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That conditioning on a common effect of exposure and outcome
may cause selection, or collider-stratification, bias is not intuitive.
We provide two hypothetical examples to convey concepts
underlying bias due to conditioning on a collider. In the first exam-
ple, fever is a common effect of influenza and consumption of
a tainted egg-salad sandwich. In the second example, case-status
is a common effect of a genotype and an environmental factor.
In both examples, conditioning on the common effect imparts
an association between two otherwise independent variables; we
call this selection bias.
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Introduction
Epidemiologists, like researchers in many fields, give a
great deal of attention to potential sources of bias
in their study findings. As opposed to imprecision,
biases (or systematic errors) abide as the sample
size grows. Epidemiologists immediately understand
why an uncontrolled common cause of exposure
and outcome causes bias. We call this confounding.1

In our experience, epidemiologists have a more diffi-
cult time understanding why conditioning (implicitly
or explicitly) on, or controlling for, a common ‘effect’
of exposure and outcome may cause bias. We call this
selection bias,2 collider-stratification bias3 or bias due
to conditioning on a collider. Note that here the term
‘conditioning’ refers to restriction (by design or anal-
ysis), stratification or regression adjustment.
Although some examples of collider-stratification
bias have been published in the epidemiologic litera-
ture,2,4–6 here we present two simple hypothetical
examples that may help to convey some concepts

underlying bias due to conditioning on a collider.
First, we briefly introduce causal diagrams.

Diagrams have been used to encode knowledge
about systems of variables in epidemiology for
decades.7 Recently, Pearl8 formalized causal diagrams
as directed acyclic graphs, providing investigators
with a powerful tool for bias assessment, if the
rules of causal diagrams are followed. Rules for work-
ing with causal diagrams are given by Greenland
et al.9 and succinctly in the Appendix of Hernán
et al.10 Causal diagrams link variables by single-
headed (i.e. directed) arrows that represent direct
causal effects. For a diagram to represent a causal
system, all common causes of any pair of variables
included on the diagram must also be included
on the diagram. The absence of an arrow between
two variables is a strong claim of no direct effect of
the former variable on the latter. We denote con-
ditioning by placing a box around the conditioned
variable.
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Example one
Suppose that you attend a meeting with 99 of your
peers. Unbeknownst to you, 10 were pre-
symptomatically infected with influenza upon arrival.
We ignore transmission, the effects of which we
would not see for a few days. Everyone at the meeting
ate one of 50 chicken or 50 an egg-salad sandwiches
in a boxed lunch, chosen at random. Without further
information, what is the expected number of influ-
enza cases in the 50 people who ate a chicken sand-
wich? The answer is five; and the same is true for
the 50 people who ate an egg-salad sandwich. The
data in Table 1 illustrate this example. In panel A of
Table 1, the risk of influenza is 5/50 in both sandwich
groups, and the risk difference is 0. Because sandwich
type was randomized, we expect no association
between pre-existing influenza and sandwich type.
Ignoring chance imbalances due to the relatively
small sample size, it is clear that the data in panel
A of Table 1 represent what we would expect to see
in an infinite sample (one can think of each of the
50 people as representing a much larger number of
homogenous individuals).

That evening, you and 54 others develop a 1028F
fever. Let’s say that in our hypothetical world there
are only two ways to get such a fever: influenza or
consuming 1 of the 50 tainted egg-salad sandwiches.
Among those individuals with a fever, therefore, all
were exposed to either influenza or an egg-salad
sandwich (or both). Put another way, restricting our
attention to only those individuals with a fever or
conditioning on (stratifying by) the variable fever,
we have conditioned on a ‘common effect’ of both
influenza and sandwich type.

Therefore, knowing that you have a fever, if we ask
you whether you ate an egg-salad sandwich and you
respond ‘no’, then we know that your fever is due to
having influenza. In panel B of Table 1, we see that,
among those with a fever, the influenza risk among
those who ate a chicken sandwich is 5/5¼ 1, com-
pared with 5/50 for those who ate an egg-salad sand-
wich, yielding a risk difference of 0.9. (Conversely, all
individuals without a fever were exposed to neither
influenza nor tainted egg-salad.) This association is
introduced by conditioning on a common effect,
namely fever. Recall that sandwich type was randomly
assigned. This association was not present before we
knew about (and conditioned on) your fever status.

In general, we may introduce bias by conditioning
on common effects of otherwise unrelated variables:
we call this selection bias. Consider the variables
influenza I, sandwich type S and fever F. A causal
diagram8 illustrating the associations as described
previously is drawn in Figure 1A. A variable like F,
where two arrowheads meet, is called a ‘collider’ on
the ‘path’ I–F–S; but may not be a collider on other
paths (if they existed). When we condition on a
collider, we may introduce associations in one or
more strata that were not present in the source pop-
ulation. One way to understand the bias caused by
conditioning on a collider is to envision a connection
made between I and S once F is conditioned upon;
indeed, some methods for working with causal dia-
grams explicitly draw such connections.9 The bias in
this example is not in the association of exposure (S)
with disease (F), but it is in the apparent I–S associ-
ation, within one or both levels of F.

Example two
Another example of selection bias is the setting of
a case-only study, which has become popular in the
study of gene–environment interactions.11 This design
is used to measure departures from a multiplicative

Table 1 Data illustrative of selection bias, due to condi-
tioning on a collider

Influenza

Yes No Total Risk
Risk

difference

Panel A

Sandwich

Chicken 5 45 50 0.1 0.0

Egg salad 5 45 50 0.1

Panel B

Fever

Sandwich

Chicken 5 0 5 1.0 0.9

Egg salad 5 45 50 0.1

No fever

Sandwich

Chicken 0 45 45 0.0 NA

Egg salad 0 0 0 NA

Figure 1 Causal diagrams depicting scenarios described
in Example 1 (A), Example 2 (B) and in Discussion (C)
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model of a constant risk or rate ratio (RR) under
assumptions that the environmental variable (E) and
the genetic variable (G) are independently distributed
in the source population and that the estimated effect of
at least one of them on the disease (D) is not con-
founded. These conditions are present if G is subject to
Mendelian randomization12 and G does not affect E.

Let AGE and NGE represent the number of incident
cases and the person-time at risk in each of the four
combinations of G¼ 0, 1 and E¼ 0, 1. Then the rate is
RGE¼AGE/NGE, and the ratio of RRs, (R11/R10)/(R01/
R00), may be written as a ratio of odds ratios (ORs)
as A11=A10ð Þ= A01=A00ð Þð Þ= N11=N10ð Þ= N01=N00ð Þð Þð Þ. Given
the independence of G and E in the source popula-
tion, the denominator of this last expression is unity.
The numerator of this last expression is the case-only
G–E OR, or ORGE|D¼1, and equals the ratio of RRs.

When E and G both affect D, a causal diagram
is drawn in Figure 1B, and D is a collider on the
path G–D–E. Unconditionally (i.e. in the source pop-
ulation for cases in the case-only study), E and G are
not associated. However, when we condition on D,
we expect to find an association between E and
G within at least one stratum of D because of selec-
tion bias. In the case-only design, this conditioning is
accomplished by restricting the study to the cases.

For illustration, it is useful to consider the full
underlying cohort study and examine the G–E associ-
ation in both levels of D (i.e. among the cases and
non-cases). In the hypothetical data in Table 2, G and
E are unassociated in the persons at risk (ORGE¼ 1.0),
but G and E are associated within levels of D. Among
the non-cases, the ORGE|D¼0¼ 0.16. Among the cases,
the ORGE|D¼1¼ 1.5, which equals the ratio of the RRs
(i.e. 3.0/2.0¼ 1.5).

Under the design assumptions of the case-only
study, the case-only G–E OR is an unbiased estimate
of the ratio of RRs. The selection bias is not in the
estimate of that measure, but in the G–E association
within one or both levels of D as an estimate of the
G–E association in the source population. In Table 2,
ORGE equals 1, but ORGE|D¼0 6¼ 1 and ORGE|D¼1 6¼ 1.
When the ratio of RRs equals 1, ORGE|D¼1 equals 1
as well and the overall G–E association is distorted
only among the non-cases, ORGE|D¼0 6¼ 1.

Discussion
This note is about the distortion of an association
between two variables that occurs by conditioning on
a common effect; we call this selection bias. Whether
through restriction, stratification or regression
adjustment, the result in this setting is a selection
bias that is distinct from bias due to confounding.

Some confusion between confounding and selection
bias may have resulted from definitions of confound-
ing,13 which were not explicit about confounding
being a bias due to the existence of a common
cause of exposure and outcome. By definition, a
common cause must be ‘temporally prior’ to both
exposure and outcome. However, a measured con-
founder may be temporally ‘posterior’ to exposure if
it is on a causal pathway from the common cause to
the outcome, or temporally posterior to ‘both’ expo-
sure and outcome if it is a descendant of the common
cause. In contrast, by definition, a common effect
must be temporally posterior to both exposure and
outcome. Selection bias results from conditioning on
such a common effect. In the present examples the
collider is the ‘outcome’ itself rather than a variable
along a path that would cause bias in an exposure–
outcome association. We chose such examples to
minimize the number of variables needed. Selection
bias may also occur when the selection happens tem-
porally ‘prior’ to exposure, such as when we condition
on a common effect of causes of exposure and out-
come as shown in Figure 1C. In many real-data
settings one cannot determine whether a purported
bias is due to confounding or selection and the dis-
tinction may not matter. In addition to confounding
and selection bias, causal diagrams have been used
to depict direct and indirect effects,14 bias due to
overadjustment,15 time varying confounding16 and
time modified confounding.17

In summary, when one has conditioned (by design
or analysis) on a common effect of a pair of variables
then there is likely to be a spurious association
between this pair of variables, which is due to selec-
tion bias. Of course, our examples are contrived.
In the first, we ask that you ignore transmission
and believe in a world with only two causes of fever
and in both examples we ask that you ignore sam-
pling variability. Our only defense for these artificial-
ities is that sometimes clarity is inversely related to
the complexities of life.
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Table 2 A source population for a G–E case-only study of a
source population in which the RRs are not constanta

G E Risk RR Number Cases Non-cases

Yes Yes 0.9 3.0 100 90 10

No 0.3 1. 50 15 35

No Yes 0.2 2.0 200 40 160

No 0.1 1. 100 10 90

aG and E are unassociated in the population but associated in
both levels of the collider, disease (i.e. among the cases and
the non-cases). The case-only G–E OR of 1.5 equals the ratio
of RRs.
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KEY MESSAGES

� Conditioning, by design or analysis, on a common effect of a pair of variables may cause a spurious
association (i.e. selection bias) between this pair of variables.

� Intuition for such bias may be gained by studying simple examples, as presented herein.
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