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Summary of recent advances
In mammals, auditory perception is initially mediated through sensory cells located in a rigorously
patterned mosaic of unique cell types located within the coiled cochlea. Identification of the factors
that direct multipotent progenitor cells to develop as each of these specialized cell types has the
potential to enhance our understanding of the development of the auditory system and to identify
potential targets for regenerative therapies. Recent results have identified specific signaling
molecules and pathways, including Notch, Hedgehog, Sox2 and Fgfs, that guide progenitor cells to
develop first as a sensory precursor, referred to as a prosensory cell, and subsequently as one of the
specialized cell types within the sensory mosaic.

Introduction
In mammals, the snail-like cochlea located in the ventral region of the inner ear serves as the
primary auditory sensory organ. The structure of the cochlear duct represents a remarkable
achievement in developmental patterning and regulation. While the cochlea can extend to
lengths greater than 60 mm in particularly large animals, the width of the sensory epithelium
rarely exceeds 100 μm (1). Moreover, the sensory epithelium is comprised of mechanosensory
hair cells and associated non-sensory supporting cells that are arrayed in a rigorous mosaic of
regular rows that extends along the length of the cochlear duct (Fig. 1). The factors that regulate
the formation of this structure from a population of otic progenitor cells remain largely
unknown; however recent results have provided valuable insights regarding the signaling
pathways and cellular interactions that are required for cochlear development.

Specification of prosensory cells
Virtually all of the cell types within the membranous labyrinth of the inner ear are derived from
multipotent epithelial progenitor cells initially located in the otocyst (Fig. 1). Otocyst-derived
cells develop into three major lineages, prosensory (cells that will develop as either hair cells
or associated supporting cells), proneural (cells that will develop as auditory or vestibular
neurons), and nonsensory (all other otocyst derived cells) with cells within each lineage
developing in topologically and temporally defined domains of the otocyst (2–6). Cells within
the prosensory lineage are thought to possess a unique ability to develop as hair cells or
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supporting cells, however, recent studies (to be discussed below) have suggested that
specification as a prosensory cell may not be absolutely required for hair cell or supporting
cell formation.

The precise timing of the specification of prosensory cells remains unclear, however expression
of Jagged1, Lfng and Bmp4, all of which mark prosensory patches to some extent, can be
detected in discrete patches of the otocyst by E10 in the mouse, suggesting at least some level
of prosensory identity at that time and identifying several factors as candidates for induction
of prosensory fate (7). Deletion of either Lfng or Bmp4 does not lead to loss of hair cells or
supporting cells (8,9), however, reduced function or complete deletion of Jagged1 results in
the reduction or absence of most of the prosensory cells within the ear (10–13). These results
demonstrate an early role for Notch signaling via Jagged1 in prosensory specification, a
conclusion that is supported by the observation that inhibition of Notch activity by the gamma-
secretase inhibitor, DAPT, in vitro leads to loss of prosensory marker expression (14–16).
Moreover, ectopic expression of a constitutively active form of Notch1 (Notch1 intracellular
domain, (NICD)) leads to the expression of prosensory markers in embryonic mammalian
cochlea (16) and to the induction of ectopic sensory patches in developing chick inner ear
(17). Together, these results indicate a role for Jagged1-dependent Notch activation in
specification of prosensory identity and subsequent formation of sensory patches. These results
also demonstrate dual roles for Notch signaling in inner ear development; an initial role in
induction of prosensory patches followed by a second, well established, role in the regulation
of lateral inhibition between hair cells and supporting cells.

Another molecule that has recently been demonstrated to play a role in prosensory specification
is the high-mobility-group transcription factor, Sox2. At E10, Sox2 is broadly expressed in
both the prosensory and proneural regions of the otocyst (18, Puligilla et al., unpublished).
However, Sox2 expression subsequently becomes refined to roughly overlap with Jagged1 in
putative prosensory domains. A previous study by Kiernan et al (2005) demonstrated that
mutations in an otocyst-specific promoter of Sox2 (Sox2Lcc and Sox2Ysb) in mice leads to failure
of prosensory domain formation and a complete (Sox2Lcc) or nearly complete (Sox2Ysb)
absence of both mechanosensory hair cells and support cells, a result that is consistent with a
role for Sox2 in prosensory specification. Expression of Sox2 is down-regulated, although
some expression persists, in Jagged1-deficient cochleae suggesting that Sox2 acts downstream
of Jagged1 (13), a conclusion that is supported by the demonstration of induction of Sox2
expression in response to ectopic expression of NICD (16). Together, these results suggest that
early Jagged1-mediated activation of one or more of the Notch receptors acts to induce
prosensory identity through induction of Sox2.

An additional study has examined a possible role for Eyes absent homolog 1 (Eya1), a
transcriptional co-activator, in prosensory specification. In humans and mice, deletion of EYA1/
Eya1 leads to various anomalies including profound defects in inner ear development (20). A
recent study demonstrated that Eya1 initially co-localizes with Sox2 in the ventral wall of the
otocyst, the region that gives rise to prosensory lineage. As development continues Eya1 and
Sox2 become restricted to partially over-lapping expression domains, with Eya1 ultimately
becoming restricted to hair cells while Sox2 expression becomes restricted to supporting cells
(16,19,20). Deletion of Eya1 leads to a complete absence of sensory formation and expression
of the prosensory markers, Jagged1, Bmp4, and Lfng, suggesting a failure of prosensory
specification in the absence of Eya1. However, while Sox2 expression is reduced in the absence
of Eya1, it is not completely absent (19), suggesting that Sox2 may act in a parallel pathway
with Eya1 to regulate prosensory specification.

Finally, the hedgehog signaling pathway has recently been implicated as a negative regulator
of prosensory fate, but may only be active in the developing cochlea. Gli3 is a zinc-finger
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transcription factor that mediates hedgehog signaling. Mice with a targeted-truncating mutation
in Gli3 that mimics the mutations found in individuals with Pallister-Hall syndrome have
shortened cochleae that contain an expanded sensory epithelium and ectopic sensory patches
in non-sensory regions of the cochlea (21). The truncating mutation leads to the formation of
a repressor form of Gli3 that acts to partially inhibit the hedgehog pathway, suggesting that
hedgehog acts to inhibit sensory formation within the cochlea. In vitro studies confirmed an
antagonistic role for sonic hedgehog in sensory formation and simultaneous modulation of
Notch signaling demonstrated that hedgehog acts upstream of Jagged1-Notch interactions
(21).

Overall, these recent results have provided exciting new data regarding the specification of
prosensory domains within the otocyst. Considering that many inner ear pathologies often
result in the loss of both hair cells and supporting cells, the identification of factors that specify
progenitor cells with the ability to develop as either cell type has the potential to provide
valuable insights regarding both congenital and acquired hearing deficits.

Specification of hair cells
Once a prosensory domain is specified, individual cells within the domain are thought to make
a subsequent choice to develop as either a hair cell or a supporting cell. Previous morphological
studies, as well as Notch pathway deletions, have demonstrated that a hair cell is the primary
fate choice within this population (12,13,22). Moreover, a large body of data has demonstrated
that the basic helix-loop-helix transcription factor Atoh1 (formerly Math1) is both necessary
and sufficient to induce a hair cell fate (23–26). However, the factors that regulate Atoh1
expression within the inner ear remain poorly understood. Atoh1 expression is dependent on
the presence of a prosensory cell population, and as a result, is lost in prosensory mutants;
however a direct role for any of the known prosensory genes in the onset of Atoh1 expression
has not been demonstrated. In fact, a rather intriguing relationship has recently been described
between Sox2 and Atoh1 (16). While ectopic expression of Sox2 in non-sensory regions of the
cochlea is sufficient to induce expression of the homeodomain transcription factor Prox1, a
downstream marker of a subset of prosensory cells, expression of Atoh1 or activation of the
Atoh1 promoter was never observed in Sox2-transfected cells. In fact, forced expression of
Sox2 actually acted to inhibit prosensory cells from developing into hair cells. These results,
along with the observation that following a period of initial overlap, expression of Atoh1 and
Sox2 becomes segregated to hair cells and supporting cells respectively, led to the suggestion
that Sox2 and Atoh1 might mutually antagonize one another. This hypothesis was supported
by the demonstration that Sox2 is sufficient to directly antagonize the ability of Atoh1 to induce
a hair cell fate and that conversely, Atoh1 expression is sufficient to down-regulate Sox2 in
P19 embryonal carcinoma cell lines. Moreover, low levels of Sox2 (hypomorphic
Sox2EGFP/LP) leads to precocious differentiation and overproduction of hair cells, presumably
as a result of a reduction in the antagonistic effects of Sox2 on Atoh1. Finally, overexpression
of the Sox2 target gene, Prox1 also inhibits Atoh1 activity. These results demonstrate that
although expression of Sox2 is initially required for the establishment of prosensory identity,
continued expression of Sox2 essentially acts to inhibit hair cell formation, suggesting that
subsequent down-regulation of Sox2 is required for normal sensory development (16).

The Fibroblast growth factor (Fgf) signaling pathway has been shown to be crucial for inner
ear development in most vertebrates (27–31). In addition to essential roles in early otic
induction and morphogenesis (28,32,33), Fgf receptor1 (Fgfr1) is required for the formation
of both hair cells and supporting cells within the cochlea (34). Analysis of cochleae from
Fgfr1 hypomorphs or animals with a conditional otocyst deletion of Fgfr1 indicates sparse
mis-patterned sensory patches containing only inner hair cells. While the prosensory domain
was reported to still be present in these mutants, a dose dependent decrease in Atoh1 was
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observed, suggesting that Fgfr1 acts downstream of prosensory specification. The ligand for
Fgfr1 in the cochlea has not been determined, but recent results demonstrated that inhibition
of Fgf20 causes a severe reduction in hair cells and support cells and a loss of Atoh1 expression
(35), a phenotype that is consistent with results from Fgfr1 mutants. These results suggest that
Fgf20 is a likely ligand for Fgfr1 and that ligand-dependent activation of Fgfr1 is a necessary
step for sensory formation, however the specific target genes that are regulated by Fgfr1 remain
to be determined.

Specification of supporting cells
While considerable progress has been made in the identification of factors that specify a hair
cell fate, similar insights regarding supporting cell fates are lacking. Hair cells are known to
induce supporting cells, but, in general, the specific signaling molecules that mediate this
process have not been identified. One exception is the specification of inner pillar cells, a unique
cell type only found adjacent to inner hair cells in the mammalian cochlea. Prior to
morphological differentiation, progenitor cells that will develop as pillar cells, along with
adjacent progenitors that will develop as outer hair cells and Deiters’ cells, begin to express
Fgfr3. At the same time, developing inner hair cells become positive for Fgf8, suggesting a
potential inductive interaction. Consistent with this hypothesis, deletion of Fgfr3 or a tissue-
specific deletion of Fgf8 leads to a defect in pillar cell formation (36–38). Further analysis of
Fgfr3 mutants indicated that inner pillar cells are missing in these mutant cochleae and that
the progenitors have undergone a cell fate switch to develop as additional outer hair cells
(37). Moreover, the outer hair cell phenotype in Fgfr3−/− cochleae is rescued by inhibition of
Bmp4 suggesting that reciprocal signaling interactions between Fgfr3 and Bmp4 defines the
number of cells that develop into either pillar cells or outer hair cells (37).

Cochlear patterning
One of the most striking aspects of the cochlear sensory epithelium is the inherent asymmetry
in cellular patterning. As illustrated in Fig. 1, a single row of inner hair cells and two rows of
pillar cells are located on the medial side while the lateral side contains three rows of outer
hair cells. The factors that specify this pattern are unknown, with the exception that disruption
of Fgf signaling leads to small patches of loosely organized hair cells. However this is more
likely the result of a defect in cell specification rather than patterning. Historically, studies on
other asymmetric structures, such as the vertebrate limb bud, have gained insights from the
identification of factors that lead to mirror image duplications of these patterns (39–43).
Therefore, the recent demonstration of mirror-image duplications of the cochlear sensory
epithelium in mice with a spontaneous mutation in Sobp1 (also called Jxc1) is particularly
intriguing (44). Sobp is a vertebrate homolog of the Drosophila sine oculis-binding protein
encoding a nuclear zinc-finger protein that is mutated in Jackson Circler mice. Cochleae from
animals with homozygous mutations in Sobp contain ectopic, vestibular-like hair cells,
supernumerary hair cells within the sensory epithelium and, mirror-image duplications of the
sensory epithelium, including inner hair cells, pillar cells, and the tunnel of Corti (44). These
results suggest that Sobp regulates cell fate and gross patterning of the organ of Corti. However,
it remains to be seen whether Sobp acts as a transcriptional activator to regulate these processes.
Sobp is broadly expressed within the cochlear duct, providing limited clues as to its specific
role in cellular patterning and fate. In addition, Sobp mutant cochleae are shorter than controls
suggesting that some of the patterning defects could be a result of gross morphological defects
rather than a specific role in cell patterning. However, the presence of mirror image duplications
of the sensory epithelium is, to date, unique to Sobp mutants, and provides the first clue to the
factors that determine asymmetric patterning within the cochlear duct.
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Conclusions
The mammalian cochlear sensory epithelium is a remarkable example of developmental
patterning. Multiple unique cell types are specified from a small proportion of multipotent
otocyst progenitor cells and then arranged into a highly rigorous cellular mosaic. While our
understanding of the factors that direct cells initially into the prosensory lineage and
subsequently to develop as specialized types of hair cells or supporting cells remains limited,
recent results have identified at least some of the pathways that regulate each of these decisions.
Extracellular signaling pathways, such as Notch and Hedgehog, have positive and negative
effects respectively on prosensory specification that are mediated through intracellular factors
such as Sox2 and Eya1. Once formed, prosensory cells develop as either hair cells or supporting
cells as a result of cross-regulation between factors that either promote hair cell fate, in
particular Atoh1, and factors such as Sox2 and Prox1 that act to prevent hair cell formation
through antagonism of Atoh1 (Fig. 3). In a final step, specialized supporting cell types are
specified, most probably through specific inductive interactions, which largely remain to be
determined. Future research will hopefully be able to build upon these results to identify factors
that specify individual hair cell and supporting cell types as well as the factors that regulate
asymmetric cellular patterning.
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Figure 1.
Three-Dimensional depiction of the mammalian auditory sensory epithelium (the organ of
Corti). The sensory epithelium extends along the full length of the cochlear spiral and as a
result has a medial-to-lateral axis (relative to the spiral) as noted. The epithelium is
asymmetrically patterned with a single inner hair cell (IHC, green) and inner phalangeal cells
(IPh, pink) on the medial boundary followed by inner and outer pillar cells (IPC, gold and OPC,
yellow)), and three rows of outer hair cells (O1–O3, blue) and Deiters’ cells (D1–D3, green
and orange). The single rows of IPCs and OPCs form walls of the tunnel of Corti (TC). Border
cells (light blue) are located medial to inner hair cells and Hensen’s and Claudius’ cells are
located lateral to outer hair cells.

Puligilla and Kelley Page 8

Curr Opin Genet Dev. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Development of the inner ear. The inner ear develops from the otic placode which initially
invaginates to form otocyst around E9.5. By E10.5, dorsal and ventral protrusions are evident.
These will subsequently develop into the endolymphatic (ED) and cochlear (CD) ducts. In
addition, at around the same time, neuroblasts (yellow) that will coalesce to form the
statoacoustic ganglion (SAG) delaminate from the ventral region of the otocyst. By E12.5, the
developing cochlear duct starts to form a spiral and anterior (ASC), posterior (PSC) and lateral
semicircular canals (LAC) can be identified. The speckled regions represent the areas of
resorption in the central region of the outgrowths to form the mature canal phenotype (45). By
this stage the 6 different sensory patches in the sensory organs of the inner ear (3 cristae
associated with the semicircular canals; maculae of utricle and saccule; and the organ of Corti)
can be identified based on gene expression. All patches are initially positive for Jag1 (red) and
Lfng (blue). Bmp4 (purple) is also present in the developing cristae, but is absent from the
maculae of utricle and saccule. In the cochlea Bmp4 is expressed in a domain located just lateral
to the developing sensory epithelium. Between E15.5 and E17.5 all the inner ear structures
continue to grow and by E17.5 the cochlea reaches its mature length of 1.75 turns. Expression
of Jag1, Lfng and Bmp4 persists in the cristae and by E15.5 Bmp4 is also expressed in the
maculae of utricle and saccule. However, expression of Bmp4 never overlaps with Jag1 and
Lfng in the cochlea and instead, Bmp4 remains expressed in a lateral domain. The regions that
are positive for Jag1, Bmp4 and Lnfg are in red with blue and purple stripes. PC, posterior
crista; LC, lateral crista; AC, anterior crista; MS, macula saccule; MU, macula utricle.
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Figure 3.
Schematic of specification of different cell types from progenitor cells within the mouse otocyst
and the signaling factors that play a role in prosensory specification and subsequent
specification of hair cell and support cell fates. See text for details.

Puligilla and Kelley Page 10

Curr Opin Genet Dev. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


