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Abstract
Reactive metabolites formed from benzene include benzene oxide, trans, trans muconaldehyde,
quinones, thiol adducts, phenolic metabolites and oxygen radicals. Susceptibility to the toxic effects
of benzene has been suggested to occur partly because of polymorphisms in enzymes involved in
benzene metabolism which include cytochrome P450 2E1, epoxide hydrolases, myeloperoxidase,
glutathione-S-transferases and quinone reductases. However, susceptibility factors not directly
linked to benzene metabolism have also been associated with its toxicity and include p53, proteins
involved in DNA repair, genomic stability and expression of cytokines and/or cell adhesion
molecules. In this work, we examine potential relationships between metabolic and non-metabolic
susceptibility factors using the enzyme NAD(P)H:quinone oxidoreductase (NQO1) as an example.
NQO1 may also impact pathways in addition to metabolism of quinones due to protein-protein
interactions or other mechanisms related to NQO1 activity. NQO1 has been implicated in stabilizing
p53 and in maintaining microtubule integrity. Inhibition or knockdown of NQO1 in bone marrow
endothelial cells has been found to lead to deficiencies of E-selectin, ICAM-1 and VCAM-1 adhesion
molecule expression after TNFα stimulation. These examples illustrate how the metabolic
susceptibility factor NQO1 may influence non-metabolic susceptibility pathways for benzene
toxicity.
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Metabolic factors in susceptibility to benzene toxicity
Benzene induces hematopoietic toxicity and can induce aplastic anemia, myelodysplasia and
acute myeloid leukemia after chronic exposure [1;2]. The metabolism of benzene has been
investigated extensively and previous reviews have characterized benzene metabolism in a
comprehensive manner [3-7]. Consequently, this work is not intended to be a review of benzene
metabolism but will focus on metabolic susceptibility factors for benzene toxicity which have
been identified in both cell and animal studies and in studies of occupationally-exposed
populations. Other susceptibility factors not directly linked to metabolism have also been
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identified in benzene toxicity and relationships between metabolic and non-metabolic
susceptibility factors have not been previously considered. We will therefore discuss potential
relationships between these two groups of susceptibility factors using the enzyme NAD(P)
H:quinone oxidoreductase 1 (NQO1) as an example and highlight recent studies focusing on
NQO1 in human bone marrow endothelial cells.

Benzene metabolism
Metabolism of benzene is considered necessary for benzene toxicity and the evidence
supporting this conclusion has been previously summarized [8-10]. A key finding in animal
studies was that knockout of the first step in benzene metabolism mediated by cytochrome
P450 2E1 totally abrogated benzene-induced myeloid toxicity and cytotoxicity [11]. Benzene
metabolism in liver and in-situ in bone marrow could both conceivably contribute to benzene
induced myeloid toxicity [10]. A simplified version of benzene metabolism is shown in Figure
1 where the majority of Phase II metabolic pathways including sulfation and glucuronidation
have been omitted. It is important to note however that some phase II metabolites such as
sulfate conjugates have been suggested as carrier forms of phenolic metabolites which are
released in-situ in bone marrow due to a high concentration of sulfatase enzymes and a low
content of sulfotransferases [12].

Reactive metabolites and metabolic susceptibility factors
Reactive metabolites formed from benzene include benzene epoxide [13-15], trans, trans
muconaldehyde [16-19], phenolic metabolites of benzene [20-22] which can give rise to
oxygen radicals upon autoxidation [23;24], reactive quinones and semiquinones formed from
polyphenolic metabolites of benzene [25-28] [29] and quinone thiol adducts [30;31] (Table 1).
Consequently, the metabolism of benzene is complex and gives rise to a large number of
potentially reactive products which have been suggested to be important in benzene toxicity.
Metabolic susceptibility factors (Table 2) have been identified in cellular studies, animals and
in studies of occupationally-exposed human populations. Such susceptibility factors
predictably encompass the wide range of benzene metabolic pathways and both phenotypic
and genotypic variants of enzymes in these pathways have been investigated in epidemiological
studies of benzene toxicity. The first step in benzene metabolism mediated by CYP2E1
represents a key metabolic susceptibility factor [11]. The involvement of other cytochrome
P450s in benzene metabolism is also possible and recent work has shown that CYP4F3 was
upregulated in peripheral white blood cells in 7 patients who had occupational benzene
poisoning [32]. In the same study, phenol was found to be capable of inducing CYP4F3 in
myeloid cell lines and in human neutrophils [32]. These observations may be significant and
could provide a novel metabolic mechanism for benzene-induced myeloid toxicity if CYP4F3
is found to be capable of metabolizing benzene or phenol.

Other metabolic susceptibility factors include epoxide hydrolase which is known to have
genotypic variants with a range of activities [33] and glutathione, a key defense system against
reactive metabolites [34]. Myeloperoxidase (MPO) can oxidize polyphenolic metabolites of
benzene to electrophilic quinones. A promoter polymorphism in MPO (G463A) leads to
decreased transcription and decreased enzymatic activity [35] and has been examined in
epidemiological studies of benzene poisoning. Glutathione-S-transferases can impact benzene
metabolism at a number of steps and null polymorphisms in GSTT1 and GSTM1 are well-
characterized. GSTPi variants with altered enzyme activity have also been characterized [36].
Finally, the quinone reductases have attracted considerable attention as metabolic susceptibility
factors. There are two major polymorphisms in NQO1. The NQO1*2 allele (C609T) has
profound implications for phenotype and leads to the synthesis of a mutant protein which is
rapidly degraded via the proteasome. The NQO1*2 allele is essentially, a null polymorphism
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in homozygous individuals [37;38] and exhibits a gene-dose effect with heterozygous carriers
exhibiting intermediate enzyme activity [39]. The NQO1*2 allele is widespread in the
population with the prevalence of the homozygous NQO1*2 genotype being between 4-34%
depending on ethnic group [40-43]. The NQO1*3 allele is a relatively low frequency allele
which has diminished activity for certain substrates [44]. Although up to 21 additional variants
in the promoter region of NQO1 and additional variants in the coding region of the gene are
known [45], the phenotypic implications of these variants are unclear. Furthermore, the low
or sometimes unknown frequency of these alleles in the population has generally precluded
their inclusion in epidemiological studies. NQO2 is an additional quinone reductase [46] but
the role of the enzyme in benzene metabolism and the potential impact of any polymorphic
variants in NQO2 on benzene toxicity is currently unknown.

Oxidative stress has been implicated in the toxic effects of benzene and its metabolites [22;
47]. Oxygen radicals are produced during benzene metabolism and can induce direct toxic
effects but at lower levels oxygen radicals can also influence signaling pathways and recent
data suggests this may be critical in stem cell signaling. Cytokines which regulate
hematopoiesis have been found to be able to generate ROS and TNFα-mediated inhibition of
HSC self-renewal was shown to result from excessive ROS [48]. Dysregulation of reactive
oxygen species production has also been implicated in abnormal hematopoiesis and potentially
in functioning of the hematopoietic stem cell niche [49]. Enzymes modulating oxygen radical
levels, particularly in stem cells, may therefore represent additional susceptibility factors for
benzene toxicity.

Cell-specific metabolism and toxicity of the polyphenolic metabolites of
benzene in cellular systems

Early studies of cell-specific metabolism [50] showed that the phenolic metabolites of benzene
were more toxic in bone marrow cultures than benzene itself. One interesting metabolic balance
is between MPO and NQO1. MPO can catalyze oxidation of hydroquinone or catechol to
para or ortho-benzoquinone respectively while NQO1 can reduce quinones to their
hydroquinone derivatives which are more readily excreted, are not electrophilic and do not
undergo redox cycling. Consequently, NQO1 is viewed as a detoxification enzyme with respect
to benzene metabolism and studies in both NQO1 knockout animals [51-53] and in humans
occupationally exposed to benzene [54] have confirmed this view. Interestingly, Bauer et al
[52] demonstrated that NQO1 knockout animals of both genders had greater sensitivity to
benzene induced hematotoxicity than wild type controls. However, increased genotoxicity, as
indicated by the frequency of micronucleated reticulocytes, only occurred in female mice. The
authors suggested that different benzene metabolites may be responsible for hematotoxicity
and genotoxicity [52;55].

In cellular studies, the levels of MPO and NQO1 have been suggested to modulate the toxicity
of phenolic metabolites of benzene particularly in stromal cells where multiple cell types exist
with varying enzyme activities [56] [57]. For example, fibroblastoid cells in stroma tend to be
less susceptible to hydroquinone due to an elevated NQO1 and decreased MPO content relative
to macrophages. Another important determinant of stromal cell susceptibility to the phenolic
metabolites of benzene is cellular glutathione levels [58;59]. A combination of NQO1, MPO,
and GSH levels may therefore represent an approach to predicting the relative susceptibility
of different cell types to the phenolic metabolites of benzene (Figure 2). Interestingly, CD34
+ cells isolated from human bone marrow contain significant MPO [60] but no detectable levels
of NQO1 [61] suggesting they would be susceptible to phenolic metabolites of benzene.
However, NQO1 could be induced in isolated human bone marrow mononuclear or CD34+
progenitor cells after exposure to hydroquinone and the level of induction was dependent on
NQO1 genotype. NQO1 was markedly induced by hydroquinone or catechol in isolated human
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bone marrow mononuclear cells genotyped as NQO1 wild type, intermediate induction
occurred in heterozygous individuals whereas induction of NQO1 could not be detected in cells
homozygous for the NQO1*2 polymorphism. These data provided a potential explanation of
the protective role of the wild type NQO1 genotype in bone marrow cells that had no detectable
resting levels of NQO1 [61]. CD34+ bone marrow cells have been shown to be a sensitive
target for 1,4-benzoquinone-induced toxicity [62] and hydroquinone-induced apoptosis [61].

Metabolic susceptibility factors in epidemiological studies of benzene
exposure

One of the first studies of metabolic susceptibility factors in workers occupationally exposed
to benzene demonstrated that both a rapid metabolizer CYP2E1 phenotype and the NQO1*2
polymorphism were associated with an increased risk of benzene poisoning as defined by
decreased white blood cell and platelet counts [54]. The combination of a rapid CYP2E1
phenotype and the NQO1 null genotype led to a 7.8 fold increased risk of benzene poisoning
[54]. Subsequent studies have investigated the role of metabolic susceptibility factors in
benzene poisoning and have confirmed a potential role for the NQO1*2 polymorphism in
benzene poisoning [63-65]. Additional enzyme systems implicated in benzene poisoning
included CYP2E1, GSTT1 and GSTM1 [63-65]. The NQO1*2 polymorphism together with
epoxide hydrolase and GSTT1 polymorphisms were associated with induction of DNA single
strand breaks in Bulgarian petrochemical workers while the MPO463 polymorphism and the
NQO1*3 polymorphism influenced susceptibility to benzene hematotoxicity in Chinese
workers exposed to low levels of benzene [66]. Epoxide hydrolase polymorphisms have also
been recently implicated in susceptibility to benzene poisoning [67]. Not all of these studies
were consistent in the metabolic susceptibility factors identified which probably reflects the
often small numbers of cases studied and the different populations utilized. A recent review
has summarized the literature on polymorphisms and biological effects of benzene exposure
[68].

Non-metabolic susceptibility factors in benzene toxicity
The adverse effects of benzene and its metabolites are widespread and consequently a wide
variety of cellular systems are affected. A summary of non-metabolic susceptibility factors
which are potentially important in benzene toxicity is shown in Table 3. p53 has been
demonstrated to be important in benzene toxicity in animal models [69-72]. Benzene has been
recognized as inducing chromosomal damage [73-76] and genes involved in DNA repair/
genomic integrity have been shown to influence benzene toxicity in occupationally exposed
populations [77]. Additional susceptibility factors associated with cytokines [78;79], adhesion
molecules [78] and multiple gene pathways associated with cell cycle and apoptosis [70;71;
80-82] have also been characterized. Thus, both metabolic and non-metabolic susceptibility
factors have been described for benzene toxicity.

Are there links between metabolic and non-metabolic susceptibility factors
in benzene toxicity?

Since both metabolic and non-metabolic susceptibility factors for benzene toxicity have been
characterized, we have examined potential links between the two groups using NQO1 as an
example.

The metabolic capability of NQO1 with respect to quinone reduction is well recognized [83;
84]. Many quinones of different structural classes can be reduced via NQO1 to their
hydroquinone derivatives via a mechanism proposed to involve hydride transfer [85;86].
Because metabolic enzymes are often expressed and/or induced to high levels in cellular

Ross and Zhou Page 4

Chem Biol Interact. Author manuscript; available in PMC 2011 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



systems, other functions for theses enzymes might be predicted. In the case of NQO1, the
enzyme has been found to scavenge superoxide directly and function as a superoxide reductase
[87]. However, the very poor rate constant of this reaction suggests that unless NQO1 is
expressed or induced to very high levels of expression, which occurs in certain tumor cells or
after marked cellular stress, this mechanism is unlikely to be of physiological relevance.
Another interesting function of NQO1 which was discovered in Xenopus is stabilization of
microtubules [88]. Considering the potential key role of electrophilic reactive metabolites at
the level of sulfhydryl-rich microtubules in the mechanism of toxicity of benzene [89], NQO1-
mediated modulation of microtubule stability in human bone marrow cells is deserving of
investigation.

An additional function that has been proposed for NQO1 is stabilization of p53 against
proteasomal degradation [90;91]. NQO1 interacts with p53 in a protein-protein interaction
[92] which may explain this effect. It has been demonstrated that NQO1-knockout animals had
no detectable NQO1 in bone marrow but importantly markedly decreased levels of p53 and
consequently lower levels of apoptosis and increased bone marrow cellularity [51]. The
protective effect of NQO1 has been proposed to occur at the level of the 20S proteasome
[91].

In summary, it is recognized that NQO1 can have multiple roles and may influence oxygen
radical levels, stabilize microtubules and stabilize p53. Given the influence of NQO1 in
modulating p53 stability, the protective effects of NQO1 in benzene toxicity may not solely
reflect its metabolic ability to reduce quinones to hydroquinones. The effect of NQO1 at the
level of p53 may also indirectly affect other downstream susceptibility factors such as proteins
involved in apoptosis and cell cycle.

NQO1 expression in bone marrow stroma. Studies using transformed human
bone marrow endothelial cells (HBMEC)

Within bone marrow, it is known that stromal cells express relatively high levels of NQO1 and
expression occurs in a cell specific manner [57;93]. Bone marrow endothelial cells express
elevated levels of NQO1 and we have used a transformed human bone marrow endothelial cell
line [94] to examine both potential mechanisms of toxicity of benzene metabolites and the
protective role of NQO1 [95;96]. Although endothelial cells have relatively high levels of
NQO1, they are still susceptible to polyphenolic metabolites of benzene such as hydroquinone
albeit at higher concentrations than stromal cells expressing low NQO1 levels. In a recent study
we examined gene expression changes in HBMEC cells after treatment with 10 μM
hydroquinone [96]. One of these genes, chondromodulin 1 (ChM-I), was upregulated by HQ
treatment and we found the inhibitory effects of HQ on endothelial cell tube formation could
be partially abrogated by ChM-I knockdown [96]. These data suggested a role for ChM-I in
the inhibitory effects of HQ on HBMEC and cellular transfection of NQO1 blocked the effects
of HQ. The potential role of ChM-I in the effects of HQ in HBMEC is summarized in Figure
3.

Using HBMEC to probe the effects of loss of NQO1
The homozygous NQO1 *2 polymorphism is essentially a null polymorphism with only trace
levels of the mutant NQO1*2 protein detectable in homozygous individuals [37-39]. We have
utilized HBMEC to model the effects of a loss of NQO1 in two different ways. We have utilized
either mechanism-based inhibitors of NQO1 to irreversibly block NQO1 activity or we have
knocked down NQO1 expression in HBMEC using anti-NQO1 siRNA. Treatment of HBMEC
with ES936, a mechanism-based inhibitor of NQO1 [97], led to modulation of multiple genes
in a microarray study and one of the downregulated genes was an adhesion molecule VCAM-1
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[98]. The discovery of an adhesion molecule altered in this model was noteworthy since the
HBMEC cellular system was originally developed and characterized based on its adhesive
properties towards human progenitor cells [94]. Blocking antibodies to E-selectin, VCAM-1
and ICAM-1 were found to markedly inhibit CD34+ cell adhesion to HBMEC [94].

Adhesion of progenitor cells to endothelial cells can modulate progenitor cell signaling or
differentiation [99;100]. In addition, endothelial cells in bone marrow form the vascular niche,
one of the two major stem cell niches which regulate progenitor/stem cell signaling, recruitment
and trafficking [101]. The other recognized stem cell niche is the osteoblastic niche [101].
Adhesion molecules are important in niche function and play key roles in stem cell mobilization
and homing in the vascular niche. Adhesion molecules implicated in the function of the vascular
niche include N- cadherin, VCAM-1, and osteopontin [101]. Multiple chemokines are also
likely to play important roles [102].

Our work using HBMEC demonstrated that either pharmacological inhibition of NQO1 using
ES936 or knockdown of NQO1 expression using anti-NQO1 siRNA led to decreased resting
levels of VCAM-1 [98]. Since adhesion molecule levels are markedly stimulated by TNFα in
HBMEC [94], we continued our studies investigating the effects of inhibition or knockdown
of NQO1 on levels of adhesion molecules by incorporating TNFα into the experimental design.
When adhesion molecule expression in HBMEC was stimulated by TNFα, expression of E-
selectin, ICAM-1 and VCAM-1 could be inhibited either by genetic knockdown or
pharmacological inhibition of NQO1 (Zhou et al., unpublished data). Importantly, NQO1
inhibition also led to impaired adhesion of KG1a CD34+ cells to HBMEC imparting functional
significance to downregulation of adhesion molecules. TNFα-induced adhesion molecule
expression occurs via the transcription factor NF-κB and TNFα-induced NF-κB expression
has recently been found to be inhibited in NQO1-knockout animals [103]. Inhibition of NF-
κB activation as a result of inhibition or knockdown of NQO1 could therefore provide a
potential mechanism for inhibited adhesion molecule expression. These findings may have
implications for progenitor/stem cell adhesion and vascular niche function under conditions
where NQO1 activity or protein level is depleted such as in the case of individuals expressing
the homozygous NQO1*2 polymorphism. Interestingly, polymorphisms in both VCAM-1
[78] and TNFα [79] have been associated with susceptibility to benzene-induced
hematotoxicity. In addition, hydroquinone is known to inhibit NF-κB activation in multiple
cell lines [104-106] and the activity of other transcription factors such as PU.1 and AP-1 in
progenitor cells [107;108].

Summary and future work
In summary, metabolic susceptibility factors such as NQO1 can influence non-metabolic
susceptibility factors associated with benzene-induced hematotoxicity (Figure 4). NQO1 can
influence p53 stability in bone marrow and can modulate adhesion molecule production and
downstream CD34+ cell adhesion to HBMEC. The effects of NQO1 at the level of adhesion
molecule expression may be of relevance to the functioning of the vascular stem cell niche and
is deserving of further investigation.

Interactions between metabolic and non-metabolic susceptibility factors are unlikely to be
restricted to NQO1. Glutathione-S-transferase Pi, for example, is known to regulate JNK
signaling and cell proliferation [109;110] and its effects in modulating benzene toxicity may
include both metabolic and non-metabolic mechanisms. Potential effects of metabolic
susceptibility factors at other levels of the benzene toxicity cascade should be considered in
future studies.
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MPO myeloperoxidase

NQO1, NAD(P)H quinone oxidoreductase 1

GST glutathione-S-transferase

ChM-I chondromodulin 1
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Figure 1. Benzene metabolic scheme
Most Phase II pathways have been omitted. For potential reactive metabolites, see Table 1. For
metabolic susceptibility factors, see Table 2. Adapted from [7],[10].
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Figure 2. Metabolic susceptibility factors in stroma (MPO/NQO1/GSH)
Metabolic factors such as MPO, NQO1 and GSH can influence cell specific toxicity of benzene
metabolites.
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Figure 3. Mechanisms of HQ induced inhibition of tube formation in HBMEC
An important role for ChM-I.
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Figure 4. The metabolic susceptibility factor NQO1 influences other non-metabolic susceptibility
factors
NQO1 modulates p53 stability and adhesion molecule expression.
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Table 1
Potential Reactive Metabolites of Benzene

Potential reactive metabolites of benzene

 Benzene oxide

 Trans,trans muconaldehyde

 Quinones

 Thiol adducts

 Phenolics

 Reactive oxygen species

For citations see text
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Table 2
Metabolic Susceptibility Factors in Benzene Toxicity

Factors Susceptibility pathway

CYP2E1 Rapid metabolizer phenotype and SNP's

CYP4F3 ?

MPO G463A promoter polymorphism leading to decreased
transcription

GSH Enzymes regulating levels

Reactive oxygen Enzymes regulating levels

EH Rapid metabolizer genotype, other variants

GST Null variants in GSTT1 and GSTM1. GSTPi variants with
decreased activity

NQO1*2 Heterozygous (decreased activity) and homozygous (null)
C609T variants

NQO1*3 Reduced NQO1 activity

For citations see text
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Table 3
Non-Metabolic Susceptibility Factors in Benzene Toxicity

Non-metabolic susceptibility factors in benzene toxicity

 p53

 Genomic integrity and DNA repair

 Cytokines

 Adhesion Molecules

 Apoptosis

 Cell Cycle

For citations see text
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