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Abstract
Gliomas are the most common type of primary brain tumors in adults and a significant cause of
cancer-related mortality. Defining glioma subtypes based on objective genetic and molecular
signatures may allow for a more rational, patient-specific approach to therapy in the future.
Classifications based on gene expression data have been attempted in the past with varying success
and with only some concordance between studies, possibly due to inherent bias that can be introduced
through the use of analytic methodologies that make a priori selection of genes before classification.
To overcome this potential source of bias, we have applied two unsupervised machine learning
methods to genome-wide gene expression profiles of 159 gliomas, thereby establishing a robust
glioma classification model relying only on the molecular data. The model predicts for two major
groups of gliomas (oligodendroglioma-rich and glioblastoma-rich groups) separable into six
hierarchically nested subtypes. We then identified six sets of classifiers that can be used to assign
any given glioma to the corresponding subtype and validated these classifiers using both internal
(189 additional independent samples) and two external data sets (341 patients). Application of the
classification system to the external glioma data sets allowed us to identify previously unrecognized
prognostic groups within previously published data and within The Cancer Genome Atlas
glioblastoma samples and the different biological pathways associated with the different glioma
subtypes offering a potential clue to the pathogenesis and possibly therapeutic targets for tumors
within each subtype.

Introduction
Primary brain tumors are an important cause of cancer mortality in adults and children in the
United States (1). The molecular and genetic heterogeneity of gliomas undoubtedly contributes
to the varied and often suboptimal response to treatment that is usually based on standard
pathologic diagnoses (2,3). Glioma diagnosis has been historically based on examining the
cellular morphology of the tumor to assess its presumed cell of origin (astrocytic,
oligodendroglial, ependymal) and surrogate markers of tumor aggressiveness (necrosis,
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nuclear pleomorphism, mitoses) to determine the tumor grade (4). Glioblastomas are the most
common and aggressive gliomas and are thought to arise de novo (primary glioblastoma) or
through the malignant transformation of lower-grade astrocytic and oligodendroglial tumors
(secondary glioblastoma; ref. 5). Although some genetic aberrations and clinical characteristics
(i.e., age) have been associated with each type of glioblastoma, currently, there are few
distinguishable differences in the histopathology or prognosis associated with primary and
secondary glioblastomas (6-9).

Histopathologic diagnoses are by nature subjective (10), and the diagnosis of glioma subtypes
has historically been associated with significant intraobserver variability. Even when the
diagnosis of a distinct subtype of glioma can be agreed upon (i.e., gliosarcoma, small cell
glioblastoma), the molecular, genetic, or clinical relevance of such designations remains
obscure. Although standard tumor morphologic observations and low throughput genetic
studies have revealed some molecular characteristics relevant to particular histologic subtypes,
the study of the molecular features of gliomas has only recently come to the forefront with the
advent of high-throughput microarray technology (6,8).

Gene expression profiles provides a transcriptomic snapshot of a biological phenotype and
offers the opportunity for quantitative, reproducible evaluation of individual tumor biology
(8,11). Consequently, data derived from genomic-scale gene expression profiling facilitate the
characterization of intertumoral variations and similarities (12,13). Using this approach,
several groups have recently attempted to identify glioma subtypes associated with particular
molecular features. Although important steps forward, the findings of these studies have been
limited by several methodologic constraints, including (a) incomplete coverage of whole-
genome expression due to the usage of limited or outdated legacy microarray platforms (2,3,
14,15); (b) limited number of samples studied and/or incomplete coverage of the spectrum of
glioma subtypes and grades (11,13,16,17); and (c) group stratification using a priori knowledge
(traditional histopathologic classification) or use of subjective thresholds when using objective
clinical features as the class defining factor (i.e., survival; refs. 2,3,11,13-17).

We believe that further refinement of a rational biology-based classification scheme would
optimally be constructed by using the molecular data, obtained from a large number of samples
with different histopathologic subtypes to define the classes according to underlying cellular
processes without any preconceived investigator biases. To this end, we have now identified
a novel group of glioma subtypes based on the most current, full-coverage gene expression
profiles available without any a priori class prediction or bias. We have additionally determined
classifier sets from the consensus subtypes and extensively validated them in three large
independent test data sets (13) to assess the potential for clinical application of these classifiers
in a biologically meaningful glioma classification system.

Materials and Methods
Patient selection, tissue acquisition, and sample description

All tumor specimens used in this study were obtained from patients undergoing surgical
treatment in several different institutions and hospitals following written consent in accordance
with the appropriate clinical protocols (NABTC 01-07).

In total, 471 specimens were profiled via the HG-U133 Plus 2.0 array. The samples were
provided as snap frozen sections of areas immediately adjacent to the region used for the
histopathologic diagnosis. Each tumor was assigned a WHO glioma histopathologic subtype
by the neuropathologist at the tissue contributing institution, and then the pathology slides were
rereviewed by two NIH neuropathologists independently (C.O., M.Q.) who were blinded to
the original designated diagnosis. The train set used for class discovery and classifier definition

Li et al. Page 2

Cancer Res. Author manuscript; available in PMC 2010 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consisted of 159 samples. The results obtained were validated in a nonoverlapping, independent
internal test set containing 189 samples, including all WHO histologic types and grades, and
further validated in two independent external data sets containing 76 published high-grade
gliomas and 265 glioblastoma samples taken from The Cancer Genome Atlas (TCGA) data
base, respectively (see details in Supplementary Materials and Methods).

RNA extraction and array hybridization
Approximately 50 to 80 mg of tissue from each tumor was used to extract total RNA using the
Trizol reagent (Invitrogen) following the manufacturer’s instructions. The quality of RNA
obtained was verified with the Bioanalyzer System (ref. 18; Agilent Technologies) using the
RNA Pico Chips. Six micrograms of RNA were processed for hybridization on the Genechip
Human Genome U133 Plus 2.0 Expression arrays (ref. 19; Affymetrix, Inc.). After
hybridization, the chips were processed using Fluidics Station 450, High-Resolution
Microarray Scanner 3000, and GCOS Workstation Version 1.3. Detailed procedures on the
array hybridization and file processing can be found in the supplementary data.

Statistics for classification and prediction
Using specifically designed filters, we generated six independent probeset subsets for glioma
stratification containing different numbers of gene probesets according to the variables
described in the supplementary data. Two unsupervised machine learning algorithms, k-mean
clustering and nonnegative matrix factorization (NMF), were then applied to each of the
probeset subsets separately to identify the underlying classes following the workflow illustrated
in Supplementary Fig. S1. The k-mean partition was done using Partek version 6.3 and NMF,
using Matlab functions implemented by Brunet and colleagues (20). For the purpose of
classifier identification and class prediction, six prediction data sets with 15,553 unique genes
were initially created by retaining the probeset with the maximum signal intensity. Prediction
analysis of microarray (PAM), a supervised machine learning method (21), was then applied
to each prediction set to identify classifiers for the glioma subtypes (Supplementary Fig. S1).
A detailed explanation of the methodology can be found in Supplementary Materials and
Methods.

Kaplan-Meier survival analysis was used to estimate the survival distributions, and the log-
rank test was used to assess the statistical significance between stratified survival groups using
Prism 4.0.

Gene set enrichment analysis for functional annotation
Gene set enrichment analysis (GSEA) was used to identify up-regulated expression signatures
associated with main types and subtypes (22). All 15 pairwise comparisons of the six subtypes
were performed in our GSEA analysis by mapping all 1,687 c2 curated gene sets in MsigDB
v 2.0 to the ranked gene expression profiles. The enrichment scores were calculated by walking
down the ordered list, and the statistical significance of nominal P values of the enrichment
scores was estimated using Kolmogorov-Smirnov statistics by constructing a cumulative null
distribution with 1,000 permutations (22).

Results
Gliomas are classified into two main types and six hierarchically nested subtypes

Two unsupervised machine learning algorithms, k-mean clustering and NMF, were applied to
six independent probeset subsets of the 159 glioma specimens profiled via HG-U133 Plus 2.0
array (Supplementary Fig. S1; Supplementary Tables S1 and S2). After the model selection,
samples were separated into two main consensus classes (Fig. 1A): one with 69 samples was
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designated as the O main type (containing the majority of oligodendroglial tumors) and the
other, containing 67 samples, as the G main type (enriched with grade IV glioblastoma tumors)
in line with their dominant sample composition (Table 1). These two main types were further
stratified by applying the algorithms to each class separately. Hence, the O main type separated
into two subtypes, designated as OA and OB (Fig. 1B), whereas the G main type separated into
two, three, and four subtypes, respectively (Supplementary Fig. S2A). We found that the tumor
samples in the four subtypes of the G main type were hierarchically nested under the two upper
level subtypes. Thus, the upper level subtypes were designated as GA and GB and the lower
level subtypes nested within them were designated as GA1/GA2 and GB1/GB2
(Supplementary Fig. S2B), respectively. Samples with low percentage agreement scores
(<25%) were removed for clarity (Supplementary Fig. S3); however, when assessed using the
resulting classifiers, the removed samples were assigned to the types and the subtypes that the
class discovery algorithms derived (data not shown).

Classes defined exhibit association with histologic types, grades, and patient ages
Survival analysis of the two main types shows that the patients in the O main type (median
survival, 1,257 d) survive significantly longer than those in the G main type (median survival,
348 d, P < 0.0001; Fig. 1C). Similarly, patients in the OA subtype have a significantly longer
survival than those in the OB subtype, suggesting that our unsupervised classification scheme
indeed stratify tumors with similar clinical properties (Fig. 1D). Furthermore, there is a strong
intragroup association between the histopathology and grade of the tumors within each of the
major types and subtypes. The O main type is significantly enriched for a mixture of WHO
grade II or grade III tumors (59 of 67), whereas the G main type is predominantly composed
of grade IV (GBM) tumors (55 of 69; Table 1 and Supplementary Table S3). In agreement
with the known association between patient age and histologic grade, patients with tumors that
fall in the O main type are significantly younger than those in the G main type (median age,
43 versus 57 years, respectively; P < 0.0001; Table 1).

Identification of classifiers that assign tumors into the diagnostic subclasses
To apply this objective classification scheme to clinical applications, we proceeded to identify
classifiers that can reliably assign an unknown tumor to the defined subtypes. A supervised
machine learning method, PAM, was applied to all the prediction data sets resulting in six sets
of independent classifiers consisting of 33 to 352 unique genes. These classifiers produced
>92% prediction accuracy when assigning samples to the matching subtypes in a 10-fold cross-
validation (Supplementary Table S4). All sets of the classifiers were differentially expressed
between the pairwise subtypes across the train set and the validation data sets. One set of these
classifier sets for predicting the O and the G main types is shown as an example in Table 2;
complete classifier sets can be found in Supplementary Table S5.

Validation of the classification system and the classifiers
To ensure that the classification scheme derived from our unsupervised machine learning
system are truly representative of the expression signatures in the different tumor classes, we
validated our scheme using an independent, nonoverlapping data set. In this analysis, a test set
containing 189 specimens (Supplementary Tables S1 and S2) was stratified into two main types
using the same methodology as in the train set (Supplementary Fig. S1), leading to one main
type containing 78 samples and the other 87 samples (Fig. 2A, middle). We were able to further
separate the smaller main type into two and three consensus subtypes (Fig. 2B, middle) and
the larger one with 87 samples into two, three, and four consensus subtypes (Fig. 2C,
middle). In agreement with the outcome in the train set, a hierarchically nested relationship
was detected in the test set (Supplementary Fig. S3E). The reproducibility of the hierarchically
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nested subtypes in our test set attests to the reliability of our classification scheme derived from
the train set.

To validate the classifier sets identified from the train set (Fig. 2A–C, left), we applied them
to the recently stratified classes in test set using PCA analysis and these classifiers from the
train set robustly project the intrinsic data variations of the matching subtypes in the test set
(Fig. 2A–C, right). The centroids (fold changes of a given set of classifiers between pairwise
subtypes) can be viewed as a prototypical expression pattern of the matching subtypes; the
tumor subtypes were then identified according to the resemblance of the classifier expression
to the centroids (13). Moreover, the classifier validation using a hierarchical clustering analysis
on the stratified classes from the test set indicates clear separations along the subtypes (data
not shown).

To ensure that these results are a representation of underlying biological processes and not just
a statistical artifact of large data sets, we performed a mathematical validation by classifying
six random data sets that were carefully designed with the same dimensions and equivalent
scale of variations as our classification probeset subsets using NMF. Our results indicate that
none of the six random data sets converged to consensus matrices as did the train set or the test
set in our classification (data not shown) and their cophenetic correlation coefficients were
much lower (0.45–0.73) than our real probeset subsets (0.90–1).

External data set validates the scheme and the classifiers
To determine if the classification scheme is independent of the data set used and to determine
if the scheme correlates with one of the most comprehensive malignant glioma classification
schemes published to date, we used our classifiers to stratify all 76 glioma tumors (GSE4271
data set) from the recent article by Phillips and colleagues (ref. 13;Supplementary Fig. S4).
There were several significant differences between our data and the Phillips data. First, the
Phillips data was obtained using the HG-U133AB platform, which contains less probesets and
genes than the HG-U133 Plus 2.0 array we used. Second, the Phillips data set was comprised
only of astrocytic tumors with a high-grade histology. Surprisingly, despite these differences,
our classifiers separated the tumors in GSE4271 data set into the six subclasses. Fifty-three of
our 54 classifiers for the O-G main types are available on the HG-U133AB array. Hierarchical
clustering of all specimens in the GSE4271 data set using these 53 classifiers revealed two
dominant tumor clusters, GSE4271-O and GSE4271-G (Fig. 3A). GSE4271-O and GSE4271-
G were further assigned according with the centroids of the classifiers (Supplementary Fig.
S5). Inspection of the samples in the two main types indicates that the GSE4271-O type is
solely composed of tumors that fall into a class that Phillips and colleagues have called
“proneural” secondary to the fact that it is characterized by a signature that is enriched for
genes involved in neurogenesis (13). By contrast, the GSE4271-G type consists of samples
from Phillips’ clusters designated as either “proliferative” or “mesenchymal,” as well as a small
number of proneural tumors (Fig. 3A). Further stratification of the GSE4271-O type resolved
two distinct subtypes and further stratification of the GSE4271-G type resolved four subtypes
using HC (Supplementary Fig. S4A). After the identities of all the subtypes were assigned in
terms of the centroids of the classifiers (Supplementary Fig. S5), we found that medium
survival of GSE4271-O type (244 weeks) was significantly longer than GSE4271-G type (70
weeks, P < 0.0008; Fig. 3C, left). Possibly more impressively, this unsupervised classification
system allowed us to resolve Phillip’s best single prognosis group (proneural) into two distinct
subtypes, with the median survival of GSE4271-OA cases (445 weeks) being significantly
longer than that in GSE4271-OB (203 weeks, P < 0.016; Fig. 3C, center). No separation in
survival was detected among the four subtypes of GSE4271-G (data not shown), consistent
with what we found in our own data sets.
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As a final test of our classification scheme, we classified the expression data of the GBM
collection generated by TCGA project (23). Two major differences exist between our train/
test data sets and TCGA data set. First, TCGA data set is profiled on HT_HG-U133A (22,268
probesets) rather than on the HG-U133 Plus 2.0 array (54,000 probesets) we used resulting in
a smaller gene representation in the TCGA data sets compared with ours (18,400 versus 47,000
transcripts). Second, all of the tumors profiled in TCGA data set are glioblastomas, whereas
our original train set and test set represent a wide spectrum of glioma types and grades. Even
so, we were able to classify the 265 GBM samples from TCGA data set using our classifiers,
stratifying all TCGA GBM samples into two main classes: TCGA-O and TCGA-G. As we
found with our other data sets, the TCGA-O and TCGA-G groups could be further separated
into two and four subclasses, respectively (Fig. 3B and Supplementary Fig. S4B). The
prototypical expression patterns of all the corresponding classes following their hierarchical
nested relationship are identical to those subtypes from all the other data sets we used
(Supplementary Fig. S5). Significantly, we identified a small group of GBM samples (37
patients) that grouped into the oligo-enriched group. Importantly, Kaplan-Meier analysis of
these samples indicated that these patients had significantly prolonged survival compared with
the other GBM patients in the TCGA data set (median survival, 561 versus 327 days, P <
0.0003; Fig. 3C, right).

Potential biological characteristics of the six subtypes according to enriched expression
signatures

GSEA detects cellular pathways and/or mechanism that are differentially expressed between
two phenotypes in functional units of genes (22). To begin to elucidate some of the basic
underlying biological differences between the subtypes of gliomas identified through our
analyses, we performed pairwise comparisons between types and subtypes that were located
at the same level in the nested hierarchical structure (Supplementary Table S6). A summary
of the results obtained is presented in Fig. 4. When comparing the two main types, we found
that the O main type exhibited enhanced activities of exogenous hormone stimulated growth
and PAR1 signaling activity whereas up-regulated profiles associated with the G main type
included a large number of cell cycle/mitotic pathways, hypoxia, tumor necrosis, and nuclear
factor-κB (NF-κB) pathway signaling (Fig. 4; Supplementary Table S7), consistent with a more
malignant and aggressive tumor type; a supposition supported by the poorer survival of the G
main type.

In the case of the OA/OB comparison, we found that three gene sets (ARF pathway, TEL
pathway, and programmed cell death signaling) were up-regulated signatures in the OA
subtype (Fig. 4). These pathways are suggestive of tumors with relatively intact cell cycle
regulation, maintenance of chromosome ends, and apoptosis, consistent with a less malignant
phenotype, as supported by the longer survival of patients in this subtype (Fig. 4). By contrast,
the OB subtype is notable for genes involved in plateletderived growth factor (PDGF) and
epidermal growth factor (EGF) signaling, a common feature of more aggressive tumors
(Supplementary Table S8).

The expression profiles in GA subtype are dominated by pathways involved in mitosis as
indicated by 13 up-regulated gene sets in cell cycle regulation, DNA replication, and
proliferation (Supplementary Table S9), making the GA subtype one of high proliferative
potential. Interestingly, the proliferative subtype of the GSE4271 data set maps
overwhelmingly to the GA subtype, indicating concordance between the two different schemes.
Meanwhile, the GB subtype is notable for overexpressed signatures of the NF-κB pathway,
tumor necrosis factor pathway, transforming growth factor-β signaling pathway, interleukin
(IL-1, IL-10, IL-22, IL-6) signaling pathways, and up-regulated vascular endothelial growth
factor signatures (Supplementary Table S9), all consistent with a mesenchymal phenotype, in
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agreement with the observation that the majority of the tumors designated as mesenchymal in
the GSE4271 data set map to the GB subtype. Further comparisons of the functional annotations
between the GA1/GA2 and GB1/GB2 subtypes are detailed in Supplementary Tables S10 and
S11.

Discussion
The need for an objective, biological-based classification of gliomas is exemplified by the high
rate of divergent diagnoses, the inexact prognostic capabilities, and poor therapeutic predictive
properties of the current histopathologic classification schemes (10). Here, we report the
development of an unbiased, gene expression–based, histology-independent glioma
classification system by applying unsupervised machine learning algorithms to the gene
expression profiles using the largest collection of gliomas published to-date, covering the main
WHO histologic types and grades. Our analyses show that gliomas can be separated into two
main types, O and G. The O main type is further divided into OA and OB subtypes, and the G
can be divided into four subtypes, showing hierarchically nested relationships designated as
GA1, GA2, GB1, and GB2 (Supplementary Fig. S2B).

Our classification system differs from previously reported ones in several important aspects.
First, the classes were discovered based on the expression profiles of all glioma histologic types
and grades without any a priori exclusion of the samples based on some clinical variable.
Second, we did not select the genes to be analyzed from a manually curated list of genes thought
to be relevant but rather to include all informative genes to represent the entire transcriptomic
profiles of individual glioma patients. Third, we selected the subtype-defining classifiers based
solely on their statistical ability to separate the classes rather than our preconceived notion of
their functionality. That is, we elected to allow the computational analyses determine the
appropriate classification scheme based totally on the biology of a wide spectrum of gliomas,
as manifested by their genomic-scale transcriptomic profiles, in the hope that the biology would
translate to a clinically relevant classification. By respecting the concordant molecular
signature behavior of the tumors in the analyses, we have achieved a truly unsupervised
solution. The difference in how this analysis was performed compared with prior studies is not
trivial because the classification scheme we have constructed is based purely on observed gene
expression profiles, without predefined genetic, pathologic, or clinical assumptions, and
thereby represents a glioma classification scheme based solely on unbiased biological data.
The power and reliability of the classification system described here rest not only on the purely
statistical and objective way in which the analyses were performed but also on the fact that all
six glioma subtypes and their corresponding classifiers were derived from a train set, confirmed
and validated using an in-house and totally independently generated test set larger than the
train set, and further validated using two independent, externally generated data sets.

Despite the use for the first time of a purely unsurpervised methodology, our results are
generally consistent with and extend the findings from previously published smaller glioma
classification studies (11,13,24). For example, our O main type is very similar to GSE4271
proneural class and our G main type extensively overlaps with the GSE4271 mesenchymal and
GSE4271 proliferative classes. More specifically, the GSE4271 proliferative class largely
overlaps with our GA subtype, both being represented by up-regulated cell proliferation–
associated genes, whereas the mesenchymal class largely overlaps with our GB subtype, both
characterized by invasive and mesenchymal tissue–associated genes. Our subtypes, however,
further refine this classification system as exemplified by the fact that the OA and OB
classification separates the GSE4271 proneural tumors into two different subtypes with
significantly different overall survivals. Furthermore, our analyses show that the GSE4271
proliferative and GSE4271 mesenchymal classes can be broken into four different subtypes
based on the differences in their classifier signatures.
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It should be noted that the lack of survival difference between the most aggressive tumors that
fell into the GBM-rich subtypes should not be seen as a weakness in or failure of our
classification system. In contrast to diseases, such as breast cancer and lymphoma, that tend
to have much greater variability in the natural history of the disease (i.e., survival), the vast
majority of glioblastoma patients have a rather uniform and poor survival. Our classification
system is consistent with those by Phillips and others and with data from large clinical trials
conducted over the last two decades that consistently show a small subtype of GBM patients
with better-than-expected survival (as represented by the GBMs in our O main type) but with
a majority of GBM patients having uniformly short survival. Thus, although survival can be a
correlation of biology, biology is not necessarily a correlation of survival and is the reason that
we intentionally chose to perform an unsupervised analysis that was not based on survival, as
has been done so often in the past. Certainly, patients with aggressive tumors with vastly
different biologies can have roughly equivalent survivals (i.e., GBM, pancreatic cancer,
metastatic lung cancer). In the case of tumors within the brain, survival may, in particular, be
more a surrogate of tumor growth rate and lack of therapeutic responsiveness than biology
given the physiologic constraints of a mass growing within the closed compartment of the
cranium and the vital and sensitive nature of the underlying brain tissue. This is likely why
nearly all malignant tumors within the brain, whether they be primary tumors (gliomas,
medulloblastomas) or secondary tumors (metastatic lung cancer, melanoma), tend to have a
uniformly poor and homogenous survival (6–12 months) if the specific tumor is not inherently
sensitive to therapy. Nevertheless, the accumulating molecular data clearly shows that, despite
survival homogeneity, GBMs are heterogeneous at the molecular and genetic level (11,16,
25). Our classification scheme defines and categorizes this heterogeneous biology that will be
crucial for designing clinical trials of molecularly target agents that are enriched for patients
most likely to respond to therapy and ultimately for the practice of patient-specific or
“personalized medicine.” Thus, the clinical utility of these GBM-rich subtypes will only be
realized with the acquisition and the analyses of much more corollary clinical data.

We entered into this project with the bias that the standard WHO classification system would
be very poorly representative of the underlying tumor biology. For the most part, we found
this to be true, for although the WHO classification of GBM versus non-GBM pathology was
largely upheld in our two major expression groups (96% of all GBMs in GBM-rich group
versus 75% of non-GBMs in the oligo-rich group), tumors designated as WHO grade 2 or grade
3 astrocytomas, oligodendrogliomas, or mixed gliomas randomly distributed between the
expression subgroups whether that designation was based on the original pathologic diagnosis
(home institution) or by our central pathology review (data not shown). The fact that there was
nearly a 30% to 40% discrepancy in the designation of grade and glioma subtype between the
original and central pathology review of non-GBM tumors (data not shown) reinforces the
subjective nature of the currently used classification system and testifies to the potential
problem of using the WHO system to group specific patients into particular biological strata.
By contrast, our classification system, derived and based purely on computational analyses of
gene expression, consistently groups tumors into one of six groups across four very divergent
data sets constituting over 700 gliomas.

The classifier gene sets described here showed >92% prediction accuracy in a 10-fold cross-
validation (Supplementary Table S4). Additionally, the classifiers were successfully used to
predict and to assign the derived subtypes in a large independent test set (Fig. 2) and further
to stratify two external data sets into six subtypes (Fig. 3 and Supplementary Fig. S4). The
robustness of our gene classifiers suggested a potential for a useful clinical tool for glioma
diagnosis once more extensive validation is undertaken. Indeed, our classification system
allowed us to identify a subgroup of GBMs in the TCGA data base that fell into the oligo-rich
group and had markedly better survival than the remainder of the group, demonstrating the
potential power of this biologically based classification system.
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Finally, our GSEA analysis points to potential functional properties of the different subtypes
identified in this analysis. For example, the survival advantages of OA subtype might in part
be explained by an intact p53 regulatory pathway as represented by the activity of the ARF
pathway and by a tendency toward genomic stability through the maintenance of chromosome
ends, as suggested by activity of the Tel pathway. In contrast, the protooncogene signaling of
the PDGF pathway (known to be aberrantly regulated in a significant percentage of
astrocytomas) may confer higher proliferative properties to tumors in the OB subtype. Needless
to say, the true functional significance of pathway activation within tumors in each of these
subtypes remains to be elucidated through biological studies. Nevertheless, this analysis, as
well as others like it, begins to build a new framework by which basic and clinical scientists
can investigate the biological, functional, and clinical significance of these novel molecular
classes with the hope of ultimately deriving a tumor classification system that will have both
biological and therapeutic predictive value.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Glioma classification based on two unsupervised machine learning methods: k-mean clustering
and nonnegative matrix factorization (NMF) in train set and Kaplan-Meier survival analysis
of subtypes. Model selections, NMF consensus matrices, and k-mean clusters (k = 2) of two
glioma main types in six probeset subsets (A) and of OA and OB subclasses in six probeset
subsets (B). NMFm, NMF model selections based on cophenetic correlation (in a high
consensus matrix, the coefficient is close to 1); NMFc, NMF consensus matrices; Kmm, k-mean
model selections based on David-Bouldin Index (the smaller the index, the tighter the cluster);
Kmc, k-mean clusters. Kaplan-Meier survival analysis for O and G main types (C) and for six
subtypes (D). The color scheme representing the six subtypes of glioma throughout the figures
is as follows: red, O main type; olive, G main type; dark green, OA subtype; green, OB subtype;
dark red, GA1 subtype; orange, GA2 subtype; blue, GB1 subtype; turquoise, GB2 subtype.
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Figure 2.
Classifier identification using PAM and their validation in a test set. A, shrunken differences
of 54 classifiers for differentiation of O and G types (left); NMF model selections and consensus
matrixes (k = 2) of two main types in test set (middle); validation of the 54 classifiers in the
test set using PCA (right). B, shrunken differences of the 69 classifiers for differentiation of
OA and OB subtypes (left); NMF model selections and consensus matrices (k = 2, k = 3) of
OA and OB subtypes in the test set (middle); validation of the 69 classifiers in the test set using
PCA (right). C, shrunken differences of the 352 classifiers for differentiation of four G subtypes
(GA1, GA2, GB1, and GB2; left); NMF model selections and consensus matrices (k = 2, k =
3, k = 4) of subtypes in GBM-rich type in test set (middle); validation of the 352 classifiers in
the test set using PCA (right).
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Figure 3.
Glioma classification for the external data sets (GSE4271 data set and TCGA date set) using
the classifiers. A, hierarchical clustering of GSE4271 data set using 53 classifiers to separate
the two main types. Top branch of the dendrogram represents GSE4271-O main type; lower
branch represents the GSE4271-G main type. Size of GSE4271-O type is smaller due to the
restricted nature of the GSE4271 data set (only high-grade gliomas present). B, hierarchical
clustering of TCGA GBM data set using classifiers to separate the two main types. The top
branch of the dendrogram represents TCGA-O main type, whereas the lower branch represents
the TCGA-G main type. Size of O type is smaller due to the restricted nature of the TCGA
GBM data set (only grade IV gliomas present). C, Kaplan-Meier survival analysis of the two
main types (left) and the six subtypes (center) derived from GSE4271 data set as well as the
two main types of TCGA GBM samples (right). Bar colors in dendrogram represent the three
subtypes identified in the original article: green, proneural subtype; dark red, proliferative
subtype; blue, mesenchymal subtype.
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Figure 4.
Overview of the biological functions found enriched in six subtypes based on the significantly
up-regulated gene sets from GSEA analysis (nominal P < 0.05) as compared pairwise according
to their hierarchically nested relationship. The numbers in parenthesis represent the number of
gene sets in the categories found to be significant in the GSEA analysis.
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Table 2

Gene classifiers for differentiation of the O and G main types

Probeset ID Gene symbol Fold change (O/G)

202718_at IGFBP2 −5.08959

218802_at FLJ20647 −2.91583

225799_at MGC4677 −2.8173

208659_at CLIC1 −2.61081

208816_x_at ANXA2P2 −2.71187

202627_s_at SERPINE1 −3.19988

200916_at TAGLN2 −2.75073

211964_at COL4A2 −3.15335

1569003_at TMEM49 −2.55704

211980_at COL4A1 −2.54365

224917_at MIRN21 −2.80828

206157_at PTX3 −3.61317

202237_at NNMT −5.25017

218368_s_at TNFRSF12A −3.25914

201590_x_at ANXA2 −2.13874

203729_at EMP3 −4.89802

207447_s_at GNTIVH 3.67803

200771_at LAMC1 −2.13758

210512_s_at VEGF −2.38347

209360_s_at RUNX1 −2.62608

201012_at ANXA1 −3.02947

217739_s_at PBEF1 −2.00338

209395_at CHI3L1 −6.47009

213418_at HSPA6 −2.51082

205479_s_at PLAU −3.02588

231935_at ARPP-21 2.65251

223276_at NID67 −2.20265

221577_x_at GDF15 −2.97996

201666_at TIMP1 −6.28863

221729_at COL5A2 −2.4534

202912_at ADM −3.24857

208636_at ACTN1 −2.11803

226722_at FAM20C −1.89925

215223_s_at SOD2 −2.17665

203146_s_at GABBR1 2.43357

210095_s_at IGFBP3 −2.52806

208394_x_at ESM1 −3.3496

200600_at MSN −2.09518

213308_at SHANK2 2.07505

227295_at IKIP −1.84117
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Probeset ID Gene symbol Fold change (O/G)

221898_at PDPN −3.90831

205572_at ANGPT2 −3.40265

212533_at WEE1 −2.39671

203186_s_at S100A4 −2.50762

200650_s_at LDHA −1.70141

229724_at GABRB3 2.33161

201505_at LAMB1 −2.08128

204465_s_at INA 3.98978

227425_at REPS2 2.13658

202990_at PYGL −1.55722

212169_at FKBP9 −1.96699

202878_s_at C1QR1 −2.13239

232059_at DSCAML1 2.59214

214762_at ATP6V1G2 2.20731
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