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Abstract
Automated cell segmentation and tracking are critical for quantitative analysis of cell cycle
behavior using time-lapse fluorescence microscopy. However, the complex, dynamic cell cycle
behavior poses new challenges to the existing image segmentation and tracking methods. This
paper presents a fully automated tracking method for quantitative cell cycle analysis. In the
proposed tracking method, we introduce a neighboring graph to characterize the spatial
distribution of neighboring nuclei, and a novel dissimilarity measure is designed based on the
spatial distribution, nuclei morphological appearance, migration, and intensity information. Then,
we employ the integer programming and division matching strategy, together with the novel
dissimilarity measure, to track cell nuclei. We applied this new tracking method for the tracking of
HeLa cancer cells over several cell cycles, and the validation results showed that the high accuracy
for segmentation and tracking at 99.5% and 90.0%, respectively. The tracking method has been
implemented in the cell–cycle analysis software package, DCELLIQ, which is freely available.
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I. Introduction
Taxanes are a group of drugs used in cancer treatment, which includes paclitaxel and
docetaxel. This group of small molecule drugs prevents the growth of cancer cells by
affecting microtubules. In normal cell growth, microtubules are formed when a cell starts
dividing, and are broken down when the cell ceases dividing. Taxanes could stop the
division of cancer cells by preventing the microtubules from breaking down [1], [2].
However, the subsequent molecular events that lead to apoptosis remain unknown. It is thus
essential to dissect cellular processes using small molecule drugs to study the effectors and
proteins downstream in the mitotic pathways effectively [1], [2].

However, identifying effective small molecules or anti-mitotic drugs such as Taxanes from a
large number of compounds available today is a daunting task [3], [4]. High content
screening (HCS) using automated fluorescence microscopy and multiplate bioassays can be
used to observe and quantitatively analyze the cell cycle behavior of individual cells treated
by small molecules, and has become an important tool to help researchers and scientists
better understand the complex cellular processes in disease pathogenesis, drug target
validation, and drug lead identification [3], [5]. High content time-lapse cellular images
capture abundant spatial and temporal morphological information of a population of cells,
which enables the investigation of cell cycle behavior with strong statistical power.
However, a large number of cellular images make the conventional manual analysis
impractical. Automated quantitative analysis of time-lapse cellular images is critical to the
success of such dynamic cell cycle studies [3].

Nuclei segmentation and tracking are the essential parts to quantify the cell cycle behavior.
Although a number of segmentation and tracking methods have been reported in the
literature, there remain many open problems, mostly due to complex cell cycle behavior
including cell migration, morphological changes, cell division, and death. Broadly speaking,
current cell tracking approaches can be classified into two categories: 1) the detection and
segmentation based tracking and 2) the evolving model based tracking [6], [7].

In the first category, given an image sequence, S = (F1, F2, …, FN), the tracking problem is
divided into N−1 matching problems: T = (M1,2, M2,3, …, MN−1,N), where T is a tracking
solution of S, and Mi,i+1 denotes the matching solution of (Fi, Fi+1) [6], [8]. The tracking
accuracy closely depends on the accurate detection and segmentation, dissimilarity
measurement, and sophisticated matching strategies. In the second category, the boundaries
or positions of cell nuclei are initialized in the first frame, and then their boundaries and
positions evolve frame by frame [7]. Mean-shift [9], [10], parametric active contour [11]-
[13], and level set [14], [15] are the widely used tracking approaches from this category.
However, both mean-shift and parametric active contour cannot cope with cell division, and
nuclei clusters may cause matching errors and inaccurate boundaries when nuclei move fast.
While the level set method enables the topological changing for cell division, it also permits
the fusion of overlapping cells. Extending these methods in the second category to cope with
these challenges, e.g., the cell clustering, division, and fast migration, is nontrivial and will
rapidly increase computation time [11], [16].

In this paper, we present a fully automated tracking algorithm using methods of the first
tracking category for quantitatively analyzing the cell cycle progress of a population of
cancer cells treated by small molecule drugs such as Taxanes. There are two reasons why we
choose methods in the first category. First, we developed a new nuclei segmentation method
that can achieve higher accuracy. Secondly, the change in morphological appearance, long
distance migration, and overlapping nuclei make the existing methods in the second
category prone to errors.

Li et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In the proposed method, we defined an accurate dissimilarity measure and designing a
sophisticated matching strategy. Fig. 1 provides a flowchart of the proposed system. The
system consists of four major components: 1) nuclei segmentation, 2) neighboring graph
construction, 3) nuclei division and integer programming based optimal matching, and 4)
cell division, death, and segmentation error after postprocessing. In the segmentation
component, nuclei are detected and segmented accurately. Then, a neighboring graph is
generated to connect all segmented nuclei. In the matching component nuclei morphological
appearance, migration and neighboring relationships are integrated into an accurate
dissimilarity measure. In this sense, we use the cell phase information and then nuclei are
associated by an optimal matching strategy. Finally, cell division, death, and segmentation
errors are identified and corrected.

II. Materials and Methodology
A. Materials

HeLa H2B-GFP cells were thawed six days before plating for each experiment and cultured
in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS). All
cells were plated in eight well #1 German borosilicate sterile bottomed plates (Nalge Nunc
International) and incubated at 37°C in 5% CO2 for 18 h before imaging at 25 000 cells per
well (50 000 cells per mL). Untreated cells were received medium while treated cells were
received 300 nm nocodazole. Images were acquired on an automated epifluorescence
TE2000-E Eclipse microscope (Nikon Instruments, Inc.) with a motorized XYZ-plane stage.
Light was generated from a mercury arc lamp with two neutral density filters. Auto-
focusingwas performed on the first pass and for every subsequent 10 passes to compensate
for motor drift. Images were acquired using a 0.2 s exposure time, every 15 min for 50 h,
yielding a total of 200 images for each position.

B. Methodology
1) Nuclei Segmentation—In this study, the nuclei detection and segmentation method
proposed in [17] is employed. Essentially, this method consists of three components:
binarization, nuclei center detection, and nuclei boundary delineating. We implemented the
binarization process using an adaptive thresholding method [18]-[22]. Nuclei center
detection is important because it determines the segmentation results by providing seed
points for the seeded-watershed algorithm [17], [23]. To detect the centers of nuclei, we first
utilize both intensity and shape information by combining the original intensity with the
distance image as: I1 = I0 + αIDis, where I1 is the new image, I0 is the original image, and
IDis is the distance image. The parameter α affects the nuclei center detection results by
changing the relative weights of the intensity information (intensity image) and shape
information (distance image). A high α value increases the influence of the distance image
and a low α value decreases its influence. We empirically set α = 0.4 after testing a number
of values on a training data set. The validation of how sensitive the parameter α affects the
performance of the detection algorithm is provided in Section III-A. We detect the nuclei
center using the gradient vector field(GVF)followed by Gaussian filtering [17], [24]. The
pseudo-code for nuclei detection with GVF is as follows.

Algorithm (Nuclei Detection in GVF)

Mnuc; /*Nuclei pixel matrix. The background and nuclei pixels are set as 
0 and 1 respectively*/

Mgvf; /*GVF matrix storing the gradient vectors of each pixel.*/
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Mpar ← zeros(m,n); /*Particle convergence matrix, whose values are the 
number of virtual particles stopping at each pixel.*/

while (Exist Nonzero Element(Mnuc))

(x0, y0) ← Get One Nonzero Element(Mnuc); /*Get coordinates of one 
nonzero element (nuclei pixel) in Mnuc*/

(x1, y1) ← (0, 0);

while ((x1, y1)! = (x0, y0))

(x1, y1) ← Move Virtual Partial ((x0, y0), Mgvf(x0, y0)); /*Move 
the virtual particle from (x0, y0) along the gradient vector to 
the point (x1, y1). If pixel (x0, y0) is a local maximum, the 
gradient vector will point to itself, then the (x0, y0) and (x1, 
y1) are the same point.*/

end

Mpar(x1, y1) ← Mpar(x1, y1) + 1; /*Number of virtual particles at (x1, 
y1) increases one.*/

Mnuc(x0, y0) ← 0; /*Set the visited point as 0.*/

end

SeedsImage ← Thresholding (Mpar);

After detecting the nuclei centers, we delineate the nuclei boundaries using the seeded
watershed algorithm. Fig. 2 provides representative detection and segmentation results.

2) Neighboring Graph Construction—The similar morphology of nuclei makes it
difficult to accurately distinguish adjacent nuclei using only their morphological features.
Therefore, we make use of the information of neighboring nuclei to better distinguish the
adjacent nuclei. A way to describe the neighboring nuclei information is to connect the
segmented nuclei into a neighboring graph. In the neighboring graph, the edges that connect
nuclei with their neighbors can be used to characterize the spatial neighboring distribution,
as seen in Fig. 3. However, this poses a critical question: how can we generate a neighboring
graph that has strong ability to distinguish the adjacent nuclei using the neighboring
relationships (spatial distribution of neighboring nuclei)? One possible solution is to connect
all the neighbors of one nucleus, as shown in Fig. 3(a). However, it is difficult for a human
observer to understand the neighboring relationships due to the complexity of this
neighboring graph. In addition, more edges in the neighboring graph increase the
computation time. Furthermore, the adjacent nuclei may have similar neighboring
relationships and thus, it adds to the problem of distinguishing them from each other, as seen
in Fig. 3(b) and (c). A different solution was proposed by Delaunay in 1934 Delaunay
triangulation [25]. The representative neighboring graphs generated by using the Delaunay
triangulation are provided in Fig. 3(d) and Fig. 4. As compared to the above neighboring
graph, Delaunay neighboring graphs have less edges and are therefore easier to be
understood, as seen in Fig. 3(d). Moreover, in such a graph the adjacent nuclei often have
very different spatial distribution of neighboring nuclei that can be used to distinguish them
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easily, as seen in Figs. 3(e) and (f). These properties indicate that Delaunay triangulation
technology is a good choice to generate the neighboring graph.

3) Phase Controlled Optimal Matching—To match the segmented nuclei in two
consecutive frames, we need to: 1) define a dissimilarity measure between two nuclei in two
consecutive frames, and 2) choose an appropriate matching strategy.

a) Dissimilarity measure: The dissimilarity measure indicates how different two nuclei are
and is critical for accurate nuclei matching. To define an appropriate dissimilarity measure,
we first characterize a vertex (nucleus) in the kth neighboring graph (frame), vi

k, using an
attribute vector: vi

k = (ci
k, si

k, hi
k, ei

k), where ci
k = (xi

k, yi
k) denotes the centroid; si

k is a
binary matrix describing the shape of a nucleus, in which the nucleus and background are
represented by 1 and 0, as seen in Fig. 5; hi

k is the intensity distribution of the nucleus, and
we use the intensity histogram to represent the intensity distribution, as seen in Fig. 6; and

 is a 2 × M matrix that describes the spatial distribution (length
and angle) of M edges connected to the nucleus in the neighboring graph, where θ is defined
in radians, as shown in Fig. 7.

Based on the attribute vector, we define the dissimilarity measure between the ith nucleus in
frame k and the jth nucleus in frame k + 1 as follows:

(1)

where αi, i = 1, 2, 3, 4 are the weighting parameters which satisfy αi ≥ 0, ; qi, i =
1, 2 are two phase control parameters, and we will describe them in detail after defining

(2)

the four normalized dissimilarity measures: , and

.

The first term, , measures the Euclidean distance between the centroids of two
nuclei, as show in (2) at bottom of the page where D denotes the maximum migration
distance per frame, and we set D = 30 pixels empirically.

The second term,  measures the nuclei shape variation which is defined as

(3)

Fig. 5 illustrates the calculation of nuclei the shape variation. The procedure of measuring
the nuclei shape variation is as follows. After the initial nuclei segmentation we obtain a
label matrix. In such a matrix, pixels within a nucleus region are labeled with a unique
integer number which is used to distinguish it from other nuclei regions. We can obtain the
binary matrix of a nucleus by cropping a small square region that contains the nucleus
region tightly. Before comparing two binary matrices, we pad them symmetrically with
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zeros (background pixels) such that they have the same number of rows and columns. Then
we can calculate their intersect region and union region based on (3).

The third term, , describes the variation of the intensity distribution

(4)

where max(I) and min(I) denote the maximum and minimum intensity values of the images.

The numerator,  of (4) measures the pixel number difference in tth gray level.
In this study, we use min(I) = 0 and max(I) = 255. Fig. 6 shows two representative images of
the variation of the intensity distribution using intensity histograms.

The last term, , measures the variation of the spatial distributions of neighboring

nuclei. Without loss of generality, we assume that 

(5.1)

(5.2)

In (5.1),  is a collection of m edges selected from , and it enables the comparison
between the spatial distributions with different edges. In (5.2), (m/n) measures the difference

of edge number;  compares the difference of the tth edge length;

 measures the variation of the tth edge angle; and the  operation in (5.2) is to
find the smallest difference between two spatial distributions of neighboring nuclei. Fig. 7
illustrates the variation of the spatial distributions of neighboring nuclei.

The determination of the optimal weighting parameters αi, i = 1, 2, 3, 4, is nontrivial as the
validation of tracking results is time-consuming. Thus, we empirically tested a few values
for αi, i = 1, 2, 3, 4, and selected the values with the highest tracking accuracy. In this study,
we set them as: 0.31, 0.15, 0.23, and 0.31, with the ratio of them is roughly as 4 : 2 : 3 : 4. In
Section III-B1, we provide a sensitivity analysis of αi, i = 1, 2, 3, 4. The validation results
show that the tracking approach is robust to the parameters.

However, not all the four terms in the dissimilarity measure can be used, when the nuclei
change from one phase to another regarding the following facts: 1) when the nuclei enter the
prophase from the inter-phase their intensity increases dramatically, 2) when the nuclei enter
the metaphase following the prophase, their shape changes dramatically, and 3) when cell
divide the new generated cell nuclei will change the local structure of the neighboring graph
around the dividing cells, as seen in the green circles of Fig. 4(a) and (b). To address
problems 1) and 2), we add two phase control parameters: q1 and q2, to the shape and
intensity terms. The two control parameters are defined as
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(6.1)

(6.2)

where p(.) is a cell phase identification function. The details of the phase identification
function can be found in [26]. The solution to problem (3) is described in the following
section.

b) Matching strategy: The matching strategy associates (match) the nuclei in two
consecutive frames based on the defined dissimilarity measure. In this study, we propose a
division matching and 0-1 integer programming based optimal matching strategy.

To avoid that nuclei of dividing cells affect the neighboring graph, we first match the nuclei
of dividing cells with the division matching strategy first and ignore them while we build the
neighboring graph, illustrated with green circles of Fig. 4(c) and (d). Two observable facts
of cell division are: 1) parent nucleus (Metaphase) divides along the direction perpendicular
to its major axis [see Fig. 8(a) and (b)] and 2) two daughter nuclei (Anaphase) have similar
appearances; see Fig. 8(b). Therefore, we need to find the parent nucleus of two daughter
nuclei in a local region, as shown in the green rectangular boxes in Fig. 8(a) and (b).
Specifically, this can be achieved by 1) finding all the nuclei which are in anaphase in frame
(t +1) and placing them in a list Ld and 2) retrieving the first element in Ld, and checking if

there is a sibling nucleus that satisfies , where dT is a
dissimilarity threshold. If there is no sibling nucleus, the program checks the next element in
Ld; otherwise, the program enters the next step; 3) checking if there exists a Metaphase
nucleus in the desired local region in frame t. If the required nucleus exists, we match it with
the two daughter nuclei. The steps 2 and 3 are repeated until all elements in Ld are checked.

After matching the dividing cells’ nuclei, the remaining nuclei are matched by the 0-1
integer programming based optimal matching strategy. The optimal matching problem is

formulated as follows: let  and  denote two
consecutive frames. For each nucleus, νi

k, in frame k, there are several matching candidates:

. Therefore, a total of  possible matches: 
exist. The optimal matching strategy, under the constraint that each nucleus has at most one
match is to find a solution x0 = {0,1}N such that

(7.1)

(7.2)
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In (7.2), x(t) denotes the tth element of vector x, and the term  is the similarity of
two nuclei. The matching constraints can be formulated as

(7.3)

where A is a (m + n) × N dimension “involving” matrix and b is a (m + n) elements vector

of ones. In matrix A, the tth column corresponds to the tth possible match  in M, t =
1, 2, …, N, indicating which nuclei correspond to that particular match

(7.4)

Obviously, this is a 0-1 integer programming problem. The linear programming based
branch-and-bound (LPBB) algorithm is widely used to solve the 0-1 integer programming
problem [27], [28]. The optimization process of LPBB is to build a searching tree by
repeatedly discretizing (0 or 1) the variables (branching) and pruning the tree branches based
on the optimal value of the node (bounding), computed by linear programming. In general,
in a given search tree node the optimal value of the LP-relaxation problem at this node is
greater than the existing best solution. The node and its branches will not be searched and a
new node will be searched. If a new feasible 0-1 solution has a lower value, as compared
with the existing best solution, the algorithm will update the existing best solution using the
new feasible solution. If the value of the LP-relaxation problem at this node is less than that
of the existing best solution, but it is not the 0-1 solution, two new searching tree nodes
branching from this node are added by discretizing another variable (0 or 1), and the
searching begins at a new node. The optimal solution is obtained by repeating the above
process.

4) Cell Division, Death, Segmentation Errors Processing—Since the above
optimal matching strategy is under the constraint that one nucleus matches at most once,
there exist some nuclei with no match at all due to cell division, cell death (apoptosis), and
segmentation errors (over- and under-segmentation). Although we have employed division
matching to match all dividing cells’ nuclei, some nuclei are still missing due to the bias of
the phase identification. We, however, can correct the segmentation errors and identify cell
division and cell death by checking the remaining nuclei.

Cell division, over-segmentation, and bi-nucleus: A bi-nucleus is two inter-phase nuclei
lying closely together such that they cannot be distinguished by the detection resolution of
the microscopy, and thus appear as one nucleus in a few contiguous frames but eventually
separate in the later frames, as seen in Fig. 9(a) and (b). When a bi-nucleus separates, a
nucleus without match will be generated. Therefore, all the nuclei in frame t +1 which have
no match are candidates of newly divided nuclei (in anaphase), newly separated bi-nuclei, or
over-segmented nuclei, as seen in Fig. 9. Due to the distinct morphological appearances of
the anaphase, bi-nuclei, and over-segmented nuclei, it is easy to separate them using a
support vector machine (SVM) classifier based on the following six manually selected
features: size, average intensity, standard deviation of intensity, compactness, long axis, and
short axis. For the new divided nuclei and separated bi-nuclei candidates, we match them by
finding the nuclei in frame t that are closest to them. For the over-segmented nuclei
candidates, we merge them by finding the ones in frame t that overlap with them and have
the smallest size.
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Cell death (apoptosis) and under-segmentation: All the nuclei with no matching in frame
are either the candidates for apoptotic cells or due to the under-segmentation of some nuclei
in frame t +1. Therefore, we need to classify the candidates into the two groups: apoptosis

and under-segmentation. Given a candidate , we find all its possible matching nuclei in
frame t + 1 and then label the candidate as an apoptosis nucleus if there is no matching

nucleus,  which satisfies (under-segmentation)

(8)

where S(.) is the operator of calculating the area of a nucleus, and we empirically set α =

1.8. Otherwise, we label the nucleus , which satisfies (8) and has the largest size, as the

under-segmented nucleus, and split it into two nuclei:  and . We propose a splitting
method to separate under-segmented nuclei, as shown in Fig. 10. After splitting, we can

easily match the two split nuclei  and  with  and .

III. Validation Results
A. Validation of Segmentation

Unlike cell cytoplasmic images with complex shapes and significant intensity variations,
cell nuclei have regular shape and uniform intensity. If the cell nuclei centroids are detected
correctly, the cell boundaries will be well delineated, as shown in Fig. 2. Thus, it is
reasonable to validate the segmentation by just counting the over-segmentation errors (two
or more detected nuclei centroids are presented inside one nucleus region) and under-
segmentation errors (two or more nuclei regions share only one detected centroid).

1) Sensitivity Analysis of Parameter α in Nuclei Detection—To validate how the
sensitivity of the parameter α affects the detection performance, we uniformly selected 21
nuclei images from each of four nuclei image sequences (frames 1, 10, 20, …, 200 are
selected). These 84 (21 × 4) nuclei images contain about 8300 nuclei. We used two error
measures to evaluate the performance of the detection approach: over-detection (the same as
the over-segmentation) and under-detection errors (the same as the under-segmentation). We
varied the value of α from 0 to 1. The detailed results of the detection algorithm are
provided in Table I. As we can see, the over-detection error is more sensitive to the variation
of the value of α as compared to the under-detection error. If we increase α to 1, both over-
detection and under-detection increase. From 0.2 to 0.6, the detection algorithm keeps the
similar error rate. From 0 to 0.8, the error rate is confined within 1%. In conclusion, the
detection approach is robust to the parameter α.

2) Comparison of Nuclei Segmentation—Two cell sequences were selected to
evaluate the proposed segmentation method with the manual detection results were used as
the ground truth. The detailed validation results are provided in Table II. The first sequence
contained a total of 18 683 nuclei. Using the proposed method, 35 nuclei were over-
segmented and 84 nuclei were under-segmented. The second sequence contained 19, 469
nuclei. Using our method, 40 nuclei were over-segmented and 30 nuclei were under-
segmented. On average, the segmentation accuracy is very high and reaches 99.50%.

To further validate the segmentation algorithm, we compared the proposed segmentation
method with the watershed algorithm [23] and the watershed-based hybrid merging
algorithm [29]. Table III shows the detailed comparison results. The hybrid merging
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algorithm improved the segmentation accuracy from 87% to 94.69% compared with the
watershed algorithm, and the segmentation accuracy of our proposed method is even 5%
higher than that of the hybrid algorithm.

B. Validation of Tracking
In this study, a trace is defined as a path beginning from an ancestor cell nucleus in the first
frame to its descendant cell nucleus in the last frame. Nuclei in the trace reflect the position
and morphological appearance changing over time. A match means an association between
two nuclei in two consecutive frames. Therefore, a trace consists of N − 1 matches, where N
is the length of the cellular image sequence. To validate the proposed tracking method, we
define two error rates, namely, error trace rate (ETR) and error match rate (EMR), as
follows: ETR = # of error traces/# of total traces, and ETR = # of error matches/# of total
traces. We label a trace as an error trace if there is at least one match error. The low ETR
cannot guarantee high match accuracy because one error trace maybe contains many error
matches. Similarly, low EMR does not mean high tracking accuracy because each error trace
may just contain one error match. On the other hand, an error match in the parent nuclei will
result in consecutive errors of all traces branching from it. Only when both, the error trace
rate and error match rate are low we can say that the tracking system is reliable.

1) Sensitivity Analysis of Parameters {α1, α2, α3, α4} in Nuclei Tracking—To test
how sensitive the variations of the parameters affect the performance of the tracking
algorithm, we designed the following experiments: four nuclei image sequences were
selected to validate the proposed tracking algorithm. For each sequence, the values of {α1,
α2, α3, α4} were generated as follows: 1) randomly generate four numbers in ±[0.01, 0.05];
2) get new values of {α1, α2, α3, α4} by adding these four random numbers to [0.31, 0.15,

0.23, 0.31]; and 3) normalize the new values such that  and perform the tracking
procedure with the new generated parameters’ setting {α1, α2, α3, α4}. The detailed
tracking validation results are provided in Table IV. Compared with the tracking results
under the original parameter setting, see Table V, we conclude that the random variations of
the parameters {α1, α2, α3, α4} do not influence much on the performance of the proposed
tracking approach. We further investigated these tracking errors occurred under the newly
generated parameters and that under the original setting. As seen in Table VI, the error
traces and error matches under different parameter variations are almost the same as that
under the original parameter setting. In conclusion, the tracking approach is robust to the
parameters {α1, α2, α3, α4}.

2) Comparison of Nuclei Tracking—We compared the proposed method with a
location and size based tracker used in [29]. In summary, the location and size based tracker
first defines a dissimilarity measure based on the overlapping area and the distance of the
centroids of two nuclei in two consecutive frames. Then it matches the nuclei one by one
based on the defined dissimilarity measure. We provide the detailed comparison results in
Table V. On average about 90% of nuclei traces obtained from the proposed method are
correct, and both the ETR and EMR are restricted to 10%. Whereas both the ETR and EMR
of the location and size based tracker are 30% higher than the proposed tracking method.
Through further investigation, we found that fast moving and cell division cause the most
nuclei matching errors for the location and size based tracker while the proposed system
deals with these challenges well. In conclusion, the proposed tracking method is accurate
and reliable.
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C. Extracted Cell Trajectories
In Fig. 11, we illustrate the representative 2-D HeLa cell migration maps, in which different
cell migration traces are represented by different colors. As we can see, some cells move in
a small region (shown inside the red square box), and some cells migrate farther out (shown
in the blue square box). In the anti-cancer drug screening study, the analysis of cell cycle
time distribution is important. The drugs or commands that can prolong the time of the cell
cycle could be new candidates for anti-cancer treatment. In Fig. 12, the division progression
of a nucleus is shown. There are three cell divisions at T = 3.75, 27.5, and 28.5 h,
respectively, as shown in Fig. 13(b). We also can see that the cell cycle progression of
daughter nuclei may have different cell division rates, as seen in Fig. 13(a). In addition,
three representative 3-D cell nuclei trajectories extracted automatically are shown in Fig. 14,
in which we can clearly see both the cell migration and cell division information.

D. DCellIQ Software Package
We incorporated the proposed tracking method into a software package: DCELLIQ (Dynamic
CELLular Image Quantitator), which is designed specifically for the analysis of cell cycle
progression and dynamics. In DCELLIQ system, cell nuclei segmentation, tracking, and cell
cycle phase identification are preformed automatically. The software can be downloaded
freely at our website.1

IV. Conclusion
Cell cycle behavior analysis of cancer cells is important for understanding the mechanisms
of anti-cancer drugs and for the screening of new drugs. However, the significant challenge
in quantifying the time-lapse cellular images has been becoming the bottleneck of cell cycle
progression analysis. In this paper, we present a fully automated segmentation and tracking
method for quantifying time-lapse cellular images. A cell detector that combines the shape
and intensity information is implemented to separate the clustered nuclei. We view the
nuclei as vertices in the neighboring graph that is generated using the Delaunay
triangulation. We improve the tracking accuracy by defining a new dissimilarity measure
that takes into account the morphological appearance, migration distance, and neighboring
relationship using phase information. Then, we develop the division matching and optimal
matching strategy to match the nuclei of two consecutive frames. Finally, the segmentation
errors, cell division, and death are further processed. The experimental results show that the
proposed segmentation and tracking method is accurate and reliable. Therefore, we
incorporated the proposed method into a public domain software package, DCELLIQ.
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Fig. 1.
Overview flowchart of the proposed system.
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Fig. 2.
Representative detection and segmentation results of the proposed segmentation method.
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Fig. 3.
Example neighboring graphs. (a) Neighboring graph built by connecting any two nuclei; (b)
and (c) are the edges connected to the fourth and fifth nuclei in neighboring graph (a). (d)
Neighboring graph constructed by using the Delaunay triangulation method; (e) and (f) are
the edges connected to the 4th and 5th nuclei in neighboring graph (d).

Li et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Illustration of the local variation of the neighboring graph caused by the cell division. (a)
Neighboring graph in frame t; (b) neighboring graph in frame t +1 in which there is a cell
division in the green box; (c) neighboring graph after removing the dividing cell in frame t;
and (d) neighboring graph after removing the divided cells in frame t + 1.
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Fig. 5.
Illustration of measuring shape variability. (a), (b) Cropped and padded cellular images
(matrixes) of the same nucleus in two consecutive frames. The corresponding binary
matrixes have the same number of rows and columns as the cellular images. (c) Shows the
calculation of shape variability; the yellow color indicates the intersection region; the red
color indicates the complementary region of nucleus in (a); the green color indicates the
complementary region of the nucleus in (b). (d), (e), (f) show the case of two different nuclei
in two consecutive frames.
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Fig. 6.
Illustration of measuring variation of intensity distribution. (a), (b) Same nuclei in two
consecutive frames. (c), (d) Are their intensity histograms. (e), (f), (g), (h) Show the case of
two different nuclei in two consecutive frames.
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Fig. 7.
Illustration of measuring the variability of spatial distribution of neighboring nuclei. The
green edges in (a) indicate the spatial distribution of neighboring nuclei of one nucleus in
one frame, and the blue edges in (b) indicate the distribution of neighboring nuclei of the
other nucleus in the next frame. (c) shows the difference of these two spatial distributions.
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Fig. 8.
Illustration of the nuclei division.
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Fig. 9.
Bi-nuclei and four cell cycle phases. (a) Bi-nuclei; (b) separated bi-nuclei; (c) inter-phase;
(d) prophase; (e) metaphase; and (f) anaphase.
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Fig. 10.
Illustration of the proposed nuclei splitting method.
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Fig. 11.
Two-dimensional cell migration traces.
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Fig. 12.
Illustration of cell division. (a) The #28 nucleus in the first frame; (b) the #28 nucleus
divided in frame 15, and the two daughter nuclei are #30 and #33, respectively; and (c) the
daughter nuclei #30 and #33 divided in frames 110 and 114, respectively.
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Fig. 13.
Tree structure of cell cycle progression. The red numbers in green notes are the number of
nuclei; the black numbers denote the division time (in hours); the red numbers at bottom is
the number of traces. (a) Tree structure of a cell cycle progression in which the cell cycle
progression of the daughter nuclei are different and (b) the tree structure of cell cycle
progression of the cell in Fig. 10.
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Fig. 14.
Three representative 3-D cell trajectories that are extracted automatically.
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TABLE II

Validation of Segmentation Results

Seq. # of nuclei Correctly segmented Over-segmented Under-segmented

1 18683 18564 (99.36%) 35 (0.19%) 84 (0.45%)

2 19469 19394 (99.61%) 40 (0.21%) 35 (0.18%)

Total 38152 37963 (99.50%) 75 (0.20%) 119 (0.30%)
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TABLE III

Comparison of Segmentation Results Using Nuclei Image Sequence 1

Methods Correctly segmented Over-segmented Under-segmented

Watershed 16254 (87%) 2242 (12%) 187 (1%)

Watershed/Hybrid 17690 (94.69%) 747 (4%) 246 (1.32%)

Detection/Watershed 18564 (99.36%) 35 (0.19%) 84 (0.45%)
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TABLE IV

Tracking Validation Results Under Different Variations of {α1, α2, α3, α4}

Seq. Values of {α1, α2, α3, α4} # of cell traces ETR EMR

1 [0.33, 0.16, 0.19, 0.32] 97 7 (7.22%) 6 (6.18%)

2 [0.34, 0.13, 0.20, 0.33] 109 17 (15.59%) 15 (13.76%)

3 [0.28, 0.13, 0.25, 0.34] 107 10 (9.35%) 11 (10.28%)

4 [0.32, 0.19, 0.21, 0.28] 131 12 (9.16%) 11 (8.40%)

Total 444 46 (10.36%) 43 (9.68%)
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TABLE VI

Comparison of the Differences Between the Error Traces and Error Matches Occurred Under the Variations of
Parameters {α1, α2, α3, α4} and that Occurred Under the Original Setting

Seq. Common Error Traces Different Error Traces Common Error Matches Different Error Matches

1 7 0 6 0

2 16 1 15 0

3 9 1 9 2

4 12 0 11 0

Total 44 2 41 2
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