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Abstract
This review presents an overview of the emerging field of prostaglandin signaling in neurological
diseases, focusing on PGE2 signaling through its four E-prostanoid (EP) receptors. A large number
of studies have demonstrated a neurotoxic function of the inducible cyclooxygenase COX-2 in a
broad spectrum of neurological disease models in the central nervous system (CNS), from models
of cerebral ischemia to models of neurodegeneration and inflammation. Since COX-1 and COX-2
catalyze the first committed step in prostaglandin synthesis, an effort is underway to identify the
downstream prostaglandin signaling pathways that mediate the toxic effect of COX-2. Recent
epidemiologic studies demonstrate that chronic COX-2 inhibition can produce adverse
cerebrovascular and cardiovascular effects, indicating that some prostaglandin signaling pathways
are beneficial. Consistent with this concept, recent studies demonstrate that in the CNS, specific
prostaglandin receptor signaling pathways mediate toxic effects in brain but a larger number appear
to mediate paradoxically protective effects. Further complexity is emerging, as exemplified by the
PGE2 EP2 receptor, where cerebroprotective or toxic effects of a particular prostaglandin signaling
pathway can differ depending on the context of cerebral injury, for example in excitotoxicity/hypoxia
paradigms versus inflammatory-mediated secondary neurotoxicity. The divergent effects of
prostaglandin receptor signaling will likely depend on distinct patterns and dynamics of receptor
expression in neurons, endothelial cells, and glia and the specific ways in which these cell types
participate in particular models of neurological injury.
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COX-1 and COX-2
The inducible isoform of cyclooxygenase, COX-2, is rapidly upregulated in neurons following
N-methyl-D-aspartate (NMDA) receptor-dependent synaptic activity 1, consistent with a
physiologic role in modulating synaptic plasticity 2, 3. COX-2 activity is also induced in
neurons in vivo in acute paradigms of excitotoxicity such as cerebral ischemia and seizures
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1, 4-6, where it can promote injury to neurons 7-10. COX-2 is also induced in brain in
inflammatory paradigms in non-neuronal cells, including microglia, astrocytes and endothelial
cells, where it contributes to inflammatory injury in neurodegenerative diseases such as
Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis 11-20. Thus, COX
activity and its downstream prostaglandin production function pathologically in promoting
neuronal injury both in acute excitotoxic insults but also in chronic neurodegenerative diseases
where inflammation is a major pathological component. To better understand mechanisms of
COX neurotoxicity, it is essential therefore to study the downstream prostaglandin signaling
pathways that are the effectors of COX-mediated neurotoxicity. This review centers on the
function of the prostaglandin receptors in models of neurological disease, and specifically on
the function of the PGE2 EP receptors. For a review of the cyclooxygenases, the reader is
referred to several excellent reviews on the cyclooxygenases COX-1 and inducible COX-2 in
brain 21-25.

Prostaglandins are derived from the metabolism of arachidonic acid (AA) by COX-1 and
COX-2 to PGH2 (Figure 1). PGH2 then serves as the substrate for the generation of
prostaglandins and thromboxane A2: PGE2, PGF2α, PGD2, PGI2 (prostacyclin), and
thromboxane A2 (TXA2). These prostanoids bind to specific G protein-coupled receptors
designated EP (for E-prostanoid receptor), FP, DP, IP, and TP, respectively (reviewed in 26).
PG receptor subtypes are distinguished by the signal transduction pathway that is activated
upon ligand binding. Activation leads to changes in the production of cAMP and/or
phosphoinositol turnover and intracellular Ca2+ mobilization. Further complexity occurs in the
case of PGE2, which binds four receptor subtypes (EP1, EP2, EP3, and EP4) and PGD2 which
binds two receptor subtypes with distinct and potentially antagonistic signaling cascades. All
nine PG receptors have been identified in CNS (Figure 2).

Recently however, deleterious cardiovascular side-effects arising from chronic use of COX-2
inhibitors have been demonstrated 27-29, suggesting that some prostaglandin (PG) signaling
pathways downstream of COX-2 are beneficial 30-32. The concept of toxic and beneficial PG
signaling pathways is now applicable to the CNS as well, as is described below for the PGE2
EP1-4 receptors.

A. The EP1 receptor
In the CNS, the EP1 receptor is expressed in brain under basal conditions in cerebral cortex
and hippocampus and in cerebellar Purkinje cells 33, 34 The EP1 receptor is unique among the
PGE2 EP receptors in that it is coupled to Gαq, and activation of EP1 receptor results in
increased phosphatidyl inositol hydrolysis and elevation of the intracellular Ca2+

concentration. In brain, EP1 is involved in specific behavioral paradigms. Pharmacologic
inhibition or genetic deletion of EP1 receptor in mice subjected to environmental or social
stressors resulted in behavioral disinhibition and was associated with increased dopamine
turnover in striatum 35. A subsequent study demonstrated that activation of EP1 receptors in
striatum amplified dopamine receptor signaling via modulation of DARPP-32 phosphorylation
36.

With respect to a pathological role for EP1 signaling in the CNS, it was noted that
administration of PGE2 to cortical and hippocampal primary neuronal cultures at physiological
concentrations (1nM to 1μM) protected neurons from N-methyl-d-asparate (NMDA) or
glutamate toxicity 37-39. However, in the presence of a COX-2 inhibitor, excitotoxicity-
induced neuronal death could be elicited with an EP1/EP3 receptor agonist (17-phenyl trinor
PGE2), suggesting that among the four EP receptors, there were protective as well as toxic EP
receptors 40. In findings that expanded on these observations, Gendron et al. 41 demonstrated
that in a model of oxygen-glucose deprivation (OGD), the neuroprotection elicited by COX-2
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inhibition could be reversed by administration of PGE2, and this was mediated by the EP1
receptor. In vivo administration of the EP1/EP3 agonist 17-phenyl trinor PGE2 into neocortex
also reversed the protection against NMDA excitotoxicity elicited by COX-2 inhibition 42. The
identity of the EP1 receptor as a major EP receptor that transduces COX-2 neurotoxicity was
subsequently demonstrated in vivo in models of NMDA excitotoxicity and focal cerebral
ischemia, where inhibition of the receptor with a selective antagonist or global genetic deletion
of EP1 reduced cerebral injury 34, 43. In the former study, the reduction in NMDA excitotoxic
injury in COX-2-/- mice was reversed with local administration of a PGE2 analogue, and this
effect was blocked by pharmacological inhibition of the EP1 receptor; moreover, PGE2
administration to EP1-/- mice did not increase cerebral infarction. Finally, pharmacological
antagonism of the EP1 receptor did not further reduce the protection induced with genetic
deletion of COX-2. Translational relevance of EP1 antagonism in a model of cerebral ischemia
was demonstrated in a later study where significant cerebroprotection and rescue of behavioral
deficits occurred even when EP1 antagonist was administered 12 hours after ischemia 44.

A primary mechanism of NMDA-induced neurotoxicity is increased Ca2+ flux through the
NMDA receptor and disrupted intracellular Ca2+ homeostasis. In vitro studies of cultured
neurons demonstrated that pharmacologic antagonism of EP1 or genetic deletion of EP1
resulted in a normalization of intracellular Ca2+ concentrations as measured by the Ca2+

indicator Fura-2; the normalization of Ca2+ levels was not caused by EP1-mediated effects on
Ca2+ influx through the NMDA receptor or voltage-gated Ca2+ channels. The normalization
of intracellular Ca2+ with EP1 blockade or genetic deletion was associated with improved
function of the Na+/Ca2+ exchangers 34. A subsequent in vitro study examined whether
inhibition of the toxic EP1 receptor caused neuronal protection by enhancing the protective
phospho-AKT pathway. It was determined that inhibition of EP1 resulted in increased AKT
phosphorylation following OGD as well as under basal conditions 45, suggesting that EP1
functions constitutively in negatively regulating the phosphorylation state of AKT. The
phosphatase and tensin homologue on chromosome ten (PTEN) is a phosphatase that opposes
the action of phophatidylinositol-3-kinase (PI3K) in phosphorylating a broad range of
substrates including AKT; previously the EP1 receptor had been shown to enhance PTEN
phosphatase in a model of lung fibroblast migration 46. The EP1-mediated regulation of
phospho-AKT levels was associated with activation of the phosphatase PTEN that via its
depletion of PIP3 could inactivate AKT. At this point, it is not known if there is a link between
the two in vitro EP1 effects on Na+/Ca2+ exchangers and PTEN/AKT, and whether these
mechanisms are active in vivo. A recent study by Carlson et al. 47 highlights an important issue
relating to the in vivo mechanism of EP toxicity, namely that of neuron-glial interaction. In
this study, EP1 antagonists were protective in pure neuronal cultures stimulated with NMDA,
however addition of microglia to the cultures reduced the protective effects of EP1 antagonists
on neurons.

EP1 is known to induce vasoconstriction in the peripheral vasculature, opening up the
possibility that EP1 may exert its toxic effects, at least in models of cerebral ischemia, via
deleterious effects on cerebral blood flow. Studies by Saleem et al indicate that deletion of the
EP1 receptor may have beneficial effects on cerebral blood flow, thus reducing the severity of
cerebral ischemia 48. In a model of focal transient cerebral ischemia, EP1-/- mice demonstrated
increased intraischemic absolute cerebral blood flow as well as increased blood flow in early
reperfusion after termination of ischemia. These findings are consistent with previous studies
in non-CNS vascular models, where EP1 induced vasoconstriction 49, 50. Thus, in models of
cerebral ischemia, inhibition of EP1 signaling may lead to cerebroprotection via neuronal-
specific mechanisms, beneficial effects on cerebral blood flow, or both.

Direct effects of EP1-mediated neurotoxicity have been demonstrated in additional models of
neurodegeneration, in particular in models of Parkinson's disease (PD) examining survival of
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cultured dopaminergic neurons. Stimulation of cultured mesencephalic neurons with PGE2
resulted in neurotoxicity; this effect was mediated by the EP1 receptor but not by the EP2
receptor, which is also expressed on dopaminergic neurons 51. In the setting of 6-hydroxy
dopamine (6-OHDA) oxidative stress, a stimulus that induces COX-2 expression and PGE2
signaling in dopaminergic mesencephalic neurons 52, inhibition of the EP1 receptor
successfully rescued dopaminergic neurons. These in vitro studies point to a potential role of
EP1 in dopaminergic neuronal viability, both basally and in the setting of oxidative stress.

B. The EP2 receptor
The EP2 receptor is positively coupled to cAMP production and is widely expressed in neurons
in forebrain structures as well as in thalamus, hypothalamus, brainstem and spinal cord 37, 53,
54. In terms of its physiologic function in brain, a role of EP2 signaling in activity-dependent
synaptic plasticity is supported by an emerging literature in widely differing models. In
developing hypothalamus, PGE2, acting via the EP2 and EP3 receptors in the developing
preoptic area increases dendritic spines by an alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionate (AMPA) receptor dependent mechanism 55 and regulates levels of spinophilin 56.
In a model of inflammatory hyperalgesia in spinal cord dorsal horn, PGE2 facilitates pain
transmission via blockade of inhibitory glycine receptors 57, 58 and this response is blocked
with deletion of the EP2 receptor 59. In hippocampus, long-term potentiation (LTP) in perforant
path-dentate granule cell synapses can be blocked by COX-2 inhibitors, but rescued with
administration of PGE2

3. PGE2 increases the probability of glutamatergic synaptic
transmission in hippocampus via pre-synaptic EP2 signaling in a PKA-dependent fashion 60.
In cerebral cortex, in a model of visual cortical theta-burst stimulation (TBS)-evoked LTP,
blocking post-synaptic EP2 expression with RNA interference induced LTP, and blocking
post-synaptic EP3 expression reduced LTP; moreover, in this model TBS was associated with
differential trafficking of surface EP2 and EP3 receptors between the cell membrane and the
cytosol 61. This last observation is particularly intriguing because differential trafficking of
AMPA receptors to and from the post-synaptic membrane is believed to play an important role
in the changes in synaptic strength in LTP and long-term depression (LTD), respectively. In
recent studies, deletion of the EP2 receptor led to significant cognitive deficits in standard tests
of fear, anxiety, and social memory, recapitulating some aspects of human psychopathology
related to schizophrenia. This complex behavioral phenotype of EP2-/- mice was associated
with a deficit in hippocampal LTD 62.

In terms of a function of the EP2 receptor in COX-2 mediated neurotoxicity, it is important to
note an expanding literature that documents pro-survival and anti-apoptotic functions of
GPCRαs. In vitro studies of dispersed hippocampal neurons and organotypic hippocampal
slices demonstrate that activation of the EP2 receptor is neuroprotective in paradigms of
NMDA toxicity and OGD 37, 63, however stimulation with PGE2 has no effect, consistent with
the idea of toxic (EP1) and protective EP (EP2) receptor activities. In acute glutamate toxicity
models, inhibition of protein kinase A (PKA) activation reversed the protective effect of EP2
signaling, indicating that neuronal EP2-mediated protection is dependent on cAMP signaling
37. In vivo, in the middle cerebral artery occlusion/reperfusion (MCAO-RP) model of focal
transient 37 and permanent 63 forebrain ischemia, genetic deletion of the EP2 receptor
significantly increased cerebral infarction in cerebral cortex and subcortical structures,
consistent with the in vitro protective effect of pharmacologic stimulation with EP2 agonist.
EP2 receptor stimulation was also protective in a model of striatal excitotoxicity 64.
Stimulation of the EP2 receptor rescued neurons in additional in vitro models of
neurodegenerative disease, including the threo-hydroxyaspartate (THA) model of glutamate-
induced motor neuron toxicity 53, a model of human amyotrophic lateral sclerosis (ALS) where
chronic glutamate toxicity is induced by blocking astrocyte glutamate transporters. In the 6-
OHDA model of dopaminergic neuronal degeneration, a model of Parkinson's disease, EP2
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signaling was also neuroprotective 65. In both cases, as in hippocampal neuroprotection, the
EP2-dependent protective effects were dependent on cAMP/PKA activation.

Although the mechanism of EP2 protection in vitro involves neuronal cAMP dependent EP2
signaling, EP2 is also expressed basally in the cerebral vasculature and appears dynamically
upregulated in the setting of cerebral ischemia and reperfusion 66. EP2 signaling induces
vasodilation in non-cerebral vascular systems 67 and this additional function suggests a
hypothetical role for EP2 in increasing blood flow in settings of cerebral ischemia. Although
measurement of absolute cerebral blood flow in vivo in EP2-/- and wild type control mice has
not demonstrated significant differences between genotypes, studies so far have been limited
to measurement of cerebral blood flow during intra-ischemic periods, and have not examined
what happens during reperfusion 37.

Interestingly, the EP2 receptor elicits a very different response in the context of
neuroinflammatory conditions. Activation of the EP2 receptor in organotypic hippocampal
slices can exacerbate lipopolysaccharide (LPS)-mediated neurotoxicity 68, in stark contrast to
the neuroprotection elicited by EP2 activation in the setting of NMDA toxicity or OGD
described above. Accumulating evidence now indicates a pro-inflammatory neurotoxic effect
of EP2 receptor signaling in activated microglia in vitro 69-71 and in vivo in models of
inflammatory neurodegeneration including models of Familial Alzheimer's disease, Familial
ALS, and Parkinson's disease (PD) 72-74.

In brain, expression of the PGE2 EP2 receptor is highly inducible in cerebral cortex and
hippocampus in the lipopolysaccharide (LPS) model of innate immunity 75. The bacterial
endotoxin LPS has been used extensively to model the innate immune response and secondary
neurotoxicity that occur with inflammation. LPS is a potent immunogen and binds microglial
CD14 receptor/TLR4; this in turn causes activation of mitogen-activated protein kinases and
NFkappaB that induce transcription of pro-inflammatory genes such as COX-2 and iNOS
important in microglial activation. LPS stimulation also leads to activation of microglial
NADPH oxidase, a major source of superoxide in inflammation.

The EP2 receptor plays a critical role in the generation of reactive oxygen species (ROS) and
increased NOS activity in response to intraventricular administration of LPS 71. Following
administration of LPS, EP2-/- mice fail to mount the inflammatory oxidative response seen in
wild type mice, as quantified by levels of lipid peroxidation. Moreover, conditioned medium
from EP2-/-microglia stimulated with LPS fails to induce secondary neurotoxicity as compared
to wild type microglia 69. This suggests that PGE2 signaling through the microglial EP2
receptor plays a central role in the inflammatory oxidative response and secondary
neurotoxicity. The EP2 receptor is similarly induced outside the CNS in peripheral
macrophages and antigen presenting cells 75-79 where it regulates the expression of
downstream inflammatory mediators, including TNF-α 76, 80, 81, IL-6 76, 82, MCP-1 83, ICAM
84, and iNOS 85, 86.

Recent studies indicate a significant overlap in molecular mechanisms between models of
innate immune responses and models of neurodegeneration such as AD, ALS, and PD. The
CD14-dependent innate immune response to LPS is relevant to the immune response to
amyloid Aβ peptides for example, which are abundantly produced in murine transgenic models
of Familial Alzheimer's disease (FAD). In this genetic model of FAD, microglial activation
and elaboration of inflammatory mediators are in part CD14-dependent 70, 87. In the APPSwe-
PS1ΔE9 (APPS) transgenic model, deletion of the EP2 receptor leads to significantly lower
levels of lipid peroxidation 72, similar to what was found in the LPS model. In addition, deletion
of the EP2 receptor in this model led to dramatic decreases in Aβ1-40 and Aβ1-42 peptide
levels, a finding subsequently confirmed in an second APPSwe model 88. The reduction in
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Aβ peptide levels could be the result of EP2 mediated effects on Aβ peptide production and/
or clearance. In terms of production of Aβ peptide, deletion of EP2 in the APPS model resulted
in significant decreases in levels of β-CTF 72, the product of BACE1 cleavage of amyloid
precursor protein (APP), suggesting that EP2 directly or indirectly regulated BACE-1 activity
and Aβ peptide production. Direct stimulation of neurons expressing APPSwe-PS1ΔE9
transgenes with EP2 agonist did not increase Aβ peptide generation, lending support for an
indirect effect. In addition, the EP2 receptor may also play a role in Aβ peptide phagocytosis
and clearance in ex vivo preparations 89; in these studies, postnatal EP2-/-microglia
demonstrated an enhanced ability to phagocytose physiologically aggregated Aβ peptide from
post-mortem tissue sections of patients with AD. This enhanced phagocytic potential by
microglial cells lacking EP2 is supported by studies in models of pulmonary infection where
deletion of the EP2 receptor potentiates phagocytosis of bacteria by lung macrophages 90.
Thus, the lower Aβ peptide levels in response to deletion of EP2 in APPS mice may be due to
one or more factors, including a reduction of inflammatory oxidative stress, which secondarily
can decrease BACE activity and Aβ peptide generation, or improved clearance from microglial
phagocytosis and clearance of Aβ peptide (Figure 3). Experiments using ex vivo preparations
of mesolimbic cortex from patients with Lewy body disease suggest that deletion of EP2 may
enhance clearance of α-synuclein aggregates as well 73. In the same study, EP2-/- mice were
also found to be more resistant to MPTP toxicity as measured by levels of striatal dopamine.

Recent studies have confirmed a significant role of glial-mediated secondary neurotoxicity in
motor neuron degeneration in the G93A SOD transgenic mouse model of Familial ALS
91-93. Inhibition of COX-2 in this model improves motor strength and survival, suggesting that
downstream prostaglandin signaling pathways participate in disease progression 94. Genetic
deletion of the PGE2 EP2 receptor in the G93A SOD model significantly improves motor
strength and extends survival 74. Consistent with its role in promoting inflammatory injury,
EP2 immunoreactivity in spinal cord is highly induced in microglia and astrocytes in aging
G93A SOD but not wild type mice, and this is associated with increased expression of COX-2,
iNOS, and NADPH oxidase subunits and increased neuronal lipid peroxidation and motor
neuron loss. Deletion of the EP2 receptor in G93A SOD mice significantly reduced expression
of these oxidative enzymes at the mRNA and protein levels 74 indicating that the EP2 receptor
regulates a class of enzymes responsible for oxidative inflammatory neurotoxicity. EP2
signaling also appears to regulate a similar cassette of pro-inflammatory genes in the LPS and
in the APPS models as well 71, 74, suggesting a conserved pro-inflammatory mechanism of
action across multiple neuroinflammatory degenerative disease models.

The data so far in the CNS therefore suggest a dichotomy of action of the EP2 receptor,
depending on the type of injury (acute excitotoxicity vs chronic inflammation; Figure 4). EP2
signaling mediates significant neuroprotection selectively in acute models of cerebral ischemia
and excitotoxicity, where neuronal EP2 receptor mediates protection by a PKA-dependent
mechanism. In contrast, in models of chronic inflammation and neurodegeneration, microglial
EP2 may lead to secondary neurotoxicity from increases of ROS producing enzymes and pro-
inflammatory cytokines. Thus, the net effect of the EP2 signaling on neuronal viability in
neurodegenerative disorders will depend on (1) the context of the stimulus and the degree of
inflammatory response versus excitotoxicity in the specific injury model, (2) the specific cell
type in which EP2 signaling is activated (neuronal versus glial), and (3) the cell-specific and
model-specific downstream targets of EP2 signaling in these cells. This dichotomy of action
is reminiscent of the dual function of the transcriptional regulator NFKappa-b, which regulates
pro-survival and pro-plasticity genes in neurons, but regulates pro-inflammatory neurotoxic
genes in microglia 95, 96.
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C. The EP3 receptor
The EP3 receptor is coupled primarily to Gαi, however is certain conditions and because of
differential splicing at the carboxy-terminus can also be coupled to Gq 97. EP3 is expressed
mainly in subcortical structures, in particular the hypothalamus 98, consistent with one of its
principal physiologic functions of regulating the febrile response 99, 100. In pathologic
paradigms of neurological diseases, including neuroinflammatory disease models and models
cerebral ischemia, the function of the EP3 receptor so far is not firmly defined. In vitro evidence
in models of glutamate toxicity points to a protective function of EP3 neuronal signaling in
both dispersed hippocampal neurons and organotypic slices, where EP3 receptor stimulation
is associated with increased levels of the pro-survival phospho-AKT 53, 68. In vivo however,
genetic deletion of the EP3 receptor does not alter infarct volume or behavioral outcome in a
model of transient focal ischemia 66. A subsequent study noted a decrease in infarct volume
in EP3-/- mice at 48 hours after ischemia, however this was not sustained and no difference
was observed 96h after ischemia 101. These genetic findings are in contrast to a
pharmacological study using a selective agonist of the EP3 receptor 102 in which
intracerebroventricular administration of agonist before ischemia worsened infarct volume in
a mouse model of transient focal ischemia 103. These conflicting data need to be interpreted in
light of potential limitations both for genetic knockout modeling, which can be associated with
compensatory effects to make up for loss of a critical protein, and pharmacologic strategies,
where there can be off-target effects. In addition, in the case of the EP3 receptor in particular,
genetic deletion and pharmacologic activation may not necessarily be complementary. The
murine EP3 receptor consists of three distinct isoforms derived by alternative splicing of the
carboxy terminus; these isoforms differ in downstream signaling pathways, desensitization,
and constitutive activity 104-108. Thus, genetic deletion of EP3 results in total ablation of all
three isoforms whereas administration of EP3 agonist may activate one or more isoforms
depending on the cellular expression patterns of the EP3 isoforms, the brain penetration of the
EP3 agonist, as well as the constitutive signaling properties and desensitization kinetics of the
various isoforms.

In models of neuroinflammation, in particular the canonical LPS model of innate immunity,
deletion of the EP3 receptor does not appear to alter levels of lipid peroxidation, as measured
by F2-isoprostanes and F4-neuroprostanes or contribute significantly to oxidative
inflammatory stress (T. Montine, personal communication). Its function in other models of
inflammatory neurodegeneration, such as models of Familial ALS and AD are not yet known.
It is important to note the relatively low abundance of EP3 receptor in brain regions typically
involved in these models. Previous in situ hybridization studies 109 as well as immunostaining
110-112 of the EP3 receptor show limited expression in forebrain structures, but higher
expression in thalamic, hypothalamic, and brain stem structures. However, EP3 expression
may be dynamically regulated within these models in specific cell types, as suggested by studies
demonstrating induction of EP3 expression in glial cells 113, 114.

D. The EP4 receptor
The EP4 receptor is positively coupled to cAMP production. In forebrain, the EP4 receptor is
expressed basally in neurons and at low levels in endothelial cells 66. An expanding literature
documents pro-survival effects of GPCRαs signaling, and of the EP4 receptor in particular,
suggesting that the EP4 receptor, like its related EP2 receptor, may function to confer
neuroprotection in excitotoxic or hypoxic paradigms. Anti-apoptotic effects of EP4 have been
demonstrated in non-CNS models including gastric and intestinal injury 115-117, myocardial
injury 118, and endothelial injury 119. In the CNS, in an vivo model of striatal excitotoxicity,
pharmacological activation of EP4 showed protection 120, and in organotypic hippocampal
slices, pharmacologic stimulation with selective EP4 agonist rescues CA1 pyramidal neurons
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death in vitro (Liang, Taniguchi, et al., unpublished data). Anti-apoptotic effects of EP4 in non-
neuronal paradigms that may be relevant to neuronal EP4 protection involve direct effects of
PKA activation 116, increased PI3-kinase mediated AKT phosphorylation 121, increased
phosphorylation of BAD 122, 123, reduced Bax translocation to mitochondria 124, and
increases in anti-apoptotic survivin 125, bcl-2 126, and inhibitor of apoptosis proteins (IAPs
127).

In addition to a neuronal EP4-mediated protective effect, the endothelial EP4 receptor mediates
physiologic vasodilation in a number of vascular beds 128, 129. PGE2 signaling via endothelial
EP4 receptors 130 can result in activation of endothelial NOS (eNOS) and NO-mediated
relaxation of smooth muscle 131, 132. The EP4 as well as EP2 receptors contribute to the
systemic vasodepressor response to PGE2 administration in mice 133. In human post-mortem
samples of cerebral vessels, the EP4 receptor can induce vasodilation 134. An emerging concept
in cerebrovascular research is the importance of a viable and functional neurovascular unit,
which comprises the intricate complex of endothelial cells, astrocytes, neurons, pericytes,
smooth muscle cells, and perivascular microglia. As with the other EP receptors, the specific
distribution of the EP4 receptor in these cell types is not yet fully determined, much less the
dynamics of expression of the EP receptors in these cells in different models of neurological
disease. The proper functioning of the neurovascular unit ensures physiologic coupling of
cerebral blood flow and neuronal activity. This coupling has been elegantly demonstrated in
studies by Iadecola and colleagues where vasodilation in response to neuronal activity is
dependent on COX-2 activity and prostaglandin signaling 135. Given the role of EP receptors
in vasodilation or vasoconstriction in peripheral vasculature, it would be reasonable to
hypothesize that these receptors may play an important role in modulating cerebral blood flow
dynamics, for example in models of cerebral ischemia. The endothelium and cerebral
vasculature play a critical role in cerebral ischemia, where reactive vasoconstriction in response
to hypoxia are believed to enhance brain injury 136. The EP4 receptor, along with the EP2
receptor, appear to be induced in endothelium after ischemia and during reperfusion, suggesting
a function of these vasodilatory receptors in cerebral blood flow in a model of transient focal
cerebral ischemia 66. In addition, the importance of the endothelium and its function within
the neurovascular unit is now emerging in disease models not typically associated with
cerebrovascular injury, for example models of AD 137-142 and ALS 143.

In the periphery, the EP4 receptor has also been demonstrated to influence the inflammatory
response in a context-dependent fashion. Anti-inflammatory actions of EP4 via inhibition of
toxic cytokines are confirmed in models of inflammatory bowel disease 144-146, degenerative
arthritis 147, atherosclerosis 148-150, and septic shock 151. The prostanoid PGE1, which can
bind the EP2-4 receptors, blocks induction of intercellular adhesion molecule (ICAM)
expression in various models of inflammation 152-154, an effect that is mediated via the EP4
receptor 152, 154, 155. These findings support a potential anti-inflammatory effect of EP4 in
brain diseases characterized by an inflammatory response. Indeed, in unpublished studies,
macrophage and microglial receptor activation appear important in modulating the CNS innate
immune response in a model of peripheral LPS administration (Shi et al., unpublished data).

In summary, the PGE2 EP receptors can mediate toxic or pro-survival effects in models of
neurological disease, depending on the specific injury context, and depending on the cell type
(s) in which they are expressed. Further studies are required to understand the dynamics of EP
receptor expression in ischemic, excitotoxic, and inflammatory models of neurologic disease,
where selected EP signaling pathways can elicit neuroprotective or neurotoxic effects, pro- or
anti-inflammatory effects, or vasodilatory/vasoconstrictive effects. The net effect of a
particular EP signaling cascade will be dependent on the injury context, which involves
different cell types and differing timing of receptor activation and signaling. Despite its
complexity, because prostaglandins signal through G-protein coupled receptors, which
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represent the bulk of therapeutic targets, the EP receptors may offer a promising new targets
in CNS therapeutics.
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Figure 1.
Prostaglandin receptors mediate both toxic and protective effects in models of neurological
disease.

Andreasson Page 17

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
CNS distribution and primary signaling characteristics of the nine PG receptors.
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Figure 3.
The EP2 receptor functions both in promoting inflammation and inhibiting clearance of Aβ
peptides in a transgenic model of Familial AD. A model is proposed in which EP2 signaling
in glia (gray cell) results in the production of oxidant species from NADPH oxidase complex,
iNOS, and COX-2. This inflammatory oxidative stress will injure neurons (blue cell; step 1).
The increased oxidative stress in the neuron increases BACE-1 activity and generation of Aβ
peptides (step 2), and will induce synaptic injury. Increased levels of Aβ peptides lead to Aβ
peptide accumulation and deposition (step 3), which amplifies the inflammatory response (step
4) and further stimulates EP2 signaling on pro-inflammatory glial cells. Functional EP2
receptor inhibits Aβ peptide phagocytosis (step 5), further amplifying the cycle of amyloid
accumulation and reactive inflammation.
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Figure 4.
Model of opposing effects of EP2 signaling depending on the injury context. Basally, EP2 is
expressed in neurons, and in the setting of glutamate toxicity or OGD, PGE2 signaling through
the EP2 receptor is sufficient to rescue neurons, and rescues in a PKA dependent manner. In
models of secondary neurotoxicity, where glial cells are activated by immunogens such as LPS
or Aβ peptides to produce toxic cytokines and reactive oxygen and nitrogen species, glial EP2
promotes the expression of pro-inflammatory genes such as iNOS, COX-2, and components
of the NADPH oxidase complex. These pro-inflammatory and pro-oxidant molecules injure
neurons and lead to synaptic and neuronal degeneration.
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