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Abstract
Understanding how cells handle and dispose of misfolded proteins is of paramount importance
because protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative
disorders, including PD (Parkinson's disease) and Alzheimer's disease. In addition to the ubiquitin–
proteasome system, the aggresome–autophagy pathway has emerged as another crucial cellular
defence system against toxic build-up of misfolded proteins. In contrast with basal autophagy that
mediates non-selective, bulk clearance of misfolded proteins along with normal cellular proteins and
organelles, the aggresome–autophagy pathway is increasingly recognized as a specialized type of
induced autophagy that mediates selective clearance of misfolded and aggregated proteins under the
conditions of proteotoxic stress. Recent evidence implicates PD-linked E3 ligase parkin as a key
regulator of the aggresome–autophagy pathway and indicates a signalling role for Lys63-linked
polyubiquitination in the regulation of aggresome formation and autophagy. The present review
summarizes the current knowledge of the aggresome–autophagy pathway, its regulation by parkin-
mediated Lys63-linked polyubiquitination, and its dysfunction in neurodegenerative diseases.
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Introduction
PD (Parkinson's disease) and AD (Alzheimer's disease) as well as many other
neurodegenerative disorders are often referred to as ‘protein misfolding diseases’ because their
pathogenesis involves protein misfolding and aggregation [1,2]. The accumulation of
misfolded proteins in these diseases probably occurs due to a chronic imbalance in the
generation and clearance of misfolded proteins, and it suggests that the failure of cells to cope
with excess misfolded proteins may be a common pathological mechanism linking these
clinically distinct diseases. Protein misfolding can occur as a result of genetic mutations,
environmental insults or oxidative damage [3]. Misfolded proteins are often prone to
aggregation into oligomers and aggregates, and they can impair cell function and viability
through a variety of mechanisms, including pore formation, proteasome inhibition and
disruption of intracellular transport [1,3].

Growing evidence indicates that, when the production of misfolded proteins exceeds the
capacity of the molecular chaperone system and the Ub (ubiquitin)–proteasome pathway,
misfolded and aggregated proteins are actively sequestered in a microscopically visible,
pericentriolar structure called an aggresome [3,4] and are subsequently degraded by
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macroautophagy (hereafter referred to as autophagy), a lysosome-dependent process that
mediates bulk clearance of cytosolic proteins and organelles [5,6]. Here, we review recent
evidence for the involvement of the aggresome–autophagy pathway in protection against
misfolded protein accumulation and neurodegeneration and discuss the role of Lys63-linked
polyubiquitination by PD-linked E3 ligase parkin in regulation of misfolded protein handling
by this pathway.

The aggresome–autophagy pathway
The aggresome–autophagy pathway is increasingly recognized as a key cellular defence system
against accumulation of misfolded and aggregated proteins when the proteasome is
overwhelmed or impaired [3,4]. In this system, misfolded and aggregated proteins are
selectively recognized and delivered via dynein-mediated, microtubule-based retrograde
transport towards the MTOC (microtubule-organizing centre) to form aggresomes at the
pericentriolar region (Figure 1). Accumulating evidence indicates that aggresome formation
not only protects cells by sequestering cytotoxic misfolded and aggregated proteins but also
serves as a mechanism for concentrating misfolded and aggregated proteins for subsequent
clearance by autophagy [3,7].

Autophagy is a multistep process characterized by the formation of an isolation membrane
called a phagophore that expands to sequester a portion of the cytoplasm, leading to the
formation of the double-membrane autophagosome, which subsequently fuses with the
lysosome for degradation of the sequestered cytoplasmic cargo [5,6]. Unlike the proteasome,
autophagy does not require unfolding of the substrates and is able to break down large protein
complexes, protein aggregates and entire organelles. Autophagy is a highly regulated process
involving the co-ordinated action of a large number of proteins encoded by Atg (autophagy-
related) genes [5,6]. Recent studies have shown that autophagy is induced in response to
oxidative stress or proteasome impairment and participates directly in the clearance of
aggresomes [6–10].

Although autophagy is generally thought to be a non-selective, bulk degradation process,
increasing evidence indicates the presence of selective autophagy that mediates clearance of
specific cargos, such as mitophagy, reticulophagy, pexophagy and xenophagy [6]. Emerging
evidence suggests that selective autophagy is involved in the clearance of misfolded and
aggregated proteins, as inhibition of autophagy preferentially affects the degradation of several
neurodegenerative disease-associated mutant proteins but not their wild-type counterparts [8,
11]. Although the mechanism underlying the selective autophagic clearance of misfolded
proteins is not understood, the selective sequestration of misfolded proteins in aggresomes
offers one method of preferential clearance of the abnormal proteins by autophagy.
Aggresomes have also been shown to participate in the induction of autophagy by sequestering
the endogenous autophagy suppressor mTOR (mammalian target of rapamycin) kinase [3,9].
Together, current data suggest that, unlike basal autophagy that mediates non-selective
clearance of misfolded proteins along with normal cellular proteins, the aggresome–autophagy
pathway is a specialized type of induced autophagy that mediates selective clearance of
misfolded and aggregated proteins under the conditions of proteotoxic stress.

Parkin-mediated Ub signalling in regulation of the aggresome–autophagy
pathway
Parkin and PD

PD is the most common neurodegenerative movement disorder, characterized by the loss of
nigral dopaminergic neurons and the presence of intraneuronal cytoplasmic inclusions called
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Lewy bodies [12–14]. Homozygous mutations in the gene encoding the E3 Ub–protein ligase
parkin cause an autosomal recessive, early onset form of PD that is devoid of Lewy bodies
[12,13]. In addition, heterozygous mutations in parkin have been implicated as a significant
risk factor in the development of late-onset sporadic PD [15]. Studies in a number of cell and
animal model systems have shown that parkin exerts cytoprotective action against a wide
variety of cellular stresses, including oxidative stress, proteasome inhibition and proteotoxic
stress induced by overexpression of aggregation-prone proteins [14]. However, the molecular
mechanisms underlying the cytoprotective action of parkin remain poorly understood.

A mechanistic understanding of the cytoprotective action of parkin requires molecular
characterization of parkin E3 ligase function, its substrates and the types and functional
consequences of parkin-mediated ubiquitination. Parkin has been reported to regulate Lys48-
linked polyubiquitination and proteasomal degradation of several putative substrates [13,14],
although the validity of these proteins as physiological parkin substrates remains controversial
[16]. Parkin has also been shown to be capable of catalysing monoubiquitination and Lys63-
linked polyubiquitination, thereby regulating proteasome-independent cellular processes, such
as endocytosis and NF-κB (nuclear factor κB) signalling [17,18]. In addition, parkin has been
implicated in regulation of mitochondria dynamics [19,20], although the parkin substrate(s)
on the mitochondria remains to be identified.

Parkin-mediated Lys63-linked polyubiquitination and aggresome formation
In a recent study [21], we investigated the specificity of parkin-mediated ubiquitination and
its role in cellular management of misfolded proteins using wild-type DJ-1 and L166P mutant
DJ-1 as the substrates. DJ-1 is a ubiquitously expressed protein that is mutated in an autosomal
recessive, early-onset form of PD [22]. We have previously shown that wild-type DJ-1 is a
compactly folded protein with a helix–strand–helix sandwich structure, whereas the PD-linked
L166P mutant DJ-1 is a misfolded protein that is efficiently degraded by the Ub–proteasome
system under normal conditions [23,24]. The results from our recent study [21] showed that,
under conditions of proteasomal impairment, parkin co-operated with the heterodimeric E2
enzyme UbcH13–Uev1a to selectively catalyse Lys63-linked polyubiquitination of misfolded
DJ-1, but not wild-type DJ-1 (Figure 1, step 6). Our results [21] further revealed that parkin-
mediated Lys63-linked polyubiquitination coupled misfolded DJ-1 with the dynein motor
complex via the adaptor protein HDAC6 (histone deacetylase 6) and thereby facilitated its
transport to the MTOC for sequestration into the aggresome (Figure 1, steps 7 and 8).

HDAC6 is a Ub-binding protein that can simultaneously bind ubiquitinated proteins via its
ZnF-UBP (zinc finger Ub-processing protease) domain and the dynein motor via another
domain [25]. Depletion of HDAC6 by siRNAs (small interfering RNA) blocks aggresome
formation, and this phenotype can be rescued only with a Ub-binding-competent form of
HDAC6 [25]. Our previous study revealed that HDAC6 preferentially bound Lys63-linked
polyubiquitinated proteins and that inhibition of Lys63-linked polyubiquitination or targeted
disruption of parkin in mice impaired recruitment of misfolded DJ-1 to aggresomes [21]. Our
findings suggest that Lys63-linked polyubiquitination by parkin serves as a signal for targeting
misfolded proteins to the aggresome [21,26]. Consistent with our results, expression of mutant
Ub that can only form Lys63-linked chains was recently shown to promote aggresome
formation of several misfolded proteins, including tau protein and SOD-1 (superoxide
dismutase 1) mutants [27], providing additional evidence supporting a role for Lys63-linked
polyubiquitination in facilitating aggresome formation.

Parkin-mediated Lys63-linked polyubiquitination and autophagy
Our recent work suggests that parkin-mediated Lys63-linked polyubiquitination not only
promotes sequestration of misfolded proteins into aggresomes but also facilitates their
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subsequent clearance by autophagy [21,26]. We found that misfolded DJ-1-containing
aggresomes stained with autophagic markers and were tightly encircled by lysosomes,
indicating that aggresomes promoted by parkin-mediated Lys63-linked polyubiquitination are
active sites of autophagy (Figure 1). Corroborating our findings, Tan et al. [27] demonstrated
that the aggresomes formed in cells overexpressing the mutant Ub that can only form Lys63-
linked polyubiquitin chains were preferentially cleared when autophagy is induced, whereas
those formed in cells expressing Ub mutant that was unable to form Lys63-linked polyubiquitin
chains were resistant to autophagic clearance. Thus emerging evidence has begun to suggest
that Lys63-linked polyubiquitination has a signalling role in autophagic clearance of
aggresomes.

A potential mechanism by which parkin-mediated Lys63-linked polyubiquitination may
facilitate autophagic clearance of misfolded proteins is to promote the recruitment of
autophagic membranes and autophagy machinery via binding to the adaptor protein p62 (Figure
1, steps 9 and 10). p62 is a Ub-binding protein that interacts with ubiquitinated proteins via its
UBA (Ub-associated) domain and the autophagy machinery component LC3 via a 22-amino-
acid LIR (LC3-interacting region) [28,29]. p62 shows preference for binding Lys63-linked
polyubiquitin chains [30,31], and deletion of its UBA domain or LIR impairs the packing of
ubiquitinated aggregates into autophagosomes [28,29]. Recent evidence indicates that, in
addition to facilitating autophagic clearance, p62 also has a role in promoting protein aggregate
formation [32]. Further studies are needed to determine whether p62 is indeed a Ub receptor
for regulating the processing of Lys63-linked polyubiquitinated misfolded proteins by the
aggresome–autophagy pathway.

Recently, parkin was shown to be selectively recruited to damaged mitochondria and promote
their clearance by autophagy [20]. Autophagic clearance of mitochondria is often referred to
as mitophagy [6], and there is evidence suggesting the involvement of ubiquitination in this
process [33,34]. It remains to be determined whether the E3 ligase activity of parkin is required
for its action in promoting mitophagy, what the parkin substrates on the mitochondria are and
what type of ubiquitination is involved. A tantalizing possibility is that, similar to its action in
promoting clearance of misfolded proteins by the aggresome–autophagy pathway (Figure 1),
parkin may catalyse Lys63-linked polyubiquitination of misfolded proteins on the damaged
mitochondria and this ubiquitination could be the signal for targeting damaged mitochondria
for mitophagy.

Dysfunction of the aggresome–autophagy pathway and neurodegeneration
A link between dysfunction of the aggresome–autophagy pathway and neurodegeneration was
first suggested by postmortem findings of the accumulation of Ub-positive protein aggregates
and autophagosome-like structures in brains of patients with diverse neurodegenerative
diseases, including PD and AD [3,35,36]. This link was further strengthened by recent
identification of mutations in the aggresome–autophagy pathway components as the genetic
defects responsible for several hereditary forms of neurodegenerative disorders (Table 1).

Loss-of-function mutations in parkin are a major cause of recessively transmitted early-onset
PD [12,13]. Our finding that parkin-mediated Lys63-linked polyubiquitination of misfolded
proteins promotes their sequestration into aggresomes and subsequent clearance by autophagy
[21,26] provides evidence linking deregulation of the aggresome–autophagy pathway to PD
pathogenesis. The impaired aggresome formation observed in cells from parkin-knockout mice
[21] is reminiscent of the lack of Lewy bodies in parkin-associated human PD cases [13,14],
suggesting that Lys63-linked polyubiquitination by parkin may be directly involved in the
formation of Lewy bodies and that the inability to form these protective inclusion bodies may
underlie the rapid disease onset and progression observed in patients with mutations in parkin.
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Accumulation of Lys63-linked polyubiquitinated proteins was recently detected in brains of
human HD (Huntington's disease) patients [37], further supporting a connection between
Lys63-linked polyubiquitination and the formation of pathological inclusion bodies.

Mutations in the Ub-binding domain of p62, an adaptor that binds Lys63-linked polyubiquitin
chains and promotes autophagic clearance of protein aggregates [28–30], cause Paget disease
[38]. Although Paget disease is primarily a bone disorder, knockout studies in mice revealed
age-dependent accumulation of Lys63-polyubiquitinated protein aggregates and
neurodegeneration in p62−/− brains [39]. Additional support for the involvement of the
aggresome–autophagy pathway dysfunction in neurodegeneration comes from the following:
(i) the identification of mutations in dynactin subunit p150Glued, a component of the dynein/
dynactin motor that plays a critical role in aggresome formation as well as autophagy [40,41],
as the cause for human motor neuron disease [42]; and (ii) animal model studies showing that
disruption of the dynein/dynactin motor function leads to motor neuron degeneration [43,44]
and enhanced toxicity of aggregation-prone proteins [41]. Dysfunction of the aggresome–
autophagy pathway has also been implicated in the pathogenesis of two human
neurodegenerative diseases, frontotemporal dementia [45] and ALS (amyotrophic lateral
sclerosis) [46], by the findings that the disease-causing mutations in the ESCRT (endosomal
sorting complexes required for transport)-III subunit CHMP2B (charged multivesicular body
protein 2B) cause impairments in autolysosome formation and autophagic clearance, leading
to accumulation of Ub-positive protein aggregates and neuronal cell death [47,48].

Previously, it was reported that overexpression of HDAC6, a key regulator of the aggresome–
autophagy pathway [10,25], is able to suppress neurodegeneration in Drosophila induced by
proteasome impairment or by expression of the spinobulbar muscular atrophy-associated
mutant protein [49]. Furthermore, pharmacological activation of autophagy with mTOR
inhibitors has been shown to reduce neurotoxicity of misfolded and aggregated proteins in cell
and animal models of neurodegenerative diseases [8,9,50]. Together, these findings point to a
critical role for the aggresome–autophagy pathway in the protection against misfolded protein
accumulation and neurodegeneration, and they suggest that targeting this pathway may have
therapeutic benefits for treating neurodegenerative disorders.

Conclusions and perspectives
While the role of the Ub–proteasome system in misfolded protein degradation has long been
appreciated, the involvement of the aggresome–autophagy pathway in cellular defence against
cytotoxic accumulation of misfolded proteins has only recently been recognized. Lys63-linked
polyubiquitination by parkin has emerged as a signal for targeting misfolded proteins into
aggresomes and facilitating their selective clearance by autophagy [21,26]. Increasing evidence
suggests that the Ub-binding proteins HDAC6 and p62 may function as cargo receptors for
recognizing Lys63-linked polyubiquitinated misfolded proteins and facilitating their
processing through the aggresome–autophagy pathway (Figure 1). Given the recently reported
role of parkin in mitophagy [20], it is tempting to speculate that parkin-mediated Lys63-linked
polyubiquitination of mitochondria-localized misfolded proteins may act as a signal for
targeting damaged mitochondria for mitophagy. Further studies of the molecular mechanisms
by which parkin promotes clearance of misfolded proteins and damaged mitochondria should
facilitate the development of novel therapies for treating PD as well as other neurodegenerative
diseases.
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Abbreviations used

AD Alzheimer's disease

ALS amyotrophic lateral sclerosis

CHMP2B charged multivesicular body protein 2B

ESCRT endosomal sorting complexes required for transport

HDAC6 histone deacetylase 6

LIR LC3-interacting region

MTOC microtubule-organizing centre

mTOR mammalian target of rapamycin

PD Parkinson's disease

Ub ubiquitin
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Figure 1. The aggresome–autophagy pathway and its regulation by parkin-mediated Lys63-linked
polyubiquitination
Protein misfolding can occur as a result of genetic mutations or oxidative damage (1). Once
formed, misfolded proteins may be refolded by chaperones (2) or tagged with Lys48-linked
polyubiquitin chains (3) for degradation by the proteasome (4). When the chaperone and
proteasome systems fail or are overwhelmed, misfolded proteins form oligomers and
aggregates (5) that can cause cytotoxicity. Recent evidence indicates that, under conditions of
proteasomal impairment, PD-linked E3 ligase parkin co-operates with the E2 enzyme Ubc13/
Uev1a to mediate Lys63-linked polyubiquitination of misfolded proteins (6). The Lys63-linked
polyubiquitin chains promote binding to HDAC6 (7) and thereby link the misfolded proteins
to the dynein motor complex for retrograde transport towards the MTOC to form the aggresome
(8). Lys63-linked polyubiquitination may also promote binding to p62 and thereby facilitate
the recruitment of autophagic membrane to the aggresome for the formation of an
autophagosome (9). Subsequent fusion of the autophagosome with the lysosome allows the
degradation of misfolded and aggregated proteins by lysosomal hydrolases (10).
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Table 1
The aggresome–autophagy pathway components and neurodegenerative diseases

Component Protein function Disease Reference(s)

Parkin E3 Ub–protein ligase PD [12,13]

p62 Ub-binding, LC3-binding Paget disease [38]

p150Glued Dynactin subunit Motor neuron disease [42]

CHMP2B ESCRT-III subunit Frontotemporal dementia, ALS [45,46]
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