforms other motif discovery

algorithms on both synthetic and mammalian data. The argument

in favor of DME [14] is based on properties of the motif-discovery

solution-space structure, which under a variety of formulations is in

V nmð Þ and O 2nmð Þ, where m denotes the number of input sequences

and n denotes their length. This space is smooth and allows for local

optima discovery, making DME’s fine grid search followed by a

locally optimal refinement a successful strategy. In the presence of

orthologous promoters, the search space is in V(ndm), where d is the

number of ortholog species used. Moreover, there is no proven

formulation for the integration of the two orthogonal optimization

criteria. We hypothesize that due to the computationally prohibitive

task of identifying patterns across sequences with varying degrees of

similarity and in the absence of a demonstrably good type-1

method, a type-2 heuristic should be preferred. Finally, our success

in identifying pattern-discovery-based conserved regions is due to

SPLASH’s ability to identify long and sparsely conserved regions.

Thus, SPALSH is able to overcome some of the limitations of linear

multiple-sequence aligners, and specifically it does not discard sites

due to varying module grammar, or neutral mutations. We followed

SPLASH conserved-region identification with motif discovery by

DME to identify conserved motifs in these regions, thus fixing

motif column values whether they have high or low information

content.

To create a realistic testing platform for motif discovery in

human regulatory regions, we identified promoter sets that were

predicted to be co-regulated by known TFs, and are significantly

enriched with a motif associated with these TF. This platform

allowed us to estimate the accuracy of our motif discovery

methods. The platform is composed of 38 human promoter sets of

varying sizes and it is computationally validated. Its size,

validation, and specialization make it a unique platform for motif

discovery evaluation. Our tests with de novo motif discovery suggest

that we recover 12/38 of the known motifs associated with the

query TF, and we identify significant motifs for 36/38 (p,0.01) of

these TFs (see Table S1).

Figure 4. Binding validation. (A) E2F1 binding to predicted E2F1
targets. (B) E2F1 and JUND binding to predicted JUND targets. (C) BCL6
binding to predicted BCL6 target. We plot fold enrichment relative to
IgG (mean 6 s.e.m).
doi:10.1371/journal.pone.0009878.g004
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Materials and Methods

ARACNe Network Inference
ARACNe is an information-theoretic method for identifying

transcriptional interactions between TFs and their targets using

gene expression profile (GEP) data. In brief, the algorithm first

distinguishes candidate interactions between a TF and its targets

by estimating the expression pairwise mutual information (MI).

Interactions with significant MI values are retained (details can be

found at ref 14). Then, ARACNe applies the Data Processing

Inequality (DPI) theorem to eliminate the vast majority of

interactions with significant MI values that are indirect and falsely

predicted because of transcriptional interaction cascades. ARA-

CNe with bootstraps uses bootstrap sampling during network

reconstruction to non-parametrically assess statistical confidence

for predicted transcriptional interactions. As a result, the built

networks are more robust to both expression estimation and MI

estimation errors. Dataset samples were randomly chosen with

replacement and assembled into bootstrap datasets. In our

experiments, 100 bootstrap datasets were generated and ARACNe

was used to generate a set of bootstrap networks. Each bootstrap

network contributed to a consensus network made of edges that

were supported across a significant number of the bootstrap

networks, where significance was measured using permutation

testing with the null generated using shuffled networks and cutoff

set to p,1e-7 to correct for multiple testing.

Co-expression
We used 254 gene-expression profiles collected from a variety of

homogeneous B cell phenotypes by Basso et al. (2005) using the

Affymetrix HG-U95A GeneChipH System; experimentally ma-

nipulated cell lines were excluded. TFs were selected among the

genes represented on the HG-U95A microarray based on Gene

Ontology annotation (Table S3).

For each TF we identified (a) a set of co-expressed genes using

Spearman correlation with a Bonferroni-corrected statistical

threshold of 1e-4, and (b) a set of ARACNe inferred targets using

a Mutual-Information-based Bonferroni-corrected significance

threshold of 5e-2 and recorded positively correlated targets with

each regulator. The Spearman correlation threshold was set low

because higher threshold settings produced significantly larger

target-gene sets and poor analysis results. ARACNe predicted

TF target sets of size 30 or greater for seventy TFs with verified

binding motifs in TRANSFAC. These TFs were used to compile

our test set. The number of statistically co-expressed genes with

each TF was significantly larger than the number of ARACNe-

identified targets, and analysis results showed that ARACNe-

identified targets are significantly more enriched with sites

matching validated binding site motifs. To test if the disparity in

site enrichment was related to the disparity in target set sizes, we

selected the top n most statistically significant co-expressed

targets for each TF, where n was the size of the ARACNe target

set for this TF. This test set makes the co-expression* set; see

Table S3 for target set identities according to the three

methods.

TF target sequences
We obtained 1500 bp promoters for each target gene by

selecting [21000, 500] from Refseq transcription start site

locations, eliminating intersecting promoters arbitrarily; we refer

to these as the conservation-free sets. We masked repeats and coding

exons to obtain the Masked Coding-exons and Repeats (MCR) set,

which was used for computing pattern-discovery-based cross-

species conservation. Alignment-based conservation was computed

using 17-species PhastCons [27]. PhastCons requires a conserva-

tion probability parameter; we mapped the conservation proba-

bility parameter to DNA coverage proportion in order to achieve

comparable statistics across regulators and conservation measures.

A mapping of conservation probability to DNA coverage

proportion for the seventy TFs is given in Figure S1. To add

pattern-discovery-based conservation, we retrieved orthologous

promoters for mouse, rat, chimpanzee, rhesus and dog. We used

SPLASH [10,36], a deterministic pattern discovery algorithm, to

identify patterns across species after masking repeats and coding

exons. When running SPLASH, we used eight-base windows for

motif-seed discovery with a minimum six-base match within the

window, and required a match across at least four species.

SPLASH-identified conserved patterns were ranked by z-scores,

and the top patterns were used to achieve a given DNA coverage

proportion. Entire regions included in a sparse pattern were

considered conserved. We combined alignment-based conserva-

tions at 10% DNA coverage with pattern-discovery-based

conservations at 10% coverage to construct combined conservation

target sequences (conservation*). Regions that were not considered

conserved according to pattern-discovery-based or alignment-

based conservation were masked out.

Our control set (background) was composed of 2000 non-

overlapping promoters associated with randomly selected Refseq

genes not identified as ARACNe or co-expression targets. These

promoters were processed to obtain a background MCR set,

alignment-free regions, and combined conservation sequences.

When evaluating or discovering motifs enriched in a foreground

set, we used the background set whose processing matched the

processing of the foreground set.

Motif evaluation and discovery
De novo motif discovery was performed for TFs with significant

binding site enrichment and for 20 TFs with no known binding

characterization. We identified 103 TFs that activated at least 30

targets and had no known associated motifs. We ranked these TFs

based on the number of PubMed abstracts containing the name of

the TF (Table S4). De novo motif discovery was performed for the

top 20 most cited TFs.

Motif enrichment in foreground sets against background sets

was measured using classification relative error rate (err), where

relative error rate is computed as the average of the false positive

and false negative rates [11]. Relative error rates were associated

with p-values using permutation testing, where the indicator vector

that assigns set membership to foreground or background is

randomly permuted. When identifying discriminating motifs in a

motif library, we assigned a p-value to an error rate by ranking it

relative to the library’s top error rates in 10,000 permutation tests.

When assigning p-values to de novo identified motifs, we first

generated 100 random foreground-background pair sets by

permuting the indicator vector as described above. We then

applied DME [14] to each of the 100 random foreground-

background pair sets. In each permutation test, the score of the

motif with the lowest relative error was recorded, and the resulting

set of 100 relative error rates served as a null distribution against

which we assessed the statistical significance of the de novo identified

motifs from the original set. Motifs in the 95th percentile (p#0.05)

are said to be statistically significant.

We used matcompare [35] with a similarity cutoff of 1.0 bit for

motif comparison. DME [14] was used to discover enriched

motifs of length 6, 8, and 10. Similar top motifs were merged

using uniqmotifs [11]. GibbsModule [29] was used to identify

motifs of length 8, 10 and 12 with the default 300 iteration per

execution.
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Validation
We set out to validate ARACNe target predictions, TRNAS-

FAC-based binding site predictions, co-factor binding predictions,

and de novo motif discovery predictions. With consideration to anti-

body availability, we chose to validate binding predictions for

three TFs. The TRASNFAC E2F1 motif M00918 was identified

as the most enriched motif in E2F1 targets, and the TRASNFAC

E2F1 motif M00428 was identified as the most enriched motif in

JUND targets. We validated BCL6 binding to sites identified using

the top BCL6 motif candidate. Antibodies used for the study were

anti-E2F1 (sc-251), anti-JUND (sc-74), anti-BCL6 (sc-585) and

anti-GAPDH (sc-32233) from Santa Cruz Biotechnology.

Chromatin immunoprecipitation (ChIP) analysis was done in

Ramos and MUTU-I cell lines by following the protocol described

by [38]. Ramos and MUTU-I cells were maintained in Iscove’s

modified Dulbecco’s medium supplemented with 10% FBS and

antibiotics. The soluble chromatin fraction was immunoprecipi-

tated with anti-E2F1 or mouse IgG control antibody (MUTU-I),

anti-JUND or rabbit IgG control antibody (MUTU-I), and anti-

BCL6 or mouse IgG control antibody (Ramos). The immunopre-

cipitated DNA was reverse cross-linked and purified by phenol-

chloroform. The chromatin fragments from two independent

experiments were pooled and the amount of DNA immunopre-

cipitated by an individual antibody was assessed by real-time PCR

in 7300 Real-time PCR System using Power SYBR Green

(Applied Biosystems).

Two ZNF263ChIP-seq replicate experiments and IgG control

in K562 cell line were obtained from UCSD ENCODE Data

Release: Transcription Factor Binding Sites from Yale/UC-

Davis/Harvard. MACS [39] was used under default settings to

predict (1) ZNF263 and (2) IgG bound regions. We used the top

500 ZNF263-bound regions as foreground, and as background we

selected the top IgG bound regions to equal the total DNA of the

foreground. Motif training and binding site detection followed the

process described above, and enrichment p-values were calculated

using Fisher exact test, comparing detection rates in each set, with

Bonferroni correction for multiple testing.
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