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Abstract
We report the use of the molecular signatures known as “Property-Encoded Shape
Distributions” (PESD) together with standard Support Vector Machine (SVM) techniques to produce
validated models that can predict the binding affinity of a large number of protein ligand complexes.
This “PESD-SVM” method uses PESD signatures that encode molecular shapes and property
distributions on protein and ligand surfaces as features to build SVM models that require no subjective
feature selection. A simple protocol was employed for tuning the SVM models during their
development, and the results were compared to SFCscore – a regression-based method that was
previously shown to perform better than 14 other scoring functions. Although the PESD-SVM
method is based on only two surface property maps, the overall results were comparable. For most
complexes with a dominant enthalpic contribution to binding (ΔH/-TΔS > 3), a good correlation
between true and predicted affinities was observed. Entropy and solvent were not considered in the
present approach and further improvement in accuracy would require accounting for these
components rigorously.

Introduction
Accurate prediction of protein-ligand binding affinity is a key component of computer-aided
drug discovery. There are many techniques for affinity prediction1-15, with notable accuracy
(1 kcal/mol) being seen with combination of molecular dynamics and free energy perturbation
techniques12,16,17. In drug discovery applications, fast computation of affinity is highly
desirable to enable rapid virtual screening for potency, which is currently attempted using
scoring functions based on the static structures of protein-ligand complexes. In spite of the
progress made over several years, the applicability of the scoring functions for affinity
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prediction across different proteins remains limited as demonstrated by recent benchmarking
studies18. Binding affinity is a thermodynamic process that involves both enthalpic and
entropic contributions to ligand pose stability. Unfortunately, accounting for entropy from a
static model is difficult, and most scoring functions provide only minimal treatment (generally
as a “rotor” term) for this important contribution. Ladbury and Williams19 pointed out that
“specific attribution of thermodynamic parameters to the formation/breaking of particular local
non-covalent interactions, to conformational or dynamic change, or to solvent reorganisation
is not easy to achieve”. However, good correlation between change in buried apolar surface
area on complex formation and free energy (though not necessarily with entropy) 20, and
improved performance of empirical scoring functions on enrichment of the training set11 have
also been previously noted. These could be contributors to the modest to good correlations
between true affinity and predicted affinity observed in some protein-ligand systems. Until
such time that entropic contributions to binding affinity can be accurately assessed in high-
throughput virtual screening applications, the development of new generalized scoring
functions needs to be coupled with an increased awareness of the applicability domains of those
new scoring functions. Such an analysis appears later in this report.

Recently, we developed the “Property-Encoded Shape Distributions” (PESD) concept that
enabled us to determine similarities between many functionally related binding sites by
analyzing structural similarity at the level of molecular surface21. PESD signatures account
for distribution of polar and apolar regions as well as electrostatic potential on the molecular
surface. In this study, we investigate to what extent the encoding of surface property
distributions within PESD signatures can explain observed variance in binding affinity in the
absence of any explicit treatment for solvent and entropy given the observed correlation
between change in buried apolar surface area and free energy. Surface property distributions
have also been encoded by methods such as the MaP approach22 by Stiefl and Baumann, the
autocorrelation descriptors of surfaces23 by Wagener, Sadowski and Gasteiger, Surfcats
descriptors24 by Renner and Schneider, PEST descriptors by Breneman and coworkers25 and
shape signatures of Zauhar and coworkers26. However, unlike others, the PESD algorithm is
a novel approach that is based on a fixed number of randomly sampled point pairs on the
molecular surface that does not require ray-tracing or the equal spacing of ligand or protein
surface points. In the current study, PESD signatures calculated from both protein and ligand
interaction surfaces are utilized as features for creating Support Vector Machine27 (SVM)
models for binding affinity prediction. Therefore, the binding affinity prediction approach is
proteochemometric, a term coined by Wikberg and coworkers28. Proteochemometric
approaches use both the protein (usually in and around the binding site) and the ligand structural
features to build predictive models11, 28-36. We chose a recently published
proteochemometric method called SFCscore for comparison with the PESD-SVM method.
SFCscore is an empirical scoring function that is trained on descriptors (including surface
based) derived from the ligand as well as the protein component of each complex.

Following a description of our approach, we discuss the results of applying PESD-SVM models
to complexes in the PDBbind37, 38 data set for affinity prediction. We next compare PESD-
SVM results with those of SFCscore that was previously benchmarked against 14 other scoring
functions39 for affinity prediction. Finally, we analyze the results and discuss the strengths and
shortcomings of the present method.

Methods
Protein structure preparation

Protein structures obtained from the PDBbind database version 200537, 38 were appropriately
protonated with the Protonate3D routine40 in MOE41 at the pH at which the complexes were
crystallized42, 43. The pH values were extracted directly from the PDB44 files of the respective
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complexes. For structures not having a specified pH, a default pH of 7.0 was used. The
electrostatics cutoff was set at 12 Å. To reduce the computational time used in preprocessing
protein structures, the following “sliding scale” was used to determine whether to include
specific waters during structure optimization: If the protein structure was of significantly high
resolution (less than 2.2 Å resolution and an r-factor of less than 0.29) and was small enough
(less than 6000 daltons), all waters were included in subsequent optimization. For all other
structures, waters were included only if they were located less than 3.8 Å from the ligand.

Generation of molecular interaction surfaces
Property mapped interaction surfaces were generated using the MOE41 package. The protein
interaction surface was defined as the Gauss-Connolly surface of the protein at 4.5 Å or less
from any ligand atom; the ligand interaction surface was defined as the Gauss-Connolly
surface of the ligand at 3 Å or less from any protein atom. A 4.5 Å cutoff (default) is typically
used for defining an active site in MOE, whereas the 3 Å cutoff for the ligand was chosen to
eliminate solvent exposed ligand surfaces further away from the interfacial region. Ligand and
protein interaction surfaces were encoded with EP and Active LP (ALP) surface maps45. The
EP map was a Ewald-type screened molecular electrostatic potential that covered a range of
-35 to 35 kcal/mol 46. Potential values occurring outside the range were clamped to lie inside
the range. Gasteiger-Huckel partial charges from PDBbind ligand structures were used for
computing the ligand EP surface map, whereas partial charges assigned to the protein from the
structure optimization step with Protonate3D were used for computing the EP map for the
protein interaction surface. The ALP surface map displays different colors that represent
hydrogen-bonding regions, mildly polar regions and hydrophobic regions.

PESD signature generation
The Property Encoded Shape Distributions (PESD) method was originally developed to find
similarities between binding site shape and surface properties by comparing protein interaction
surface PESD signatures. PESD signatures are invariant to rotation and translation, exploiting
the concept of Shape Distributions47 and extending it by adding the capability of capturing
three dimensional distributions of mapped properties on a molecular surface. Triangulated
molecular surfaces are commonly generated by molecular graphics programs, including MOE,
for visualization purposes - thus, PESD was designed to work directly from such surface files.
Each vertex of a property mapped MOE-generated surface mesh is represented by its Cartesian
coordinates and a 24-bit RGB color code representing the mapped property magnitude. The
PESD routine samples pairs of points from random locations on the triangulated molecular
surface mesh. Collections of point pairs are then binned in a two-dimensional binning grid by
the distance between the point pairs as well as the property magnitudes or “color combinations”
on both endpoints (Figure 1). A coarse-grained binning scheme is employed that utilizes
twenty-four uniform distance bins 1 Å wide (recording distances from 0 to 24 Å). For building
predictive models all 24 bins were used. For determining chi-squared distances between protein
targets for assessing the domain of applicability for a model, an extended signature of 25 bins
was used. The 25th bin records all distances greater than 24 Å in the signature and its inclusion
enhanced the performance of the applicability domain assessment routine.

The entire range of colors on the EP map was coarse-grained into 9 colors, and that of ALP
map into 14 colors. These numbers come from down-sampling the 24 bit color scheme to a 6
bit color scheme. The final number of elements was thus 24 × 81 and 24 × 196 for EP and ALP
surfaces, respectively. A representative EP mapped protein interaction surface of the PDB
complex 1fbp and the corresponding PESD signature are shown in Figure 1. Each circle in the
graphical representation of the PESD signature is a bin. Darker circles indicate greater bin
populations. Each row is for a color combination, and each column represents a point-pair
distance that increases from left to right. For each surface, a total of 100,000 pairs of points
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were selected. The population of each bin is thus proportional to the probability of a color (or
property magnitude) being present at a certain distance from another color on the surface.

To eliminate bias in surface point selection, the procedure of Osada was utilized47. Within this
scheme, the area of each triangle of the surface mesh was calculated and stored as an array of
cumulative areas. A number between 0 and the total area was then randomly chosen, and the
triangle corresponding to the cumulative area containing that value was selected. The use of a
lookup table that segments the array of cumulative areas greatly increased the computational
efficiency of the procedure. A co-planar point within this triangle was then selected from a
random location within the part of the plane enclosed by the edges of the triangle as shown in
eq 1, where r1 and r2 are random numbers and A, B and C are vertices of the selected triangle:

(1)

The color of the selected point was then set equal to the color of the nearest vertex of the
triangle. Typical signature computation time of a Visual Basic program on a 2.66 GHz Intel
Xeon running Windows XP with a look-up table is 8 to 33 seconds per surface out of which 5
to 20 seconds are for parsing a surface file. Running four jobs of signature computation in
parallel, the maximum computation time for each complex is typically 33 seconds.

Datasets
Protein-ligand complexes from the publicly-available database PDBbind37,38 (version 2005)
were used in this study. The ‘refined set’ of the PDBbind has 1296 good quality complexes.
After the Protonate3D run, a total of 1255 complexes from the refined set were available for
PESD signature generation. Experimental binding affinity for each complex was extracted
from the PDBbind database. The binding affinities were either inhibition constants (Ki) or
dissociation constants (Kd) which were used equivalently in this study, in keeping with what
was done in earlier works11,39. The refined set of PDBbind complexes also has a subset called
a ‘core set’ of 288 complexes. The core set is a non-redundant set of protein-ligand complexes
separated from the refined set48 and includs three complexes per non-redundant protein. Out
of 1255 complexes with adjusted protonation state, 278 are part of this core set (reduced from
288) and 977 are part of the core’ set (all remaining complexes of the refined set, reduced from
1008). The affinity values (pKd or pKi) ranged from 1.49 to 13.96 in the core set and 0.49 to
13 in the core’ set. The overlap between the two sets in terms of protein and/or ligand
components is shown in Table 5. The core set was used as the training set, and the core’ set as
the test set for Model I. To reduce the possibility of bias in choice of complexes for the training
and test sets, three other training and test sets of the same size (training: 278, test: 977) were
created from the 1255 complexes by random sampling without replacement. These formed
training and test sets for models II, III and IV. Finally for Model V, the core’ set was used as
the training and the core set as the test set.

Data for enthalpy and entropy analysis were obtained from the SCORPIO database20.

Modeling
Support Vector Machine (SVM) regression and classification models were built with the e1071
SVM package49 in R50 using PESD signatures of protein and ligand interaction surfaces as
features (Figure 2). No subjective feature selection was employed for any of the models except
for the removal of invariant columns prior to model building. Negative logarithms (base 10)
of experimental Kd and Ki values were used as dependent variables (pKd and pKi respectively).
For classification, individual pKd / pKi values were converted to class numbers (1 for weak
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binders (pKi/pKd < 5), 2 for medium binders (5 ≤ pKi/pKd ≤ 8) and 3 for strong binders (pKi/
pKd > 8)). Only the “gamma” parameter of the default radial kernel and the “cost” (cost of
constraints violation) parameter were tuned by a simple 5-fold cross-validation with
replacement from within the training set, where 20% of the training set was randomly selected
and held out for cross-validation. For each combination of parameter values in Table 1 a model
was built from the remaining 80% and applied on the validation set. The sum of residuals and
cross-validated correlation coefficients were then recorded for each iteration. For each
parameter combination, ten such runs were made. For SVM classification, the parameter
combination having the lowest sum of residuals was chosen to build the final tuned model. For
SVM regression, the parameter combination with the highest average cross-validated
correlation coefficient was chosen to build the final tuned model. In both cases, all other
parameters were kept at their default values. In R, the default for SVM regression is “eps-
regression” and the default for SVM classification is “C-classification”49.

Chi-squared distance
We have shown earlier that the chi-squared distance between protein interaction surface PESD
signatures is a good metric for assessing the similarity between pairs of protein active sites21,
suggesting that this approach would provide a reasonable model applicability domain metric.
Chi-squared distances were therefore computed for each pair of test and training protein
interaction surfaces using the procedure shown in eq 2 where the dissimilarity distance d is
assessed between two PESD signatures H and K. As shown below in eq 3, EP and ALP
distances were combined using an ALP scaling factor of 0.7 since this weighting scheme gave
the best set of clusters in a classification experiment of 40 active sites and was found to
applicable to other active site comparisons as well21.

(2)

(3)

Quality metrics
While a number of metrics are available for comparing the performance of scoring functions,
PESD-SVM predictions of pKd/pKi values were assessed against experimental data using
Pearson’s correlation coefficient (RP), Spearman’s correlation coefficient (RS), standard
deviation (SD) and mean error (ME). In eq 4 to 6, y represents the experimental value and x
the predicted value. The predicted values were not scaled for SD and ME calculations (unlike
in Wang et al.39) and instead the definitions in eq 5 and 6 were used. In addition to the statistical
metrics above, the slope and the intercept, a and b, of the best-fit line for true and predicted
affinities provide additional insight into model performance. In this case, a values close to 1.0
and b values close to 0.0 are considered favorable.
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(4)

(5)

(6)

(7)

The ability of the models to correctly classify complexes into weak (pKi/pKd < 5), medium (5
≤ pKi/pKd ≤ 8) and strong binders (pKi/pKd > 8) was judged by calculating the recovery
rate and percentage true positive. The recovery rate is defined below.

(8)

Percentage true positive (% TP) defined below quantifies the reliability of a particular scoring
function.

(9)

Scoring of docked poses
Given that the protein-ligand complex structures for affinity prediction were derived from
crystal structures, it was of interest to determine how well the PESD-SVM approach would
work to score poses obtained by docking simulation. In contrast to the usual PESD-SVM
approach that separately encodes ligand and protein surface signatures, point pairs for PESD-
DOCK signature generation were pooled in such a way that one endpoint was taken from the
protein interaction surface and the other from the ligand interaction surface. Poses that arose
during a docking experiment based on 1cbx (a complex of carboxypeptidase A and L-Benzyl
succinate) were scored using a SVM regression model derived from PESD-DOCK signatures.
This complex has previously been used in numerous benchmarking exercises in the literature,
51, 52 providing us with a reasonable benchmark for evaluating the scoring efficacy of PESD-
DOCK. To perform this evaluation, 50 docked poses were generated in MOE with docking
site set to “Ligand” and rescoring set to “None”, with all other parameters being set to their
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default values. A SVM regression model was then trained on the PESD-DOCK signatures of
1253 complexes (1cbx and 1wht were excluded from the training data as these are complexes
of L-benzyl succinate). The gamma and cost parameters were chosen from Table 1 to build a
PESD-DOCK SVM model with the best cross-validated correlation coefficient (rTrain = 0.997,
rCross-validated = 0.670; final model parameters: gamma = 1/Dimension of feature vector,
cost=20).

Results
Regression statistics of training complexes

The tuned parameters chosen for the various PESD-SVM regression models I-V are shown in
Table 2. The training set statistics for the models appear in Table 3. The correlation coefficients
rTrain between actual and predicted affinities of the training complexes ranged between 0.879
and 0.997, indicating a significant level of overtraining. While usually not indicative of
expected performance on test data, it is interesting to note that over-trained Models II and III
with their 0.997 correlation coefficients were, in fact, found to perform better than Models I
and IV on test data.

Regression statistics of test complexes
When applied to the respective test sets, PESD-SVM regression Models I-IV had Pearson’s
correlation coefficients (RP) ranging from 0.517 to 0.574, and Spearman’s rank correlation
coefficients (RS) from 0.535 to 0.597 (Table 4). The prediction accuracy for Model V was
higher at RP = 0.638 and RS = 0.628. Plots of experimental binding affinities of test complexes
versus predicted binding affinities from PESD-SVM regression models I, II and V are shown
in Figure 3.

For Model I, there were at least 263 complexes (Table 5) in the test set (core’) that had neither
their protein component nor their ligand component common to complexes in the training set
(core). Similarity search for ligands was done by three letter ligand identifiers which did not
include peptides. Actual number of unique ligands is therefore slightly higher if peptides are
taken into account. The unique 263 complexes gave an RP of 0.496 which is close to 0.517
observed when all complexes of the test set were considered. Interestingly, for Model V, an
improvement in the value of RP was observed for complexes that had neither the ligand
component nor the protein component common between test and training sets. This could be
due to the relatively small number of complexes (only 17) that belonged to this category and/
or due to a dominant enthalpic contribution (see Discussion). Overall, some transferability of
the models is noted. Such a behavior is advantageous since the model need not be fitted with
the same protein for which prediction is to be made.

Further analysis of the predictive performance of PESD-SVM regression models was done by
breaking out prediction accuracies for several specific protein targets as shown in Table 6. For
Model I, no significant correlations between predicted and true affinities were observed for
carbonic anhydrase, HIV-1 protease and oligo-peptide binding protein. Moderate to good
correlations were observed for trypsin, retinoic acid receptor, tyrosine phosphatase, and
urokinase–type plasminogen activator. Overall prediction accuracy improved for these
receptors in the case of Model II, with predictions for oligo-peptide binding protein and retinoic
acid receptors showing large improvements in accuracy. Possible reasons for the improvements
are provided in the Discussion section.

Domain of applicability53-56

Consistently higher prediction accuracy for complexes within the domain of applicability of
the model in question was observed. The domain of applicability was determined by a common
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similarity metric – chi squared distance between pairs of protein interaction surface signatures.
Although both the protein and ligand interaction surface PESD signatures could be used for
more accurately determining the difference between protein-ligand complexes, considering
only the protein interaction surface PESD signature was found to be sufficient for
demonstrating the trend. The domain of applicability was determined from the lowest value of
the chi-squared distance of signatures between a test complex and the training complexes. All
PESD-SVM regression models showed improvement in accuracy with decreasing chi-squared
distance cutoffs (Table 7). A plot of RP and RS against cutoff distances for PESD-SVM
regression Model II is shown in Figure 4.

Classification
Differentiating weak and strong complexes from a set of weak, medium and strong complexes
is a difficult task11, 39. The recovery rates (eq 8) of PESD-SVM classification models ranged
from 30.0% to 62.1% for weak complexes and 18.9% to 47.6% for strong complexes (Table
8). We note that the recovery rate is not a complete indicator of true reliability of a classifier
in a classification task. The reliability of a classifier is tied to its ability to report true positive
values and this is shown in Table 9 for the PESD-SVM classification models. True positive
percentages (eq 9) for PESD-SVM models ranged from 52.7% to 67% for weak binders and
40% to 78.8% for strong binders.

Comparison with SFCscore
SFCScore11 is a recently developed empirical scoring function that includes a number of
descriptors including those accounting for polar and apolar surface areas and was previously
shown to perform better than 14 other empirical , knowledge-based or force-field based scoring
functions 39. Rigorous quantitative comparison between two empirical scoring functions
requires that not only the test set but also the training set to be identical. This is because the
choice of training sets can have a great impact on the performance of empirical scoring
functions. Therefore the following comparison can only be considered semi-quantitative with
comparably sized non-enriched training sets (models sfc_290m, sfc_229m, sfc_290p and
sfc_229p and PESD-SVM models I-IV) unless otherwise noted. The reported correlation
coefficients of predicted and experimental affinities with SFCscore are RP = 0.492 to 0.520,
and RS = 0.547 to 0.565 on 919 test complexes in contrast to RP = 0.517 to 0.574, and RS =
0.535 to 0.595 on 977 test complexes with PESD-SVM models I-IV. There is considerable
overlap between the two test sets. In version 2005 of PDBbind (used in this study), 209 new
complexes were added and 4 older complexes were removed from the previous year’s version
(used in SFCscore) resulting in an overlap of nearly 700 complexes. The PESD-SVM
regression models I-IV gave RP = 0.491 to 0.551 and RS = 0.508 to 0.575 for the overlapping
test complexes. The lower bound of RS was slightly lower and the upper bound of RP was
slightly higher than SFCscore values. The ME and SD of PESD-SVM models I-IV (ME=1.33
to 1.42, SD=1.74 to 1.84) were comparable to slightly better than the four SFCscore models
obtained on a different test set (ME=1.39 to 1.45, SD = 1.83 to 1.89). Although SFCscore
showed an apparently higher accuracy for carbonic anhydrase (CA), the test and training sets
of SFCscore had common complexes in this case: for example, 32 out of 37 test molecules in
the CA data set and 14 out of 74 test HIV-1 protease molecules also belonged to the 290
complex SFCscore training set. In the present study no model had any overlapping complex
between its test and training set. Two residual (|experimental affinity - predicted affinity|) cutoff
values have been reported in the literature11, and for comparison, we utilize the same two
criteria here: the percentage of complexes with residuals under 2.0 and 1.5 log units,
respectively. For SFCscore, the best percentages under those residual cutoffs for the 919 test
molecules were 72.4% and 60.8%. In contrast, for the model with the lowest RP in this study,
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PESD-SVM regression Model I, the percentages were higher at 75.5% and 62.2%. For PESD-
SVM regression Model II, the percentages were 76.8% and 62.4%.

The highest recovery rate of weak complexes using PESD-SVM classifiers was 62.1%
(classification model I) which is higher than the reported recovery rate for any other scoring
functions 11, 39. However, given the recovery rate of strong binders for the Model I was not
very high (only 34.5%), this could be due to a tendency to under-estimate affinities. The true
positive percent of Model I for weak complexes was indeed the lowest among the four models
at 52.7%. In contrast, Model III had good recovery rates for weak and strong complexes and
its true positive rates were also relatively higher. The recovery rate of weak complexes by
Model III at 52.0% was also higher than all SFCscore functions applied to the 919 unbiased
test set. The highest recovery rate of strong complexes was 47.6% with PESD-SVM classifiers
which is also significantly high compared to other reported values11,39. We note that this
recovery rate is only exceeded by sfc_frag, which the authors had noted overestimated
affinities11. The important point of difference between the SFCscore approach and the PESD-
SVM approach is that SFCscore includes descriptors such as number of rotatable bonds, ring-
metal interaction scores and ring-ring interaction scores (in addition to surface-based ones)
that were absent in the PESD-SVM method although, in general, comparable results with were
obtained with the PESD-SVM method.

Scoring of docked poses
Out of 50 poses generated for the complex 1cbx, the ligand pose with the highest PESD-DOCK
SVM score had a root mean squared deviation (rmsd) of 1.46 Å with respect to the native
crystal pose. It is significant to note that only one pose with rmsd > 2.0 Å (rmsd = 2.09 Å) had
a PESD-DOCK SVM score higher than that obtained for the native crystal structure pose. A
plot of the correlation between ligand pose (rmsd) and PESD-DOCK SVM score is shown in
Figure 5. The Spearman’s correlation coefficient for this data was -0.524 (PESD-DOCK SVM
model was trained on positive affinity values: pKd/pKi). Further study on several diverse
protein targets needs to be made to assess the reliability of the PEST-DOCK SVM scoring
method, and this is part of an ongoing effort which will be reported elsewhere.

Discussion
Change in buried apolar surface area of protein and ligand together has been previously
observed to have a good correlation with affinity20 and many approaches9,11,22,23,34 to binding
affinity prediction have utilized surface area based descriptors and equations. PESD-SVM
approach with only surface based signatures was able to achieve accuracy comparable to
SFCscore that used a number of non-surface based descriptors in addition to surface-based
ones. The population of different property combination bins in the PESD signatures are
proportional not only to the surface area under different properties but also represent the relative
locations of a surface under one property with respect to others under different properties. As
noted by Golhke and Klebe57, “the burial of a part of a hydrophobic molecular surface at a
binding site can induce a simultaneous cooperative enhancement of neighboring electrostatic
interactions” 58, 59. Therefore the relative location of the areas under different magnitudes of
property values is an important factor in binding that is captured by the PESD signatures and
not by traditional sum of area descriptors.

In the present study however, a good correlation between ΔH/-TΔS and prediction accuracy
was also noted. With Isothermal Titration Calorimetry (ITC) it is possible to determine the
enthalpy value and hence determine the enthalpy/entropy contribution19,20. A database of
energy values obtained from ITC experiments has also been set up20. Although limited in size,
analysis of the data by Olsson and coworkers20 showed significant amount of the so-called
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“enthalpy-entropy compensation” 60 that resulted in a relatively small energy range for free-
energy and large ranges for entropy and enthalpy. A plot of enthalpy versus free-energy of the
data comprising of 322 entries (Figure 6a) showed no correlation between enthalpy and free-
energy similar to earlier observations57. However, for about one-third of the entries (111 of
332) the ΔH/-TΔS was greater than 3, and this is where good correlation between free energy
and enthalpy was observed (Figure 6b). Therefore, if the temperature at which the ITC data
was obtained is assumed to be room temperature (298 K) under identical experimental
conditions, a scoring function having poor treatment for entropy and trained on pKd/pKi
obtained under those conditions, should achieve higher accuracy in predicting affinity
constants for such entries at that temperature. The following analysis is not exhaustive due to
the very small number of sample points, but some important trends are noted from the available
data. Where energy values for a complex were available at multiple temperatures in SCORPIO,
only the one closest to room temperature was used (such a procedure was also adopted in
PDBbind38). Trypsin is a receptor where enthalpy on an average was found to be more than
4 times the magnitude of -TΔS based on entries in the SCORPIO database (1k1i, 1k1j, 1k1l,
1k1m, 1k1n, 1ce5 at ~298 K) and this is possibly a reason why most scoring functions including
PESD-SVM perform well in this receptor. We also note a similar trend in prediction accuracy
of complexes in the test set of Model I for which ITC data was available from SCORPIO and
whose ΔH/-TΔS was greater than 3. The ten complexes (1a1c, 1k1j, 1k1l, 1k1m, 1kzn, 1swg,
1fdq, 1qy1, 1qy2, 1adl) had an RP of 0.685. Out of the ten complexes, 1qy1 and 1qy2 ITC
values were obtained at 308 K and the rest were obtained within ± 5 K of room temperature.
The range of chi-squared distances of these complexes with respect to training was 8643 to
15684, with an average of 12090, indicating their protein interaction surfaces were not very
similar to those in the training. Complex 1adl was an outlier having a residual greater than
three times the standard deviation of the residuals of the ten complexes (Figure 6d). On removal
of this complex, the RP increased further to 0.865 while the average chi-squared distance
decreased only slightly to 12074. The primary reference61 of 1adl indicated solvent
participation in binding, and this could be a reason for the inaccuracy with the current PESD-
SVM method. Similarly ITC data for HIV-1 protease (1hsg, 1ohr, 1a30, 1t7j, 1t7i; 1t7j and
1t7i at ~293 K, rest at ~298K) showed that entropy is a significant component with the average
ΔH/-TΔS being 1.14 in the 5 complexes. Although polarization effects are important62,63,
poor prediction accuracy with most scoring functions for HIV-1 protease could be because of
inadequate treatment of entropy18. In fact taking into account entropy was shown to result in
good prediction of affinity64. Entropic factors are also dominant in oligopeptide binding
protein and solvent plays a significant role in binding57 which possibly explains the lack of
correlation between predicted and experimental affinities for Model I. These trends support
the hypothesis. Therefore, accounting for both entropy and solvent is necessary to improve the
accuracy of the PESD-SVM method. Other possible sources of error are experimental
conditions (such as temperature and pH) and techniques used for determining pKd/pKi

65 and
these can be reduced by ensuring consistency in the data.

Interestingly, performance improved significantly for Model II in some receptors including
oligo-peptide binding protein. The training set of Model II had 8 oligopepetide binding proteins
in the training set as opposed to 3 in Model I. Recall that the protonated core set did not have
more than 3 complexes per non-redundant protein. The improvement in accuracy could be due
to the inclusion of more oligopeptide binding proteins in the training set of Model II resulting
in enrichment. Similar trends with varying degrees of improvement are observed for other
receptors. Enrichment and larger sized training sets were previously observed to improve
accuracy of scoring functions10, 11, 66, 67. The domain of applicability filter applied to test set
is complementary to training set enrichment, where we also see improved prediction accuracy
with decreasing chi-squared distance cut-offs between test and train complexes.
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Conclusions
The utility of the PESD signatures in affinity prediction has been demonstrated by its
application to a large number of different proteins. A simple model building process was
employed that generated models based on PESD signatures of two surface maps. The models
had only modest accuracy but was comparable in general and slightly improved in some cases
with respect to SFCscore. We have compared the results to those of SFCscore since the latter
is a recently developed regression based scoring function, and included both surface and non-
surface based descriptors.

However, the present results of the PESD-SVM approach show that only two surface maps are
not adequate to achieve a higher degree of accuracy. Although enriching a training set or
increasing its size had a positive effect of varying degrees on accuracy, factors such as entropy
and solvent cannot be neglected. These terms need to be added in the future to improve the
current models although this can be a difficult challenge68,69. Addition of specific interaction
terms such as ring-ring and ring-metal descriptors11 can also be potentially beneficial. We also
note that in certain receptors such as trypsin, tyrosine phosphatase and urokinase-type
plasminogen activator, PESD-SVM performed consistently well and for most complexes with
a dominant enthalpic contribution (ΔH/-TΔS > 3), a good correlation between true and
predicted affinities was observed.
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Figure 1.
(Left) Side view of EP mapped protein interaction surface of complex 1fbp. P1 and P2 are two
points chosen from random locations on the surface. The properties of these two points and
the Euclidean distance d between them determine which PESD signature bin they will occupy.
The graphical representation of the PESD signature of 1fbp is shown as a two dimensional grid
of bins (Right). Darker circles indicate greater bin populations. Each row corresponds to
specific endpoint color combinations while each column represents point-pair distances that
increase from left to right.
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Figure 2.
H1-4 depict protein and ligand interaction surfaces encoded with EP and Active LP maps. PESD
signatures derived from these surfaces were used as features for building binding affinity SVM
models.
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Figure 3.
Plot of experimental affinities versus predicted affinities for PESD-SVM regression models I,
II and V applied to their respective test sets.

Das et al. Page 17

J Chem Inf Model. Author manuscript; available in PMC 2011 February 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Plot of RP, RS and number of test cases against chi-squared cutoff distances for PESD-SVM
regression Model II.
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Figure 5.
Correlation between ligand pose (rmsd from native pose) and PESD-DOCK SVM Score for
docked conformations of L-Benzyl succinate in 1cbx. The score of the native pose (rmsd = 0)
is shown as a dashed line. Since PESD-DOCK SVM models were trained on positive affinity
values (pKd/pKi), higher scores indicate favorable interactions.
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Figure 6.
(a) Plot of free energy versus enthalpy for 322 entries from the SCORPIO database. (b) Plot
of free energy versus enthalpy for 111 out of 322 entries from the SCORPIO database. The
ΔH/-TΔS was greater than 3 for these complexes. (c) Difference plot of 6a and 6b (d) Plot of
experimental versus predicted affinities of all entries in the core set for which ΔH/-TΔS was
greater than 3 and could be obtained from the SCORPIO database. The complex 1adl is circled
in red.
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Table 1

Choice of parameter values for model parameter tuning

Parameter Values

Cost 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Gamma 1, 1/dimXa, 10/dimX a, 1/10dimXa. 1/100000

a
dimX = dimension of feature vector. Default values in R are cost=1 and gamma=1/dimX.
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Table 2

Tuned parameters for PESD-SVM regression models as determined by the cross-validation protocol

Name Cost Gamma

Model I 10 1/10dimX

Model II 20 1/dimX

Model III 10 1/dimX

Model IV 10 1/100000

Model V 10 1/dimX
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Table 3

Regression statistics of PESD-SVM regression models applied to respective training sets

Name NTrain rTrain rCross-validated

Model I 278 0.879 0.588

Model II 278 0.997 0.482

Model III 278 0.997 0.565

Model IV 278 0.923 0.574

Model V 977 0.997 0.633
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Table 5

Overlap between protonated core and core’ sets in terms of protein and ligand components of the complexes.

Type Number of complexes RP

protein component in core’ not occurring in core 343 0.492

ligand component in core’ not occurring in core 739a 0.519

Protein and ligand component in core’ not occurring in core 263a 0.496

Protein and ligand component in core’ also occurring in core 0

protein component in core not occurring in core’ 37 0.710

ligand component in core not occurring in core’ 163 a 0.632

protein and ligand component in core not occurring in core’ 17 a 0.736

a
Similarity search was done by three letter ligand identifiers which did not include peptides. Actual numbers are therefore higher if peptides are taken

into account.
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Table 6

Prediction accuracy of PESD-SVM regression models I and II on different protein targets compiled from the
respective test sets.

Target Name NTest RP RS

Model I

Trypsin 91 0.737 0.687

Carbonic anhydrase 39 0.225 0.1

HIV-1 protease 71 0.02 0.022

Oligo-peptide binding protein 20 0.01 -0.171

Retinoic acid receptor (α, β and γ) 6 0.470 0.657

Retinoic acid receptor (α and γ) 5 0.753 1.0

Tyrosine phosphatase 22 0.747 0.767

Urokinase-type plasminogen activator 23 0.714 0.738

Model II

Trypsin 74 0.746 0.636

Carbonic anhydrase 36 0.407 0.429

HIV-1 protease 60 0.298 0.132

Oligo-peptide binding protein 15 0.747 0.725

Retinoic acid receptor (α, β and γ) 7 0.874 0.929

Retinoic acid receptor (α and γ) 6 0.912 0.943

Tyrosine phosphatase 20 0.662 0.546

Urokinase-type plasminogen activator 20 0.844 0.767
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Table 8

Recovery rates in classification with PESD-SVM classification models

Name (Classification models) Recovery rate

Weak (pKi/pKd < 5.0) Medium (5 ≤ pKi/pKd ≤
8)

Strong (pKi/pKd > 8)

Model I 139/224=62.1% 319/527=60.5% 78/226%=34.5%

Model II 75/250=30.0% 407/509=80.0% 92/218=42.2%

Model III 131/252=52.0% 374/519=72.1% 98/206=47.6%

Model IV 128/248=51.6% 421/512=82.2% 41/217=18.9%
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Table 9

True positive percentages in classification with PESD-SVM classification models

Name (Classification models) Percent True Positive

Weak (pKi/pKd < 5.0) Medium (5 ≤ pKi/pKd ≤
8)

Strong (pKi/pKd > 8)

Model I 139/264=52.7% 319/518=61.2% 78/195=40.0%

Model II 75/112=67.0% 407/693=58.7% 92/172=53.5%

Model III 131/213=61.5% 374/578=64.7% 98/186=52.7%

Model IV 128/221=57.9% 421/704=59.8% 41/52=78.8%
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