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Abstract
Functional recognition imaging in Scanning Probe Microscopy (SPM) using artificial neural network
identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses
to identify the target behavior, reminiscent of associative thinking in the human brain and obviating
the need for analytical models. As an example of recognition imaging, we demonstrate rapid
identification of cellular organisms using difference in electromechanical activity in a broad
frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas
fluorescens bacteria is achieved, demonstrating the viability of the method.

I. Introduction
Scanning probe microscopy (SPM) techniques have become the mainstay of nanoscience and
nanotechnology by providing easy-to-use, non-invasive structural imaging and manipulation
on the nanometer and atomic scales. Beyond topographic imaging, SPMs have found a broad
range of applications for probing electrical, magnetic, and mechanical properties – often at the
level of several tens of nanometers1, 2 opening the pathway for understanding material
functionality and interactions on these length scales.3 The surface topographic and functional
(e.g., magnetic,1 electrostatic,1 or mechanical4) images are acquired in parallel and are
interpreted by an observer to obtain required information, typically based on the morphology
of the objects, as schematically illustrated in Fig. 1.

A common feature for existing SPM techniques is that only a single or a small number of
parameters describing the local properties are obtained; furthermore, information contained in
complementary images is ignored or interpreted within the limits of a cursory examination. As
an example, applications of SPM for imaging and identification of biological systems are
invariably based on the determination of small number of parameters (e.g. indentation modulus
or binding force), or morphological analysis of object shape or structure. Examples include
identification of cancer vs. normal cells based on mechanical properties,5-9 recognition
imaging based on specific antibody interactions,10 morphological imaging and identification
of bacterial spores and viruses based on the molecularly resolved structures of outer shell.11.

In contrast, the last 5 years has seen tremendous progress in multimodal and spectroscopic12

SPMs in which multiple information channels are acquired at each spatial pixel. In dynamic
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SPMs, these include dual excitation frequency SPM,13-15 multiple harmonic imaging,16, 17

HarmoniX mode,18 and band excitation SPM19 and rapid digital lock-ins20 that provide
information on dynamic response at multiple frequencies. Common to all of these methods is
the acquisition of complex multidimensional data sets comprised of local spectroscopic
responses of materials to external stimuli. However, this abundance of information is belied
by the difficulty in its interpretation in terms of materials properties or functionality, or even
identification of the objects present in the system.

Here, we introduce a new SPM method – functional recognition imaging (FR-SPM) - that
allows interpretation of multiple channel or spectroscopic data in terms of desired functionality,
and demonstrate it on an example of rapid single cell identification using the detection of
broadband frequency dependent electromechanical response. The method is demonstrated
using Micrococcus lysodeikticus and Pseudomonas fluorescens deposited on a poly-L-lysine
(PLL) coated mica substrate.

II. Recognition Imaging
II.1. Basic Principles of FR-SPM

The central concept of FR-SPM is direct recognition of local behaviors from measured
spectroscopic responses using neural networks trained on examples provided by the operator.
This recognition step acts effectively as “associative thinking” in a human brain, with the
additional advantage of numerical precision and error estimation of a mathematical model.
Furthermore, it obviates the need for physical model of observed responses (except for obvious
microscope calibratons) by directly linking response to target functionalities. The operation of
FR-SPM includes the steps of training a neural net using a set of examples, data acquisition,
and feature recognition (Fig. 2).

On the training stage, the neural network is configured to recognize material functionality for
a set of examples provided by the observer. The structure of the resulting 3- or higher
dimensional data set is simplified using principal component analysis (PCA) (or other
projection methods) to whiten and decorrelate the data and reduce the number of independent
variables. Thus determined parameter vector is used to train a feed-forward neural network
using the PCA loadings as an input and parameters describing material functionality as a target.

On the recognition stage, the measured SPM data is analyzed using a prior-trained network to
provide a map of material functionality. The measured responses are projected on the PCA
eigenvectors, and the decorrelated components of multispectral data at each pixel are input for
the previously trained neural network. The network output yields material property maps. The
big advantage of this approach is that the decorrelation and neural network processing are linear
and algebraic operations, which implies that recognition data processing is fast. At the same
time, the flexibility of neural network algorithms obviates the need for human supervision
during analysis of multiple spectra once target set is established. Finally, the recognition error
of the neural net can be used as an indicator of the responses absent in the original training set.

II.2. Principal Component Analysis (PCA)
The first step in recognition imaging is the decorrelation and dimensionality reduction of the
data. The standard spectroscopic SPM data (e.g. force-distance curve or set of harmonic
images) is comprised of a large number of points distributed in parameter space, R(xj), j = 1,..,
P, where R is response (e.g. force, amplitude, electromechanical signal), and x is parameter
(e.g. frequency or bias). In typical spectroscopic techniques, P is of the order of several
hundred. Hence, the dimensionality of the R(xj) vector is generally very high, and its
components are strongly correlated (e.g. simply as a consequence of the fact that response are
typically piece-wise smooth and monotonic functions). Hence, the natural basis for
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representation of the R(xj) [i.e. delta functions δ(xj) at each sampling point,

] is unsuitable for data analysis due to strong correlations and large
dimensionality (all Rj are comparable).

A natural way to simplify such data is the PCA,21, 22 broadly used in electron
microscopy23-25 and applied for SPM by Jesse and Kalinin.12 In PCA, the spectroscopic image
of NxM pixels formed by spectra containing P points is represented as a superposition of the
eigenvectors wk (linear basis change) as,

(1)

where aik ≡ ak (x,y) are position-dependent expansion coefficients, and Ri(xj) ≡ R(x,y,xj) are
responses at different spatial locations. The eigenvectors wk(ω) and the corresponding
eigenvalues λk are found from the covariance matrix, C = AAT, where A is the matrix of all
experimental data points Aij, i.e. the rows of A correspond to individual grid points (i =
1,..,N · M), and columns correspond to sampling points, j = 1,..,P. The eigenvectors of C,
wk(ωj), are orthogonal and are chosen such that corresponding eigenvalues are placed in
descending order,. λ1 > λ2 > …. In other words, the first eigenvector w1(ωj) contains the most
information (defined as variance) within the spectral-image dataset, the second contains the
most information after subtraction of the first one, and so on. In this manner, the first p maps,
ak(x,y), contain the majority of information within the 3D dataset, while the remaining P-p sets
are dominated by noise. Hence, the response can now be represented as

(2)

where Y is the noise term.

Mathematically, the eigenvalues and corresponding eigenvectors are determined through
singular value decomposition of the A matrix.26 The number of significant elements, p, can be
chosen based on the overall shape of λk(k) dependence, where the linearly decaying part
corresponds to the significant elements and the constant part corresponds to noise-dominated
components, or from the correlation function analysis of ak(x,y) maps.27

Note that PCA allows simplifying and decorrelating the multivariate statistical data. However,
the resulting components, while allowing most efficient representation of the data, are not
directly related to the underpinning physical mechanisms. In specific cases, such
correspondence can be established approximately.12 However, the capability to lower the
dimensionality of the data is invaluable for all advanced forms of data analysis, as exemplified
by neural network identification discussed below.

II.3. Neural network (NN)
On the second stage, the PCA components are used as an input for the recognition neural
network.28 Typically, we utilize a layered back propagation network with 3 layers – input,
hidden, and output, each formed by a number of neurons connected by intralayer weight
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matrices. The number of input neurons is equal to the number of significant PCA components,
and they are initialized as , where s denotes the chosen data set.

On transition from the input to hidden layer, the values of the neurons are set as

(3)

where  is weight matrix. The outputs of the hidden-layer neurons are processed using transfer
function φ(x), which can be chosen as linear (purelin), or non-linear (e.g. sigmoidal–tansig).
Finally, the values of the output neurons are defined as

(4)

where  is the second weight matrix.

On the training stage, the neural net is presented with the set of examples, aik(s), and
corresponding target outputs, . The weight matrices  and  are updated using back-
propagation algorithm to minimize the square error.27 Upon presentation of multiple examples,
until the minimum error is achieved, the network starts to act as a universal interpolator that
is able to relate the input variables to the target outputs. The reproducibility and errors
associated with NN analysis in comparison with conventional methods are well studied.29

III. Bacterial recognition based on the electromechanical response
As a model system we use live Micrococcus lysodeikticus (M. lysodeikticus) and Pseudomonas
fluorescens (P. fluorescens) deposited on a poly-L-lysine (PLL) coated mica substrate (see
Materials and Methods for details). The model bacteria are chosen to be easily identifiable by
their characteristic shapes on an AFM topographic image, providing readily identifiable
contrast (Fig. 1) and hence source of the training set for the network. While the mechanical
properties of these bacteria have not been studied, the stiffness of P. aeruginosa, the closest
species to the bacteria of our choice, has been reported in the literature as 0.016 – 0.053 N/m
(4).

Here, we attempt to recognize the bacteria at a single pixel level, i.e. using the response
measured at a single spatial location. This is fundamentally different from recognition methods
based on shape identification, e.g. topographic images or membrane structure that utilize
spatially-correlated information in multiple adjacent pixels. Furthermore, we explore the
variability of identification within the bacteria.

III.1. Single frequency PFM imaging
The examples of the topographic images of the bacteria are shown in Fig. 3 (a). The several
M. lysodeikticus and P. fluorescens bacteria are clearly identified by the characteristic shapes.
In addition, a number of large-scale topographic features (e.g. contamination) are clearly seen.

As an example of functional imaging, we have performed single frequency Piezoresponse force
microscopy. In this, the tip is excited using periodic bias, and mechanical response of the
surface is detected as a cantilever deflection. This method is broadly used for characterization
of ferroelectric materials30 and can be applied for imaging biological systems such as
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piezoelectric proteins in calcified and connective tissues 31, 32. PFM in liquid has been validated
on ferroelectric materials33, and have recently been demonstrated for biological systems31.
The PFM maps of the bacteria are shown in Fig. 3(b,c), and clearly show bacterial shapes. The
contrast is virtually uniform within the bacteria. However, there is a little variability between
different bacterial types.

III.2. Band excitation (BE) imaging
The PFM contrast, similar to most SPMs such as phase imaging,34 strongly depends on
frequency. The optimal frequency for recognition imaging, i.e. corresponding to maximal
contrast among bacteria types and between bacteria and substrate is unknown. To overcome
this uncertainty, we adopt an approach based on a full frequency-response curve measured at
each sample point using the band excitation approach19. This is essentially equivalent to
performing measurements at multiple closely spaced frequencies, albeit avoiding the necessity
for lengthy sequential acquisition.

In BE, the excitation and detection is performed using a signal having defined amplitude density
and phase content in a given frequency interval, as compared to a single or two frequencies
used in current SPMs. The use of the broadband signal allows frequency-dependent response
to be obtained in a broad frequency range at a standard imaging rate, thus enabling rapid
spatially-resolved measurements. This imaging step results in a 3D data array formed by
amplitude- and frequency spectrum at each spatial point. The characteristic response spectra
for the M. lysodeikticus, P. fluorescens and background are shown in Fig. 3(e), demonstrating
the significant differences among the frequency-dependent responses between different
bacteria types and substrate.

Note that the frequency dependence of electromechanical response is determined by the
convolution of (a) electromechanical response of the system per se (excitation force), (b)
contact mechanics of the tip-surface junction, and (c) dynamics of the cantilever (transfer
function of the detector). The electromechanical response that acts as the excitation force is
controlled by the long range interactions including electric double layer forces35, and bacteria-
specific electromotility and membrane flexoelectricity36. Given the low diffusion coefficients
of ions in solutions and relatively large effective mass of bacteria, both electrostatic interactions
and electromechanical cellular response are expected to have significant frequency dispersion
in 10 kHz – 1 MHz frequency range. The contact mechanics is controlled by the local elastic
and loss moduli of the bacterial surface and the indentation force. Finally, cantilever dynamics
is controlled by the boundary conditions on the tip-surface junction37 and hydrodynamic
cantilever damping,38 giving rise to a complex resonant behavior. The lack of simple analytical
models for any of the response components precludes analytical interpretation of the data.

However, in analyzing the experimental data, we note that the response curve is generally
similar within bacteria of the same type and changes strongly among different bacteria and the
substrate, suggesting that dynamic broad band electromechanical response (i.e. spectral
response, as opposed to single frequency response used in standard scanning probe
microscopy) can be used for rapid cell identification even though the detailed underlying
mechanisms are unknown. The error bars (defined as standard deviation for signal within
bacteria of selected type at a single frequency) are sufficiently high to preclude unambiguous
identification based on single frequency. Below, we demonstrate the functional recognition
based on the full broadband electromechanical response.

III.3. Recognition imaging
Band excitation PFM (BE-PFM) yields full amplitude and phase vs. frequency cantilever
response curves at each surface point, generating a 3D {A,θ}(x, y, ω) data array, where {A,θ}
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is the response amplitude and phase, ω is frequency, and (x, y) is location of a pixel. The
structure of the resultant data set was simplified using principal component analysis, as
described in Section II.1.

The eigenvectors of Eq. (1) are shown in Fig. 4 (a). Note that the eigenvectors do not have
direct physical meaning, and rather represent the most statistically significant elements of the
spectrum. The corresponding eigenvalues are shown in Fig. 4 (b) and illustrate that the first 6
PCA maps contain 99% of the information of the original spectra comprised of 261 data points.
Spatial maps of the first 9 PCA components are shown in Fig. 4 (c). The marked contrast of
the different types of bacteria between maps is obvious – i.e. M. lysodeikticus is clearly seen
in the 2nd, 3d, and 4th PCA component maps, while P. fluorescens shows weak contrast in the
2nd and 4th maps and is not visible in other component maps. The characteristic distribution
of the PCA components for M. lysodeikticus, P. fluorescens and substrate are shown in Fig. 5
(a). Note that while the average PCA values for two types of bacteria and the substrate are
different and show clearly defined contrast [and hence may serve as an effective method to
display the data], the histograms for each component strongly overlap, and hence identification
of bacteria based on a single PCA component only is impossible (Fig. 5 (b)) and morphological
information on bacteria shape must be used.

To identify the bacterial based on the single-pixel response we utilize the neural network
approach described in section II.3. The fully connected neural network with 6 input, 3 output,
and 3 neurons in the hidden layer was used. The transfer functions were sigmoid in the hidden
layer and purelin in the output layer. The net was trained using standard back propagation
algorithm using a part of the image [shown by rectangle]39. The targets were (1,0,0) for M.
lysodeikticus, (0,1,0) for P. fluorescens and (0,0,1) for background. The validation set was
chosen as a random subset of training data.

Thus the trained network was applied to the full BE-PFM image, providing intensity maps
corresponding to individual bacterial components as shown in Fig. 6. Note that both bacteria
types and the substrate are identified correctly both within and outside the training region. More
importantly, the characteristic response is close to 1 within the each bacteria type, and is
essentially zero outside. This demonstrates that the recognition is achieved on the level of a
single spatial pixel and is only confirmed using the bacterial shape.

To generate the 3D recognition image, the intensity of the signals corresponding to the different
types of bacteria and the substrate are color coded, i.e. neural network output at 1, 2, and 3d
neurons mapped of the RGB intensities. The resulting image is overlaid on the topographic
structure as shown in Fig. 7. Note that M. lysodeikticus, P. fluorescens, and the substrate are
unambiguously identified. Furthermore, a patch of flat surface is identified as M.
lysodeikticus (presumably flattened bacterial membrane), whereas large topographic features
(debris) are not recognized as bacteria. Hence, the image illustrates unambiguous identification
of bacteria types and substrate based on the electromechanical response.

V. Materials and methods
V.1. Culture growth and preparation

Bacteria samples, M. lysodeikticus (Sigma-Aldrich # M3770) and P. fluorescens (ATCC #
11150) were grown in Trypticase Soy Broth (BD # 211768) and Difco™ Nutrient Broth (BD
# 234000), correspondingly, for 24 hrs at 30°C. The bacteria suspension was purified by
centrifugations at 1000g for 5 minutes and then re-suspended in Millipore water. For bacteria
immobilization we used poly-L-lysine (PLL, Sigma-Aldrich #P4707) coated mica – 50 μl of
sterile 0.01% PLL solution was dried-out on freshly cleaved mica (EMS #71851-05) at room
temperature. Then 50 μl of bacteria suspension was adsorbed on PLL-coated mica for 15
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minutes, followed by washing with copious amounts of Millipore water. Pseudomonas species
are prone to change from rod to coccoid shape during starvation; however this morphology
change takes several days to occur. To avoid this problem, PFM experiments were performed
immediately after immobilization of bacteria.

V.2. Scanning Probe Microscopy
Asylum Research MFP-3D Atomic Force Microscope (AFM) with a static fluid cell was used
for the imaging in Millipore water. Piece of mica about 1 cm in diameter was glued on glass
bottom of the cell. Bacteria samples were prepared according to the procedure (I). Au coated
tip (Olympus, RC800PB) with stiffness ∼0.06 N/m and resonance frequency 17 kHz was used
for the experiments. The cantilever has spring board shape with 20 μm width, 200 μm length
and 0.8 μm thickness.

The Band Excitation (BE) Piezo Force Microscopy (PFM) was implemented on a MFP-3D
AFM (Asylum Research) and an in-house developed MATLAB/LABVIEW data acquisition and control
system [see Ref. 19 for additional details]. A voltage excitation band spanning approximately
32 - 286 kHz (increasing chirp) with amplitude of 10 V was applied to the microscope tip.

VI. Summary and outlook
To summarize, we proposed an approach for rapid recognition imaging based on the response
recognition using trained neural network. The approach is demonstrated for rapid bacterial
identification using dynamic electromechanical response. Note however that the recognition
algorithms used here is universal and could be extended to other spectroscopic and multimodal
SPM modes including force-distance curves, multiple harmonic detection, 16, 17 HarmoniX,
18 etc. In all these cases, the use of direct identifiers and calibration standards can allow to
avoid the necessity of defined physical model and use “functional recognition” based on single-
point response shape. That said, there is tremendous potential for future development of method
to introduce proper normalization and calibration routines (e.g. due to the use of cantilevers
with different spring constants, etc).

Given the well-known scalability of principal component analysis for real-time operation,40

this approach can be used in real-time imaging. Furthermore, the standard strategies for
biological recognition based on functionalized tips10, 41 can be synergistically combined with
this approach to increase selectivity. This analysis mode is ideally suited for differentiation
and identification of cells with differing phenotype obviating the need for quantitative
extraction of materials properties, as such can be broadly applied for cancer identification,
biodetection, and many other areas. The broad range of potential applications for the proposed
technique may require modification/addition to the proposed protocol due to the variety of
experimental conditions where this method can be used. Separate validation of the technique
is required for each experimental configuration before reliable conclusions from the obtained
results can be drawn.
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Figure 1.
(a) AFM topographic image (9 × 7 μm2) of the 2 types of bacteria on the surface imaged in
using contact mode AFM in liquid. Two types of the bacteria with different shapes (rectangular
and circular) are clearly seen on the image (a), which allows the construction of the recognition
map for 2 bacteria types based on the shape. (b) Recognition image of the bacteria: type 1 –
red, type 2 – blue, background – white, un-identified spot – green.
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Figure 2.
FR-SPM flowchart showing the conversion of spatially resolved electromechanical spectra
into recognition maps or materials' properties maps.
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Figure 3.
(a) AFM topography image (contact mode in liquid) of the M. lysodeikticus and P.
fluorescens on PLL-coated mica (the average height of the features is 500 nm; red-to-blue
contrast scale bar is 1 μm); (b) amplitude of the single frequency PFM, (c) phase of single
frequency PFM, (d) schematic representation of the waveforms used in single frequency PFM
and in BE probing of the electromechanical coupling.
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Figure 4.
(a) Eigenvectors for the first 3 PCA components; (b) logarithm of the first 16 eigenvalues; (c)
maps showing the spatial variations in magnitude of PCA components 1 through 9.
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Figure 5.
(a) The magnitude of the PCA component as a function of PCA component number, showing
the difference among the M. lysodeikticus, P. fluorescense and background; (b) The histogram
of the 2nd PCA component image, differentiation of M. lysodeikticus, P. fluorescense and
background is fairly difficult.
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Figure 6.
(a) Topography image of the bacteria on PLL mica (area within blue rectangle was used for
training neural net). Output of the neural net in the form of recognition maps for the background
(b), P. fluorescense (c) and M. lysodeikticus (d). Value 0 corresponds to the minimum
likelihood of the point to be the target, when value 1 corresponds to the maximum one.
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Figure 7.
Results of neural network identification of the bacteria (M. lysodeikticus (red), P.
fluorescens (green)) are overlaid with topography image. Training area for neural network is
outlined by black rectangle.
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