
REVIEW

The Antiapoptotic Activity of Melatonin in Neurodegenerative
Diseases
Xin Wang

Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

Keywords
Alzheimer disease; Amyotrophic lateral

sclerosis; Huntington disease; Melatonin;

Mitochondrial cell death pathways; Parkinson

disease; Stroke; Survival signal pathways.

Correspondence
Xin Wang, Ph.D., Brigham and Women’s

Hospital, Harvard Medical School, Department

of Neurosurgery, Boston, MA 02115.

Tel.: 617-732-4186;

Fax: 617-732-6767;

E-mail: xwang@rics.bwh.harvard.edu

doi: 10.1111/j.1755-5949.2009.00105.x

Melatonin plays a neuroprotective role in models of neurodegenerative dis-
eases. However, the molecular mechanisms underlying neuroprotection by
melatonin are not well understood. Apoptotic cell death in the central nervous
system is a feature of neurodegenerative diseases. The intrinsic and extrinsic
apoptotic pathways and the antiapoptotic survival signal pathways play crit-
ical roles in neurodegeneration. This review summarizes the reports to date
showing inhibition by melatonin of the intrinsic apoptotic pathways in neu-
rodegenerative diseases including stroke, Alzheimer disease, Parkinson disease,
Huntington disease, and amyotrophic lateral sclerosis. Furthermore, the acti-
vation of survival signal pathways by melatonin in neurodegenerative diseases
is discussed.

Introduction

Melatonin May Be Beneficial in Treatment
of Neurodegenerative Diseases

Melatonin (N-acetyl-5-methoxytryptamine) is a natural
hormone secreted by the pineal gland. In clinical use for
many years, melatonin is safe and well-tolerated even at
high doses [1] and easily crosses the blood–brain barrier.
Besides being used to increase sleep efficiency, treat jet
lag, improve the cardiovascular system [2], and as an an-
tiaging drug [3–5] and a dietary supplement and cancer-
protective hormone [6], intensive research roughly in the
past 10 years has indicated melatonin’s beneficial effects
in experimental models of neurodegenerative disorders.
Brain oxidative damage has been implicated as a com-
mon link in the pathogenesis of such diseases. This small
amphiphilic molecule acts as a free-radical scavenger, and
its broad spectrum of antioxidant activities in many cen-
tral nervous system neurodegenerative diseases [7] has
been well documented and reviewed [8]. There is grow-
ing evidence that its antiapoptotic effects play an im-
portant role in neurodegeneration as well. This review
summarizes the antiapoptotic activities of melatonin via

the inhibition of intrinsic apoptotic pathways and the ac-
tivation of survival signal pathways in stroke, Alzheimer
disease (AD), Parkinson disease (PD), Huntington disease
(HD), and amyotrophic lateral sclerosis (ALS).

The Intrinsic and Extrinsic Apoptotic Pathways
in Neurodegenerative Diseases

Two types of cell death occur in neurodegeneration:
apoptosis and necrosis. Apoptosis (also called pro-
grammed cell death) occurs naturally under normal
physiological conditions and in a variety of diseases, while
necrosis is caused by external factors, such as infection,
toxins, or trauma. Apoptosis is a feature of both acute
and chronic central nervous system neurodegenerative
diseases. There are two major apoptotic signaling path-
ways: extrinsic and intrinsic. The extrinsic apoptotic path-
way (death receptor pathway) is initiated by death re-
ceptors (e.g., CD95/APO-1/Fas; TNF receptor) on the sur-
face of the cells, involving caspase-8/Bid and caspase-10
activation [9,10]. Since there have been no obvious re-
ports of the involvement of extrinsic pathways in the
neuroprotection of melatonin, this review focuses only
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Figure 1 Scheme of neuroprotection of melatonin. The possible inhibition

of the intrinsic cell death pathway and activation of the survival pathway

by melatonin are schematized.

on the intrinsic pathway (the mitochondrial pathway)
[11] (Fig. 1).

Proapoptotic mitochondria molecules, cytochrome c,
Smac (second mitochondrion-derived activator of cas-
pase)/Diablo, AIF (apoptosis-inducing factor), and Endo
G (endonuclease G), when released into the cytoplasm
from mitochondria, induce both caspase-dependent and
-independent mitochondrial death pathways in neu-
rodegenerative diseases (Fig. 1) [12–19]. The release
of cytochrome c is pivotal in the activation of cas-
pases [20]. During the progression of neurodegenera-
tive diseases, once cytochrome c is released, it binds
to Apaf-1 and dATP, which stimulates the activation
of caspase-9, and then in turn cleaves the key effec-
tor caspase-3 and two other effectors, caspase-6 and
-7 [12,14–18,21–24]. In addition, DNA-repairing enzyme
poly(ADP-ribose)polymerase (PARP) is cleaved [21], and
transcription factors such as NF-κB [5,25–27], TNF-α-
induced activator protein-1 (AP-1) [28,29], and p53
[30,31] are activated. Nuclear condensation and DNA
fragmentation are induced, as shown by terminal de-
oxynucleotidyl transferase-mediated DNA nick-end la-
beling (TUNEL)-positive cells, Hoechst 33342 stain, PI
(propidium iodide), and 4′,6-diamino-2-phenylindole di-

hydrochloride hydrate (DAPI) staining, as well as DNA
ladder. These events ultimately cause neuronal cell death
[13]. Other mitochondrial factors include mitochondrial
permeability transition pores (mtPTP) and mitochondrial
membrane potential (��m). mtPTP represents a multi-
protein complex including inner and outer membrane
components. The pores regulate transport of ions and
peptides into and out of mitochondria. The activation of
the permeability transition and in irreversible opening of
mitochondria pores is a major step in the development of
neurodegeneration [32–34]. ��m reflects performance
of the electron transport chain and can indicate a patho-
logical disorder. The dissipation of ��m and concomitant
neuronal death have been reported in experimental mod-
els of neurodegeneration [14,18,34–36].

Caspase-1 activation is an early event in neurodegen-
erative diseases [24,37]. Caspase-1 activator receptor in-
teracting protein-2 (Rip2) stimulates caspase-1 to acti-
vate IL-1β by truncating the proinflammatory cytokine.
The release of mature IL-1β indicates caspase-1 activa-
tion [38]. The inhibition of pro-IL-1β cleavage and ma-
ture IL-1β secretion are associated with inhibition of
apoptosis in neurodegeneration [16,18]. Rip2 upregula-
tion has already been reported in AD [39], HD [40], and
stroke [16].

Bcl-2 family members include proapoptotic molecules
(Bax, Bak, Bok, Bad, Bid, Bik, Blk, Hrk, BNIP3, and
BimL) and antiapoptotic molecules (Bcl-2, Bcl-xL, Bcl-
w, Mcl-1, and A1). Bcl-2 family proteins participate in
the modulation and execution of cell death [31] and can
preserve or disrupt mitochondrial integrity by regulat-
ing the release of cytochrome c/Smac/AIF/endonuclease
G [41,42]. Cytosolic Bax translocates to mitochondria on
death stimulus [23,43], promoting cytochrome c release
[43]. Besides the involvement of the Fas/caspase-8/Bid
cascade, Bid also mediates cytochrome c release while
binding to both proapoptotic members (e.g., Bax) and
antiapoptotic members Bcl-2 and Bcl-xL [44]; moreover,
cleavage of Bid by caspase-8 and caspase-1 mediates the
mitochondrial damage [45,46]. Bax mediates cell death
relates with mitochondrial permeability transition [11].
Bcl-2 and Bcl-xL bind to Apaf-1, inhibiting the associa-
tion of caspase-9 with Apaf-1 [47].

Prostate apoptosis response-4 (Par-4) induces mito-
chondrial membrane permeability changes and promotes
mitochondrial dysfunction [48]. Par-4 increases the se-
cretion of β-amyloid (Aβ) and neuronal degeneration
[49]. Par-4 levels are augmented in AD patients [50]
and in models of stroke [51]. RNAi knockdown of Par-4
inhibits neurosynaptic degeneration in ALS-linked mice
[52]. Par-4 interacts with Bcl-2, caspase-8, and PKCζ ,
thus inhibiting NF-κB-dependent survival signaling
[53].
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The MAPK family includes three members: extracellu-
lar signal-regulated kinase (ERK), p38 mitogen-activated
protein kinase (p38 MAPK), and c-Jun NH(2)-terminal
kinase (JNK). Another kinase is MAP kinase kinase
(MEK). JNK pathway has been observed in neurodegen-
erative diseases mostly by activating apoptosis [54,55]
and partly by inhibiting cell death [56]. DNA damage
causes the JNK activation, which contributes to the mi-
tochondrial transduction of Bax [57,58]. The absence of
JNK causes a defect in the mitochondrial death signal-
ing pathway, including the failure to release cytochrome
c [57]. Moreover, SP600125, a JNK inhibitor, enhances
the activation of JNK pathway and attenuation of apopto-
sis through protection of mitochondrial dysfunction and
reduction of caspase-9 activity in PC12 cells [59].

The Survival Signaling Pathways
in Neurodegenerative Diseases

During the progression of neurodegenerative diseases,
the survival signaling cascades are activated by neuro-
protective agents [60] including the phosphoinositol-3 ki-
nase (PI3K)/Akt pathway, the Bcl-2 pathway, the NF-κB
pathway, as well as the MAPK pathway (Fig. 1). AKT
(v-Akt murine thymoma viral oncogene)/PKB (protein
kinase-B) has been identified as an important mediator
of neuronal cell survival that helps counteract apoptotic
stimuli. PI3K/Akt pathways play essential roles in neu-
ronal cell survival. PI3K is activated and the membrane
phospholipid phosphatidylinositol-3,4,5-trisphosphate is
generated, which in turn recruits Akt to the mem-
brane, where it becomes phosphorylated. Once Akt is
activated, it phosphorylates survival-mediated targets in-
cluding Bcl-2 family members, thereby promoting cell
survival and inhibiting apoptosis [61]. The antiapoptotic
Bcl-2 family encodes Bcl-2, Bcl-xL, and BfI-1 (A1) [62].
These antiapoptotic proteins repress mitochondrial death
pathways through heterodimerization [62]. Depletion of
the endogenous neuroprotective Bcl-2 family signals di-
rectly contributes to neuronal loss in neurodegenerative
diseases [62]. NF-κB (nuclear factor kappa B) is an in-
ducible transcription factor that exists in several dimeric
forms, with the p50/p65 heterodimer predominant [63].
The NF-κB pathway induces the expression of stress
proteins, antioxidant enzymes, and calcium-regulating
proteins. The activation of NF-κB not only induces apop-
totic signaling [5,25,26,64] but also has been known to
activate survival signals in neurodegeneration [27]. Ad-
ditionally, the phosphorylation of Raf-1, MEK1/2, and
ERK1/2 has been reported in neurodegeneration [65].
The JNK pathway is also involved in neurodegenerative
diseases by inhibiting cell death [56].

Melatonin in Neurodegenerative
Diseases

Melatonin in Experimental Stroke

Animal models of stroke include global, multifocal, and
focal cerebral ischemia. Focal cerebral ischemia is di-
vided into transient (with reperfusion) and permanent
(without reperfusion). Middle cerebral artery occlusion
(MCAO) is the most commonly used animal model in
the study of melatonin. Primary cortical neurons (PCNs)
are the cells most commonly used in cellular model of
stroke. The ability of melatonin to reduce infarct volume
and/or inhibit neuronal cell death in experimental mod-
els of stroke has been demonstrated in different mam-
malian species [18,66–68], but the signaling mechanisms
underlying melatonin’s neuroprotective actions remain
incompletely understood. We summarize reports of neu-
roprotection by melatonin gained through inhibiting mi-
tochondrial cell death pathways (Table 1) and activating
survival pathways (Table 2) in experimental models of
stroke (Fig. 1).

The highest levels of melatonin are found in the mi-
tochondria [69]. Mitochondria have been identified as a
target for melatonin [70,71]. Melatonin promotes mito-
chondrial homeostasis. Taken together, melatonin may
be possible to treat neurodegenerative disorders by in-
hibiting mitochondrial cell death pathways [1,72–75].
We screened a library of 1040 FDA-approved drugs as-
sembled by the Neurodegeneration Drug Screening Con-
sortium of the National Institute of Neurological Dis-
orders and Stroke (NINDS) for their ability to inhibit
release of cytochrome c from Ca2+-stimulated mitochon-
dria [76]. Melatonin occupied one of the top positions
(14th) [76]. Furthermore, we and other laboratories
demonstrated that melatonin has proved effective not
only in the cell-free purified mitochondrial system but
also inhibits cytochrome c release in an MCAO mouse
model [18,71] and in PCN [18]. Melatonin prevents the
release of cell death mediator AIF from mitochondria in
PCNs on insult [71]. Thus, melatonin is likely to inter-
fere with both caspase-dependent (cytochrome c) and
independent (AIF) mitochondrial cell death pathways.
Proper ��m is critical for appropriate cellular bioen-
ergetic homeostasis, and dissipation of ��m has been
involved in stroke [18,35]. Studies in both primary stri-
atal neurons (PSNs) [71] and PCNs [18] showed that
melatonin effectively inhibited oxygen/glucose depriva-
tion (OGD)-mediated dissipation of ��m. These effects
reflect the ability of melatonin to ameliorate the harm-
ful reduction in the ��m, which may trigger mitochon-
drial transition pore opening and the apoptosis cascade.
mtPTP contributes to the pathology of ischemia. Further
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Table 1 Summary of inhibition of the antiapoptotic cell death pathway by melatonin

Inhibits death

pathway event Diseases/ models Effects of melatonin Species/cell line References

Cytochrome c Neurodegeneration Inhibits cytochrome c release from purified

mitochondria

Mouse [76]

Stroke/MCAO Decreases cytochrome c release Rat, mouse, PCN [18,71]

PD Prevents cytochrome c release Astrocyte [117]

Smac/Diablo HD Neuroprotective in HD models Mu-htt ST14A [unpublished data]

AIF Stroke Neuroprotective in PCN PCN [18]

��m Stroke Neuroprotective in PSN and PCN PSN; PCN [18,71]

PD Prevents ��m depolarization Astrocyte [117]

mtPTP Stroke Inhibits mtPTP in brain ischemia PSN [71]

PD Prevents mtPTP opening Astrocyte [117]

Bax AD Attenuates Aβ25-35-induced apoptosis Microglial cells [25]

Bad Stroke/MCAO Attenuates cerebral ischemic injury Rat [65,78]

ROS PD Prevents ROS formation Astrocyte [117]

ALS Reduces ROS in ALS model NSC34 motoneuron [1]

PARP Stroke/MCAO Attenuates cerebral ischemic injury Rat [65]

Caspase-3 Stroke/MCAO Prevents caspase-3 activation Rat, mouse, PCN [18,71,77]

AD Attenuates Aβ25-35-induced apoptosis Microglial cells [25]

PD Blocks caspase-3 activation Astrocyte, dopaminergic

neuron; CGN

[116–118]

Caspase-9 HD Neuroprotective in HD models Mu-htt ST14A [unpublished data]

Caspase-1 Stroke Neuroprotective in PCN PCN [18]

IL-1β Stroke Neuroprotective in PCN PCN [18]

Rip2 HD Neuroprotective in HD models Mu-htt ST14A [unpublished data]

DNA Stroke/MCAO Displays decreased DNA Rat, PCN [18,71]

Fragmentation fragmentation, neuroprotective in PCN

AD Attenuates Aβ25-35- or Aβ1-42-induced

apoptosis

Astroglioma C6 cell [102]

PD Prevents DNA fragmentation SK-N-SH cells, astrocyte,

mesencephalic cells,

striatal neuron; mouse;

PC 12 cells

[54,117,121,122]

TUNEL-positive Neurodegeneration Reduces number of DNA breaks Rat [80]

Stroke/MCAO Decreases TUNEL-positive cells Rat [65,78,79]

Stroke/OGD Neuroprotective in PCN PCN [18]

AD/OVX Improves spatial memory performance,

reduces apoptosis

Rat [89]

AD Protects the wortmannin-induced tau

hyperphosphorylation

N2a cells [94]

INK PD Inhibits cell death SK-N-SH cells [54,55]

Par-4 AD Reducts Par-4 upregulation Mouse [92]

NF-κB AD Blocks Aβ25-35-induced apoptosis Microglial cells, mouse [5,25]

AD Anti-inflammatory effect on Aβ vaccination

in mice

Mouse [26]

OVX, ovariectomized.

experiments indeed demonstrated that melatonin directly
inhibits mtPTP in PSNs after OGD insult [71].

Caspase-1 plays a critical role as an apical activator
in models of stroke [16]. Interestingly, melatonin in-
hibits OGD-induced caspase-1 activation and mature IL-
1β release in PCNs [18]. In vitro and in vivo experi-
ments have shown that melatonin prevents the acti-
vation of downstream caspase-3 in OGD-mediated PCN

cell death [18], cerebral ischemia-induced mouse in-
jury, and the MCAO rat model [18,72,77]. Other exper-
iments demonstrate significantly fewer TUNEL-positive
cells [65,78], reduced levels of cleaved PARP [65], and
less DNA fragments [71] are found with administra-
tion of melatonin in the rat MCAO model. In addi-
tion, melatonin prevents brain damage, with reduced
TUNEL-positive cells following transient cerebral artery
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Table 2 Summary of activation of antiapoptotic survival signal pathway by melatonin

Activates element

of survival pathway Diseases/models Effects of melatonin Species/cell line References

PI3-K/Akt Stroke/MCAO Restores phosphorylated Akt Mouse, rat [56,77,78]

Protects against brain injury Rat [81]

AD Impairs NADPH oxidase via PI3K/Akt Microglia [93]

signaling pathway

Bcl-2 Stroke/MCAO Enhances Bcl-2 upregulation Rat [79,82]

AD/Ap25-35 Attenuates Ap25-35-induced apoptosis Microglial cells [25]

Bcl-xL Stroke/MCAO Elevates Bcl-xL in brain injury Mouse [77]

JNK1/2 Stroke/MCAO Increases JNK1/2 phosphorylation Mouse [56]

ERK1/2 Stroke/MCAO Increases ERK1/2 phosphorylation Mouse, rat [56,65]

Raf-1 Stroke/MCAO Attenuates cerebral ischemic injury Rat [65]

MEK1/2 Stroke/MCAO Attenuates cerebral ischemic injury Rat [65]

NF-κB Stroke Relates with NE-κB-me-dialed protective signaling Primary neurons [27]

occlusion (CerAO) [66] and transient MCAO model
[79], as well as attenuating kainic acid-induced neuronal
death, and reduces the number of TUNEL-labeled DNA
breaks [80].

The neuroprotective role of melatonin is also medi-
ated through the enhancement of the PI3-K/Akt survival
pathway [77,81] and JNK pathway [56], and restores re-
duced phosphorylated Akt in a model of mouse intra-
luminal MCAO [77]. Melatonin protected neuronal cells
from damage by enhancing the activation of Akt and its
downstream target Bad, without affecting the expression
of 14-3-3, which acts as an antiapoptotic factor through
interaction with Bad, thus mediating antiapoptosis sig-
nals in a rat MCAO model [78]. Furthermore, in the same
model, melatonin inhibits apoptotic signals by preventing
the injury-induced decrease of phosphorylation of Raf-1,
MEK1/2, and ERK1/2 and the downstream targets, in-
cluding Bad and 90-kDa ribosomal S6 kinase [65]. Mela-
tonin effectively attenuated ischemic brain injury via the
Bcl-2-related survival pathway by increasing the expres-
sion of Bcl-2 [82] and Bcl-xL [56] in the ischemic brain.
Furthermore, related to melatonin, the constitutive acti-
vation of NF-κB under physiological conditions protects
neurons against physiological injury [27].

Intervention studies have identified a battery of ap-
proaches with potential benefits in reducing neuronal
death in stroke patients, including antioxidant treatment.
Clinical data report some alteration of the melatoninergic
system in human stroke. On the basis of its lack of tox-
icity, melatonin may eventually be included in human
stroke treatment.

Melatonin in Alzheimer Disease

AD, the most common neurodegenerative disease with
progressive loss of memory and deterioration of compre-
hensive cognition, is characterized by extracellular senile

plaques of aggregated β-amyloid (Aβ) and intracellular
neurofibrillary tangles that contain hyperphosphorylated
tau protein. Aβ and tau therefore represent important
therapeutic targets. The early phase of AD is treatable
by inhibitors of β- and γ -secretase, which degrade amy-
loid precursor protein (APP) to produce β-amyloid pep-
tide [83], and the late phase is amendable to treatment
strategy by preventing or reversing tau phosphorylation
[84,85]. Mild cognitive impairment (MCI) is a transition
stage between the cognitive decline of normal aging and
the more serious problems caused by AD. Many peo-
ple with MCI eventually develop AD. Studies show that
melatonin levels are lower in AD patients compared with
that in age-matched control subjects [86–88]. The great
advance has been currently conduced in studies of pro-
tection against AD by antioxidant melatonin inhibiting
Aβ-induced toxicity [25,89–93] and attenuating tau hy-
perphosphorylation [85,94–99]. Besides the antioxidant
properties, the antiamyloidogenic properties of melatonin
for AD have been studied [100,101]. Melatonin improved
learning and memory deficits in an APP695 transgenic
mouse model of AD in vivo [89]. In vitro experiments
showed that Aβ-treated cultures exhibited characteris-
tic features of apoptosis, and melatonin attenuated Aβ-
induced apoptosis in a number of cellular models of AD
including mouse microglial BV2 cells, rat astroglioma C6
cells, and PC12 cells [25,89–91,102].

It is known that melatonin scavenges oxygen and
nitrogen-based reactants generated in mitochondria, and
mitochondria play a critical role in the neuroprotec-
tive function of melatonin in AD. As listed in table 1,
studies in transgenic AD mice and cultured cells have
suggested that administration of melatonin inhibited
the Aβ-induced increase in the levels of mitochondria-
related Bax [25,92]. Furthermore, melatonin prevented
upregulated expression of Par-4 and suppressed Aβ-
induced caspase-3 activity [92]. Another experiment in
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mouse microglial BV2 cells in vitro showed that mela-
tonin also decreased caspase-3 activity, inhibited NF-κB
activation, and reduced the generation of Aβ-induced in-
tracellular ROS (reactive oxygen species) [25]. In addi-
tion, in vivo observations showed that melatonin-treated
animals had diminished expression of NF-κB com-
pared to untreated animals [26]. Melatonin treatment
significantly decreased the number of TUNEL-positive
neurons along with improving spatial memory perfor-
mance in cognitively impaired, ovariectomized adult rats
[89] and Alzheimer-like tau hyperphosphorylation in
wortmannin-induced N2a cells [94].

On the other hand, melatonin may also activate the
survival signal pathways. One such pathway is the Bcl-
2 pathway, which stabilizes mitochondrial function by
antiapoptotic Bcl-2 family modulators. It has been re-
ported that Bcl-2 expression was enhanced by melatonin
concomitant with inhibition of Aβ-induced cell death
[25] (Table 2). Another experiment demonstrated that
melatonin inhibited the phosphorylation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase via a
PI3K/Akt-dependent signaling pathway in microglia ex-
posed to Aβ1-42 [93] (Table 2). Taken together, the
above-mentioned evidence suggests that melatonin may
provide an effective means of treatment for AD through
its antiapoptotic activities.

It has been reported that administration of mela-
tonin significantly delays the development of the signs
of AD, prevents cognitive impairment, and ameliorates
sundowning in AD patients [103–107]. In addition, light
therapy or music therapy related with levels of melatonin
may have effect on AD patients [108,109]. On the con-
trary, some researchers report that the impact of mela-
tonin would be relatively less in late stage of AD or fails
to improve sleep or agitation; therefore, melatonin is not
an effective soporific agent in patients with AD [110,111].

Human trials in the relatively small scale suggest that
melatonin can improve MCI [112,113]. However, how
melatonin affects disease initiation or progression of the
neuropathology and if the antiapoptotic activity of mela-
tonin is driving its function, remains to be answered.
On the other hand, controversy reports suggest insuffi-
cient evidence to support the effectiveness of melatonin
for managing cognitive impairment with low success rate
[114]. Further, clinical phase II trial of the effect of mela-
tonin on cognitive function in MCI patients is undergoing
(ClinicalTrials.gov Identifier: NCT00544791).

Melatonin in Parkinson Disease

PD is the second most common neurodegenerative
disease, affecting approximately 1.8% of people older
than 65 years [115]. PD is characterized by a progres-
sive loss of dopaminergic neurons and dopamine in

the substantia nigra and striatum. Oxidative stress and
free radicals from both mitochondrial impairment and
dopamine metabolism are considered to play critical roles
in the etiology of PD. In addition, neurodegeneration oc-
curs in PD, at least in part, through the activation of
the mitochondria-dependent apoptotic molecular path-
way [17]. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) has been reported to cause parkinsonism via
its neurotoxic form, 1-methyl-4-phenylpyridinium ion
(MPP+), which inhibits mitochondrial complex I of the
mitochondrial respiratory chain. MPP+ has been as a
commonly used experimental model of PD [54,116].

As shown in table 1 and figure 1, melatonin prevents
H2O2-induced mitochondrial calcium overload, ��m de-
polarization, opening of mtPTP, avoidance of ROS for-
mation, as well as blocked MPT-dependent cytochrome
c release in rat astrocytes, a model of PD [117]. Also
in the same model, melatonin inhibited MPT-dependent
activation of caspase-3 [117]. This conclusion is further
supported by the finding that melatonin suppressed 3-
morpholinosydnonimine-induced caspase-3 activation in
dopaminergic neurons [118] and diminished the acti-
vation of caspase-3 enzyme activity in both MPP(+)-
treated SK-N-SH cultured cells [54] and cerebellar gran-
ule neurons (CGNs) [116]. In addition, melatonin exerted
neuroprotective effects against MPP+-induced apopto-
sis by inhibiting the calpain/cdk5 signaling cascade in
CGNs [116]. Mounting evidence indicates that mela-
tonin blocks the MPT-dependent apoptotic fragmenta-
tion of nuclear DNA in rat astrocytes [117], rat mes-
encephalic cultures [119], and mouse striatal neurons
[120]. Other experiments also indicate MPTP-induced
mouse brain cell DNA fragmentation in vivo [121], 6-
hydroxydopamine-induced DNA fragmentation in neu-
ronal PC12 cells [122], and MPP(+)-mediated cleavage
of DNA fragmentation factors in SK-N-SH cultured cells
in vitro [54]. The JNK pathway is involved in PD by acti-
vating apoptosis [54,55], and transcription factors play a
role in PD, as shown in two experiments demonstrating
the action of melatonin to inhibit JNK signaling cascade
[54,55] and diminish the induction of phosphorylation of
c-Jun in MPP(+)-treated [54] and 6-hydroxydopamine-
induced SK-N-SH-cultured cells [54,55]. To date, there
are no reports of the activation of survival pathways by
melatonin in PD.

Human trials for melatonin’s effect on sleep distur-
bances in PD show significantly improved [123] or small
improvement [124], but there are undetected differences
in motor dysfunction [123].

Melatonin in Huntington Disease

HD, a hereditary disease affecting 30,000 Americans,
is universally fatal with no effective treatment. HD is
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characterized by movement disorder (Huntington
chorea), cognitive deterioration, emotional distress,
and dementia [125]. HD is caused by expansion of
cytosine—adenine–guanine (CAG) repeats in exon 1 of
the huntingtin gene [126], initially affecting the striatum
and then the cortex. Since oxidative stress plays an
important role in the etiology of neuronal damage and
degeneration in HD [127], therapeutic strategies against
HD focus on antioxidant defense.

Mitochondrial complex II inhibitor 3-nitropropionic
acid can closely replicate the neurochemical, histological,
and clinical features of HD and hence is used in an ex-
perimental model of HD [75,128]. So far the antioxidant
melatonin has been suggested to defer the signs of HD in
a 3-nitropropionic acid-induced rat animal model of HD
[75] and to reduce lipid peroxidation induced by quino-
linic acid (a causative agent in HD) [74]. In addition, we
report that melatonin is a remarkably potent neuropro-
tective agent in mutant-hungtintin (mutant-htt) ST14A
cells, a cellular model of HD [76,129,130]. It protects
76.2% of mutant-htt ST14A cell death from temperature
shift-induced cell death [76]. Furthermore, melatonin
prevents cell death of PCNs that have been challenged
with proapoptotic inducer [18]. One of our compelling
findings underlying the mechanism of melatonin’s action
against HD is that it counters mitochondrial cell death
pathways through the inhibition of the release of Smac
and the activation of caspase-9 in apoptotic mutant-htt
ST14A striatal cells (unpublished data). Furthermore, ad-
ministration of melatonin also significantly inhibits the
Rip2 upregulation in mutant-htt ST14A cells under insult
(unpublished data). Thus, our findings suggest that mela-
tonin acts on initiated Rip2 (Fig. 1). On the other hand,
there has been no report that melatonin activates survival
pathways in HD yet.

In a human study with the addition of tryptophan, al-
beit melatonin levels rose significantly in both control
and HD patients group, bigger increasing average mean
occurs in HD patients group [131]. Moreover, the delayed
onset of the diurnal melatonin rise in patients with HD in
small scale has been currently reported [132]. Larger scale
studies in detecting the level of melatonin in HD patients
and further human trials on the impact of melatonin on
HD are needed.

Melatonin in Amyotrophic Lateral Sclerosis

ALS is a fatal disease of varying etiology whose progres-
sion is characterized by a degeneration of motor neurons.
Riluzole, an antagonist of the glutamate receptor, is the
only approved treatment for ALS. However, it typically
prolongs the patient’s life by only 3 months. Since the
common basis of cellular and extracellular alterations in

this disease seems to be oxidative stress, the strategy for
the treatment of ALS therefore emphasizes antioxidant
molecules.

Rival et al. report that, exactly as administration of
riluzole in dEAAT1 RNAi flies, administration of the an-
tioxidant melatonin significantly enhanced performance
in a Drosophila model, exhibiting remarkable similarity
with some of the symptoms associated with ALS [133].
Furthermore, melatonin offers protection in human ALS.
The first clinical trial of melatonin in three human ALS
patients was reported in 2002 [73], and the second hu-
man trial in a group of 31 patients with sporadic ALS
was reported in 2006 [1]. Importantly, circulating serum
protein carbonyls, which provide a surrogate marker for
oxidative stress, were elevated in ALS patients, but were
reported to be normalized to control values by melatonin
treatment in the second clinical trial [1]. In other words,
reduced oxidative damage was reported in ALS trial us-
ing high-dose enteral melatonin [1]. Chronic high-dose
(300 mg/day [1]) rectally administered melatonin was
well tolerated in patients with sporadic ALS [1,73]. In ad-
dition, the findings from both animal models in vivo and
a cellular model in vitro support the results of human tri-
als, in SOD1(G93A)-transgenic mice, high doses of orally
administered melatonin delayed disease progression, and
extended survival in vivo [1]. However, Western blot
analysis of spinal cord protein lysates in the same study
found no differences in total amount or phosphoryla-
tion status of AKT or ERK1/2 in SOD1(G93A)-transgenic
mice with melatonin treatment compared with untreated
controls [1] (Fig. 1). Another study showed that the ad-
ministration of melatonin alters the expression of SOD1
in the lumbar spinal cord of neonatal rats [134]. Fur-
thermore, melatonin attenuates superoxide-induced cell
death and modulates glutamate toxicity in cultured NSC-
34 motoneuron cells in vitro [1]. Although evidence in-
dicates that mSOD1-induced spinal cord motor neuron
death and cultured motor neuronal cells involve apop-
totic machinery [12,135–137], to date, the neuroprotec-
tion afforded by melatonin through the inhibition of cell
death pathways or activation of survival pathways re-
mains essentially uninvestigated.

Because melatonin is neuroprotective in human, cellu-
lar, and animal models of ALS and is relatively nontoxic,
it should be considered for further larger clinical trials as
a novel pharmacotherapeutic agent to treat ALS.

Conclusion and Perspective

Given the fact that vigorous research efforts to date have
achieved poor results in their efforts to identify effec-
tive treatments against neurodegenerative diseases, the
combination of preclinical effectiveness and proven safety
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of melatonin in humans, animals, and cultured cells rec-
ommends it as a particularly interesting candidate of neu-
roprotectant in clinical trials seeking protection against
neurodegeneration. Interestingly, melatonin is capable of
interfering with mitochondrial cell death pathways and
activating survival pathways, both of which would be
useful in treating common events in stroke, AD, PD, ALS,
and HD. In addition, blood concentrations of neurohor-
mone melatonin are significantly decreased in patients
with AD [87], while low levels of melatonin and a pro-
longed signal of melatonin are found in PD patients [138]
and the delayed onset of the diurnal melatonin rise in HD
patients [132]. Thus it is believed that reduced secretion
of melatonin is associated with the development of neu-
rodegenerative disease [87]. Knowing about the molec-
ular mechanism of melatonin’s declining potency should
tell us about the pathogenesis of related neurodegenera-
tive diseases and will guide the contemplated translation
to the clinic. Pharmacological strategies to enhance mela-
tonin levels may benefit those suffering from neurode-
generative diseases.

Cell death-based therapies are becoming an active area
of drug development. For a multidrug regimen to ef-
fectively protect neurons from inappropriate apoptosis,
several pathways could be coactivated, including anti-
apoptotic pathways and survival pathways. This review
gains deeper insights into the action mechanism of mela-
tonin. Thus, it may provide a new perspective in our
understanding of the regulation of apoptotic cell death
in neurodegeneration by the pharmacotherapeutic in-
doleamine. Besides its traditional role as an antioxidant
and free radical scavenger, melatonin proved to target
a variety of pathways while its systemic effect correlates
with the drug’s disruption of the intrinsic mitochondrial
cell death pathway, silencing of the Rip2/caspase-1 path-
way, and the activation of survival pathways. These ac-
tions may be synchronistic and complementary in models
of HD. Effective treatment to prevent neurodegeneration
could be achieved using a combination of melatonin and
other pharmacological agents that act on different apop-
tosis targets.

Future therapeutic strategies could be directed at iden-
tifying and developing drugs from among the analogues
of melatonin. Candidate drugs may have more powerful
inhibitory effects on the mitochondrial cell death path-
way and activate the survival pathway, thus slowing the
progression of neurodegenerative diseases.
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