
Automatic Segmentation of High-Throughput RNAi Fluorescent
Cellular Images

Pingkum Yan [Member, IEEE],
School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL
32816 USA

Xiaobo Zhou [Member, IEEE],
Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical
School and the Functional and Molecular Imaging Center, Department of Radiology, Brigham and
Women's Hospital and Harvard Medical School, Boston, MA 02115 USA.

Mubarak Shah [Fellow, IEEE], and
School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL
32816 USA

Stephen T. C. Wong
Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical
School and the Functional and Molecular Imaging Center, Department of Radiology, Brigham and
Women's Hospital and Harvard Medical School, Boston, MA 02115 USA.

Abstract
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool
to assist biologists in understanding complex cellular processes. The large number of images
produced in each study make manual analysis intractable; hence, automatic cellular image analysis
becomes an urgent need, where segmentation is the first and one of the most important steps. In this
paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images
is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed
algorithm. Cells are then extracted by modeling the interaction between them as well as combining
both gradient and region information in the Actin and Rac channels. A new energy functional is
formulated based on a novel interaction model for segmenting tightly clustered cells with significant
intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase
level set method, which leads to a highly effective cell segmentation method. Promising experimental
results demonstrate that automatic segmentation of high-throughput genome-wide multichannel
screening can be achieved by using the proposed method, which may also be extended to other
multichannel image segmentation problems.
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I. Introduction
High-throughput screening using automated fluorescent microscopy is becoming an essential
tool to assist biologists in understanding complex cellular processes and genetic functions
[1]. By using the RNA interference (RNAi) process, the function of a gene can be determined
by inspecting changes in a biological process caused by the addition of gene-specific double-
stranded RNA (dsRNA) [2], [3]. The development of Drosophila RNAi technology to
systematically disrupt gene expression enables screening of the entire genome for specific
cellular functions. In a small-scale study using manual analysis of genome-wide screening
[4], biologists were able to observe a wide range of phenotypes with affected cytoskeletal
organization and cell shape. However, without the aid of computerized image analysis, it is
almost intractable to quantitatively characterize morphological phenotypes and identify genes
in high-throughput screening. For instance, in a typical study conducted by our biologists [1],
approximately 21 000 dsRNAs specific to the predicted Drosophila genes are robotically
arrayed in 384-well plates. Drosophila cells are plated, and take up dsRNA from culture media.
After incubation with the dsRNA, cells are fixed, stained, and imaged by automated
microscopy. Each screen generates more than 400 000 images, or even millions if replicas are
included. Clearly, there is a growing need for automated image analysis as high-throughput
technologies are being extended to visual screens.

The key problem here is to automatically segment cells from cell-based assays in a cost-
effective manner, since fast screening can generate hundreds of thousands of images in each
study with rather poor image quality. Three main challenges [5], [6] related to this task are as
follows. Firstly, cells with specific phenotypes need to be accurately segmented for further
analysis. Samples of the three major phenotypes, S-spikey, R-ruffling, and A-actin acceleration
at edge, to be identified in this study, are shown in Fig. 1. They are used for the gene clustering
and scoring, and are of particular interest to our biologists. These shapes are not always convex,
and violate the assumption of many algorithms [7], [8]. Secondly, significant intensity
variations exist in each cell. Thus, areas inside each cell can no longer be assumed as
homogeneous regions, which cause many intensity-based segmentation methods fail. Thirdly,
cells are tightly clustered and will not likely show a strong border where they touch, which
makes it difficult to separate the cells.

A novel cellular image segmentation scheme for RNAi fluorescent genome-wide screening is
presented to address these challenges. In our biological study, cells are fixed and stained with
different dyes to investigate the different components of cells. Each staining is captured by one
image channel. The three channels, Actin, Rac, and DNA, are captured, as shown in Fig. 2.
Only the nucleus of the cell is visible in the DNA channel, while the cytoplasm of the cell is
only available in an Actin channel. The Rac channel contains some auxiliary information. In
our scheme, nuclei are first extracted from the DNA channel and labeled, which are then used
as the initialization for segmentation of cells in other channels. To separate the tightly clustered
cells, a model describing the interaction between neighboring fronts is incorporated into the
segmentation process. The segmentation scheme is then developed by using multiphase level
sets. A new level set propagation scheme is obtained by minimizing the energy functional
associated with the interaction model. The proposed algorithm is a general image segmentation
method, which may also be applied to other multichannel imaging problems.

The rest of the paper is organized as follows. Section II provides a brief review of the related
work. The proposed cell segmentation scheme is presented in Section III. Section IV provides
the segmentation results and discussion, and finally, Section V concludes the work.
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II. Related Work
A number of methods for nuclei and cell segmentation have been reported in recent years.
According to the techniques used, existing methods can be broadly divided into two main
categories, low-level and high-level information-based methods.

Methods in the first category are based on techniques exploiting low-level image features, such
as pixel intensity and image gradient. Since the watershed method has shown to produce good
results in separating cells that are connected, it is the most commonly used technique for cell
image segmentation in this category. A major problem associated with these methods is the
over-segmentation of the image, although some algorithms have been proposed to deal with
this problem. For example, Wählby et al. [9] used a rule-based approach for merging over-
segmented regions. Zhou et al. [10] proposed Voronoi diagram to correct the overlapped
regions produced by marker-controlled watershed. However, it is difficult to devise reliable
universal rules to merge the over-segmented regions in different cases. The situation becomes
even worse when the intensities vary within a large range.

The other class of segmentation methods includes those exploiting constraints derived from
the image data together with high-level a priori knowledge of the objects. In this category,
deformable-model-based methods have been quite successful, where contours driven by
internal and external forces evolve in the image until they converge to the boundaries of nuclei
or cytoplasm [11], [12]. Since higher level knowledge is incorporated in these methods, a more
robust segmentation can be obtained. However, overlapping areas may exist between these
evolving contours. To solve this problem, Zimmer et al. [7] introduced repulsive force between
parametric active contours by modifying the edge map of each contour. However, their method
may have difficulty in segmenting dense clustered cells, where the edge maps are difficult to
distinguish. Furthermore, it will become very complex to use parametric active contours to
segment a large number of cells. Ortiz de Solórzano et al. [13] employed a level set scheme
[14], [15] for the segmentation of nuclei and cells. Each cell is approximated by a propagation
front embedded in a level set map, and the crossing of fronts is prevented explicitly by
considering the positions of other fronts. However, the gradient curvature flow is not powerful
enough to deal with intensity variation inside each cell and to divide the cells at their boundaries.
The multiphase level set scheme [16]-[19] was used by Dufour et al. [8] for segmenting and
tracking cells in 3-D microscopy images. However, due to the strong constraints applied in
their work for optimization, success of the algorithm has only been demonstrated on
segmentation and tracking of sphere-like convex cells.

In this paper, a new interaction model is proposed for segmenting RNAi fluorescent cellular
images. Large number of tightly clustered cells are successfully segmented by combining the
shape, contrast, intensity, and gradient information, by the introduction of the competition and
repulsion in the new interaction model using the multiphase level set [16], [20].

III. RNAi Image Segmentation
In this section, we present the proposed automatic scheme for RNAi fluorescent genome-wide
screening segmentation. Since the number and locations of cells are unknown, it is difficult to
directly segment cells from Actin and Rac channels, as shown in the sample images of Fig. 2.
However, nuclei in the DNA channel are rather clearly imaged, and hence, are relatively easier
to segment, which can then be used to count and position cells in other channels. Thus, the
proposed segmentation scheme consists of two modules. In the first module, segmentation of
nuclei is done by using a modified watershed method. The extracted nuclei are then used as
initialization for the segmentation of cells in the second module. Since the Rac channel does
not contain much useful information, it is summed into the Actin channel for cell segmentation
to enhance the image contrast for segmentation. The challenges include weak boundaries
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between touching cells and intensity variations in each cell, which may cause many
segmentation methods to fail, as shown by an example in Fig. 3. In order to deal with this
problem, a novel interaction model characterizing the relationship between neighboring
contours is proposed. The multiphase level set method is employed for minimizing the
associated energy functional, which results in a robust cell segmentation method. The details
of the scheme are given as follows.

A. Nuclei Segmentation
The first module of our RNAi image segmentation scheme is for extracting nuclei from the
DNA channel. Since the nuclei appear much brighter than the background in the DNA channel,
as shown in Fig. 4(a), Otsu's thresholding method is first applied to extract all the nuclei. A
binary image with nuclei as foreground is obtained, as shown in Fig. 4(b). However, a global
threshold value may not be optimal for the whole image. Note that some nuclei close to each
other do not get separated due to the variance of pixel intensity [see Fig. 4(b)]. A higher
threshold may help to separate the nuclei, but it will cause some other nuclei to be missed or
split.

In order to separate the connected nuclei after thresholding, a distance transform is applied to
the binary image, as shown in Fig. 4(c). It can be seen that “basins” (dark areas) appear inside
the nuclei, and “dams” (bright lines) are formed between them. The watershed algorithm
[21] is then naturally employed to label the nuclei on the distance transform map. However,
the simple watershed algorithm works well only when the shape of nuclei is exactly circular
[22], [23]. Otherwise, multiple watershed regions may be produced for each single nucleus.

To handle this problem, an enhanced watershed algorithm is developed. In the first step, an
initial classification of all points into catchment basin regions is done by tracing points down
to their local minimum, following the path of steepest descent. Each segment consists of all
the points whose paths of gradient descent terminate at the same minimum. The number of
segments is equal to the number of local minima in the image. Obviously, too many regions
are produced, which results in over-segmentation. To alleviate this, flood level thresholds are
established. Flood level is a value that reflects the amount of prestored water in the catchment
basins. In other words, the flood level threshold is the maximum depth of water that a region
could hold without flowing into any of its neighbors. With the flood level established, a
watershed segmentation algorithm can sequentially combine watersheds whose depths fall
below the flood level. The minimum value of the flood level is zero, and its maximum value
is the difference between the highest and the lowest values of the input image. In practice, we
set the flood level as a scaled value between 0 and 1. Thus, the second step of the algorithm is
to analyze neighboring basins and to compute the heights of their common boundaries for flood
level thresholds.

The segmentation results of our watershed method are shown in Fig. 4(d). By combining the
results obtained by simple thresholding and the watersheding, touching nuclei can be separated,
such that each nucleus has a unique label. The labeling results are shown in Fig. 4(e). After the
initial labeling, there may be some small regions caused by noise, which may also be labeled
as nuclei. To eliminate these unwanted regions, the average size range of nucleus is used as a
criterion. Since the resolution of image acquisition equipment is known, the range can be
estimated easily. If the size of a region is much smaller than the average nucleus size, the region
will be considered as one produced by the noise. It will then be removed or merged into an
adjacent region. Fig. 5 shows an example of the final segmentation results of our nuclei labeling
algorithm.
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B. Cell Segmentation
Once nuclei are properly identified, the segmentation of cells by using the proposed interaction
model can proceed. The interaction involves mainly two types of mechanisms: repulsion and
competition. The repulsion term is for separating the clustered cells and the competition is for
defining the cell boundaries. These mechanisms are formulated as a new energy functional,
which is then minimized by using the multiphase level set method to get cell segmentation.

1) Interaction Model—Consider an image I that has M clustered touching cells Si(i = 1, …,
M). Let Ci(i = 1, …, M) denote the contours that evolve toward the boundaries of the cells.
Instead of examining each contour independently, we integrate the interaction between
neighboring contours into the segmentation process. The repulsion and competition are defined
as follows.

1) Repulsion: The repulsive force prevents the contours from overlapping. Since the
overlapping of the cell contours is not allowed, the repulsion needs to be emphasized to
assure that the contours do not cross each other. This is to say that the union of all the
regions {Ai|i = 1, 2, …, M} enclosed by contours Ci(i = 1, …, M) is empty

(1)

2) Competition: Consider a pixel p of the image I among several cells. Which cell does
p belong to? The answer lies in the competition between the evolving contours. In this
paper, the membership of p is determined by computing the competition

(2)

where D is the difference measure metric and {mi|i = 1, 2, …,M,M + 1} denotes the
membership. The background is indicated as the (M + 1)th region. The pixel p is assigned
to the cell that produces the smallest difference.

2) Energy Functional—To realize the interaction model, repulsion and competition are
formulated by using an energy functional. Cells are segmented simultaneously by minimizing
the joint energy functional. In our scheme, the repulsion can be naturally formulated as

(3)

where the positive parameter ω controls the repulsive force between the contours during the
segmentation process.

When formulating the competition energy, the level set representation of the well-known
Mumford–Shah model is employed [24], [25]. This model seeks to assign labels to pixels by
minimizing the piecewise constant energy functional. Thus, the label of a pixel is decided by
the competition of the surrounding contours and the background. The functional contains two
data attachment terms that penalize the variance of the intensity inside and outside each object.
Thus, it can be used to segment cells stained with fluorescent dyes, which appear as regions
of average intensity larger than that of the background. However, due to the large intensity
variation inside the cells, this model alone is not suitable to segment the cells from the
background. To exploit the gradient information between the cells and the background, we add
a geodesic length measure [26] in order to snap the contours to image edges. The membership
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of a pixel is then assigned by jointly considering the region-based and the gradient-based
competition. Then, we have

(4)

where Ωb denotes the background, which is composed of the region outside of all the objects,
i.e., out(C1) ∩ out(C2) ∩ … ∩ out(CM). The operators in() and out() give the regions inside
and outside of an object, respectively. Equation (4) assumes that the image consists of M +1
homogeneous regions, M cells, and the background. The intensity means of the objects and the
background are denoted by ci and cb, respectively, in (4). Parameters λo, λb, and μ are fixed
weighting parameters. Function g : [0, +∞) → R+ is a strictly decreasing function, which is
chosen to be a sigmoid function in our implementation

(5)

where α decides the slope of the output curve and β defines the point around which the output
window is centered.

Combining the repulsion and competition terms, we obtain a joint energy functional E for cell
segmentation

(6)

The segmentation is achieved by minimizing the energy functional (6). Explicit parametric
active contours can be used to minimize the energy aforementioned; however, since there are
hundreds of cells in each image, it is extremely complex to deal with the interaction between
them using parametric active contours. In this paper, we use an efficient multiphase level set
scheme for energy minimization, which is detailed as follows.

3) Evolution of Multiphase Level Set—In the level set formulation, Ci, the contour of the
ith object, is embedded as the zero level set of a level set function ψi, i.e., Ci = {(x, y)|ψi(x, y)
= 0}. The level set function ψi is defined to be positive outside of Ci and negative inside of
Ci. The value of the function ψi at each point is computed as the Euclidean distance to the
nearest point on the contour Ci. Each of the M objects being segmented in the image has its
own contour Ci and corresponding ψi.

In order to express the energy functional (6) using level sets, we first bring in the Heaviside
function H and the Dirac function δ

(7)
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The inside and outside operators can then be formulated as

(8)

We are then able to express the energy functional (6) using level sets as

(9)

where Ω denotes the image domain.

The energy functional (9) can be minimized iteratively. In each iteration, we first fix ci (i = 1,
2, …,M) and cb and minimize the energy functional E with respect to ψi(x, y) (i = 1, 2, …,M).
We employ the gradient descent method for minimization. The evolution equation for each
ψi(t, x, y) is then obtained by deducing the associated Euler–Lagrange equation as

(10)

After evolving the level sets, the means ci and cb of the regions can be updated.

The new evolution equation has several advantages that are particularly useful for RNAi
fluorescent cellular image segmentation. First of all, the overlapping of the evolving contours
is prevented by the repulsion term, which helps to isolate the touching cells in the dense clusters.
Besides that, the information from both the image intensity and the gradient is exploited by the
new scheme. This helps to separate the cells from the background and deal with the dramatical
intensity variation between different cells. Furthermore, the fourth term of (10) keeps the curves
smooth, and makes the algorithm more robust to noise.

IV. Results and Discussion
In this section, we present our experimental results on the segmentation of Drosophila RNAi
fluorescent cellular images. Since each image contains all kinds of cells, fixed universal
parameters are needed for automatic segmentation. Different parameter settings are tested, and
the one with the best performance is then used for the segmentation of all the images. The
values of the parameters used in our experiments are shown in Table I. It should be noted that
our algorithm is not sensitive to the parameters. In our experiments, the performance of the
algorithm varies not more than 5%, when the values of the parameters change by approximately
25%. Currently, the segmentation of each image with 1280 × 1024 pixels takes approximately
2–3 s on a PC with 3 GHz CPU. The computational time can be significantly shortened by
using high-performance computer or parallel computing techniques.
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Selected patches of the segmentation results containing cells with specific phenotypes “S-
type,” “R-type,” and “A-type” are shown in Figs. 6-8 to demonstrate the performance of our
algorithm. In Fig. 7, spiky cells are successfully segmented (notice the spiky edges of the cells).
In addition, the tightly clustered cells are separated, thanks to the interaction model.
Furthermore, cells with large intensity variations are extracted, and the contours are able to
stop at the weak boundaries between the cells and the background, since both image intensity
and gradient information is used. Similar observations can be made in Fig. 8, where
segmentation results of “R-type” and “A-type” cells are demonstrated. The quantitative
performance evaluation was performed by comparing our results to the ground truth. For
comparison purposes, the segmentation results of the widely used open source software
CellProfiler [27] on our data sets were also obtained. The performance of our method and that
of CellProfiler were then evaluated and compared. In CellProfiler, thresholding was first
applied to extract cells from the image. In order to divide the clustered cells, the propagation
algorithm is employed [28]. This method is similar to the watershed method, but can be
considered as an improvement in that it combines the distance to the nearest nucleus and
intensity gradients to divide cells. However, the cells are divided at the places most likely with
strong gradients.

Fig. 9 shows some randomly chosen image patches and the corresponding segmentation results
of our method. Manual segmentation results from biologists are included as ground truth for
validation. The segmentation results using CellProfiler with default parameter setting are also
displayed. It can be seen that our segmentation method outperforms CellProfiler in two ways.
One is that CellProfiler tends to oversegment the nuclei, where large nucleus may be divided
into several small regions. Since the segmentation result of nuclei is used to determine the
number of cells in the Actin channel, this directly results in the over-segmentation of the cells.
More cells are produced than there actually are. The other problem of CellProfiler is that it
tends to put circular shape constraints on segmentation of each cell. Thus, it is not able to get
the specific cell shapes present in our data sets. For each cell, the segmented region from
CellProfiler is normally round in shape with a smaller area than the ground truth. Thus,
compared to CellProfiler, our method obtains better segmentation results.

In order to quantitatively analyze the performance of the proposed approach, an F-score is
employed as our performance measure. The F-score is an evaluation measure computed from
the precision and the recall values that are standard techniques used to evaluate the quality of
the results of a system against the ground truth. Let X denote the segmentation result and Y be
the ground truth. The precision p and recall r are given by

(11)

The F-score is then computed by taking the harmonic average of the precision and the recall
[29]

(12)

where β is the weighting parameter. In order to give equal weight to precision and recall, a
common approach is to set β = 1, such that F1 = 2pr/(p + r).

The F1-scores of our method and the CellProfiler are shown in Fig. 10. When computing the
scores, 20 sets of images are randomly chosen from all the data sets. Since each image contains
about 100–500 cells, thousands of cells are segmented and measured in our experiments. It can
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be seen that our method gets a higher score on all of the images. This can be explained by the
results shown in Fig. 9. Evaluated against the ground truth, the CellProfiler may have higher
precision values because it produces smaller cells so that most of its results are inside of the
ground truth. However, it has very low recall values, because a large part of the cells are not
obtained. The precision of the proposed method may not be as high as the CellProfiler,butthe
recall values are generally much higher. Thus, our method has higher overall F1-scores.

V. Conclusion
In this paper, we proposed an automatic scheme for the segmentation of high-throughput RNAi
fluorescent cellular images. Since the precision of the following cell analysis largely depends
on the performance of cell segmentation, it is of great importance to have a good segmentation
scheme. In this paper, the proposed automated segmentation scheme starts extracting nuclei
from the DNA channel and uses the results as the initialization for the segmentation of cells
from other channels. A novel interaction model was formulated for segmenting tightly
clustered cells with significant intensity variance and specific phenotypes. The energy
functional was minimized by using a multiphase level set method, which leads to a highly
effective cell segmentation method. Promising segmentation results on RNAi fluorescent
cellular images are presented. In our future work, we will explore more image information for
better cell segmentation. We believe that the incorporation of more image information, e.g.,
cell texture, into the interaction model will lead to a better segmentation performance. In
addition, the proposed method can be extended to other multichannel image segmentation
applications, but not limited to RNAi cellular image segmentation. We will explore the use of
our method on solving other problems of multisource imaging systems.
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Fig. 1.
Patches of RNAi cell image in the Actin channel with specific phenotypes. (a) Spiky (S-type).
(b) Ruffling (R-type). (c) Actin-acceleration-at-edge (A-type).
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Fig. 2.
Sample RNAi fluorescent images. (a) DNA channels. (b) Actin channels. (c) Rac channels.
Original image of each channel contains 1280 × 1024 pixels.
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Fig. 3.
(a) Initialization of the segmentation with nuclei. (b) Segmentation results using independent
level sets. Due to the intensity similarity and the weak boundaries between cells, it is difficult
to extract cells without considering the interaction between them.
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Fig. 4.
Segmenting of nuclei in the DNA channel. (a) Patch taken from an image of the DNA channel.
(b) Binary thresholding result of (a). (c) Distance transform of (b). (d) Result of watershed on
(c). (e) Labeling nuclei by combining (b) and (d).
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Fig. 5.
Removing noise from the DNA channel. (a) Patch taken from an image of DNA channel. (b)
Binary thresholding result of (a). (c) Initial labeling of nuclei using watershed. (d) Final labeling
of nuclei after removing small regions.
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Fig. 6.
Segmentation of ruffling cells. (a) Patch from the DNA channel shows the nuclei. (b) Two
touching ruffling cells. (c) and (d) Intermediate segmentation results of the cells. (e) Final
segmentation results of the ruffling cells.
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Fig. 7.
Cell segmentation process. (a) Improved image of Actin channel. The nuclei obtained by
segmenting the image of DNA channel are marked in different colors, which are used as the
initialization of level sets. (b)–(e) Evolution process of level sets. (f) Final segmentation results
with spiky cells successfully segmented.
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Fig. 8.
Cell segmentation process. (a) Improved image of Actin channel with labeled nuclei as
initialization. (b)–(d) Evolution process of level sets. (e) Final segmentation results with
ruffling and actin cells successfully segmented.
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Fig. 9.
Three sets of segmentation results from the validation data sets. Each row shows the
segmentation results of one set of images. First column: patches of DNA channel. Second
column: patches of actin channel. Third column: our segmentation results. Fourth column:
segmentation results of CellProfiler. Last column: manual segmentation results for
comparison. Compared with the ground truth, one can see that CellProfiler tends to
oversegment the nuclei, which leads to the oversegmentation of the cells. In addition,
CellProfiler tends to put circular shape constraints on cell segmentation. Thus, it is not able to
get the specific cell shapes present in our data sets. Evaluated against the ground truth, our
method is able to get better segmentation results than CellProfiler.
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Fig. 10.
F1-score of our method and the CellProfiler. Our method gets a higher score on all the
validation data sets.
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