
Subchronic SSRI administration attenuates insula response
during affective anticipation

Alan N. Simmons1,2, Estibaliz Arce1, Kathryn L. Lovero2, Murray B. Stein1,2, and Martin P.
Paulus1,2
1 University of California San Diego, USA
2 Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA

Abstract
Context—The anterior cingulate cortex (ACC) and insula are important neural substrates for the
integration of cognitive, emotional, and physiological information, as well as the coordination of
responses to anticipated stimuli. Increased neural activation within these structures has been observed
in individuals with anxiety and depressive disorders. Selective serotonin reuptake inhibitors (SSRIs)
are among the most effective and frequently prescribed anxiolytic agents, yet it is not known whether
ACC or insula underlie the effects of these drugs. We examined whether subchronic administration
of an SSRI to healthy volunteers attenuate activation in ACC or insula during anticipation, an
important emotional process underlying anxiety. Support for this hypothesis would help to
understand where and by what process SSRIs may exert beneficial effects as anxiolytics and would
provide further mechanistic evidence for functional magnetic resonance imaging (fMRI) as a
biomarker for the development of anxiolytics.

Participants and Design—15 volunteers participated in a double-blind, placebo-controlled,
randomized cross-over study. Participants completed a pleasant and aversive picture cued
anticipation task during fMRI after taking either escitalopram (10 mg) or placebo for 21 days.

Main Outcome Measure—Percent BOLD signal change during SSRI administration.

Results—Escitalopram significantly decreased activation in bilateral posterior and middle insula
during the anticipation condition irrespective of stimulus valence and in medial prefrontal and ACC
during anticipation of aversive versus pleasant images.

Conclusion—Reduced insular and ACC activation during anticipation may be integral to the
therapeutic efficacy of SSRIs and provide a mechanistic approach for the use of pharmacofMRI in
the identification of novel pharmacotherapeutic agents.
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Introduction
Increased emotionality associated with the anticipation of future events is a key feature of
anxiety disorders 1, 2. Related evidence indicates that heightened anticipatory anxiety is
associated with deleterious psychophysiological stress responses 3, 4. Serotonin may well be
an important neurotransmitter in this, and other, affective processes 5, as well as playing a role
in modulating both psychological 6–9 and physiological 10–12 aspects of anticipatory anxiety.
Serotonin receptors are widely expressed within the amygdala 13, the ventral anterior cingulate
(ACC) and insula 14, neural substrates that play a critical role in regulating psychological well-
being and physiological homeostasis 15, 16.
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Functional neuroimaging studies have shown that the medial prefrontal gyrus (MPFG), ACC
17–19 and insula 19, 20 are activated during anticipation of an electric shock or a noxious thermal
stimulus, and during anticipation of feedback in a decision-making task 21. Previously 22, we
examined anticipation of aversive images (i.e., spiders and snakes) in healthy volunteers and
found anticipation-related activation within the right insula. Furthermore, using that task, we
observed greater insula activity in subjects with high trait anxiety 23, as well as in patients with
PTSD (Simmons et al., submitted). In a similar study, Nitschke and colleagues displayed
aversive and non-aversive pictures to healthy volunteers and found anticipation-related
activation in ventral and dorsal ACC, bilateral insula, and bilateral amygdala 24. In addition,
Bermpohl and colleagues have found that the dorsal MPFG/ACC are particularly sensitive to
expectancy while other regions such as the insula and amygdala are more sensitive to emotion
intensity of the stimulus25, 26. The dorsal ACC has strong connections with the insula and these
areas are often described as being part of a primary “default mode” network 27.

The insula, a part of the extended limbic system, can be subdivided into anterior agranular (Ia),
central/middle dysgranular (Id) and posterior granular (Ig) subregions based on function and
cytoarchitectural structure 28, 29. The anterior insula has efferent connections with ventral
frontal brain regions such as the ACC and orbital frontal cortex (OFC), as well as with
periamygdaliod areas. Its middle region has strong connections with the amygdala body, OFC
and secondary somatosensory areas 28, 30, 31. The posterior insula has afferent projections from
the frontal cortex, the temporopolar cortex, and secondary somatosensory area 29. Recent
literature has suggested that the rostral parts of the insula (Ia and anterior Id) motivates action
while the caudal insula (Ig and posterior Id) is involved in monitoring the physiological
condition of the body 32, 33. In comparison, the ACC—particularly the ventral subdivision—
plays a similar role in emotional and physiological processing (Brodmann Area, BA 24a). Its
ventral region has projections to the anterior insula 28, 29, 34–36 and the amygdala, 34, 37–40

exerting top-down regulation on these structures 38, 40. The ventral ACC is involved in fear
conditioning 40–42, in the pathophysiology of anxiety disorders 41, 43, self-relevant cognition
44–52, and error processing 49, 53–55. Given the importance of the various subdivisions of the
ACC in the integration of physiological and psychological processes, changes in their activity
are potentially useful neural biomarkers for the efficacy of pharmacotherapies 56.

Altered anticipatory processing is a key feature of many of the anxiety disorders, reflected by
greater activation in the insula 19, 23, 24, 57, medial frontal gyrus 23, 24, 57–59, and amygdala
4, 24, 57. Although anticipation may be less pertinent to depression than to anxiety, the high
comorbidity of anxiety and depressive symptoms60 suggests that elevating anticipatory
symptoms may be relevant to both conditions. SSRIs are among the first-line treatments for
anxiety and depression 5, 13, 61–68. Although SSRIs block synaptic neuronal reuptake of
secreted serotonin 69, 70, current theories posit that the antidepressant (and, possibly, the
anxiolytic) actions of SSRIs involve effects that extend beyond serotonin reuptake 65, 66, 71.
The effects of SSRIs in affective disorders may be the result of modulation by serotonin
pathways of the cortical and subcortical circuitry involved in the processing of emotional
stimuli 72. The acute effects of SSRIs are sometimes opposite the chronic effects in that an
early elevation of anxiety symptoms is often followed by an anxiolytic effect if treatment is
continued 13, 73. Acute oral 74 and intravenous 75 administration of an SSRI (i.e., citalopram)
has been shown to increase the processing of anxiety-related stimuli in healthy volunteers.
Acute SSRI administration has been associated with decreased activation during affective
image processing 76 and during a go-nogo task 77, whereas more prolonged administration has
more consistently been associated with attenuation of the recognition of fearful stimuli 78 and
amygdala activation 73. Thus the role of SSRIs in brain may be highly dependent on the task
used to probe the brain and the length of drug administration. Although effects of SSRIs on
emotion processing networks are under intense investigation, much is still unknown about how
these substances work to normalize abnormal cognitive and emotional processes.
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In an effort to better understand the mechanism (and brain localization) of SSRI treatments,
fMRI techniques have recently been applied to measure their effect on neural processing 73,
79, 80. We have previously shown that acute administration of a benzodiazepine anxiolytic
(lorazepam) attenuates activity of the amygdala, ACC, and insula during risk-taking decision
making 81 and emotional face processing 56. Acute doses of SSRI treatment can increase
anxiety whereas prolonged administration can attenuate amygdala activation 73 and decrease
anxious distress. Although several studies have used pharmaco-fMRI to assess the neural
correlates of certain antidepressant agents 72, 73, 77, 82–86, to our knowledge, this is the first
study to implement a sub-chronic, placebo-control cross-over (i.e., within subjects) design
using a cohort of healthy volunteers to assess the effects of SSRIs on emotion anticipation.
Considering the pivotal role of the insula and ACC in subjective feeling states and interoceptive
awareness 32, 87 and their implication in the pathophysiology of anxiety disorders 87–89, we
hypothesized that subchronic administration (3 weeks) of the SSRI escitalopram would be
associated with attenuated activation in the ACC and insula during an emotional anticipation
task. Confirmation of this hypothesis would provide further evidence of the utility of
pharmacofMRI as a tool to identify the neural substrates important for anxiety and depression
90. Once neural substrates are established, changes in their activity can be used as biomarkers
for the measurement of efficacy of novel anxiolytics or antidepressants.

Methods
Subjects

Sixteen healthy, nonsmoking females provided written informed consent and were paid for
their participation in this study, which was approved by the University of California San Diego
School of Medicine institutional review board. One subject was excluded because her urine
escitalopram level was undetectable during the period of time when she was to have been taking
escitalopram, suggesting non-adherence to the protocol. The remaining 15 subjects were
females of ages 19 to 27 years (mean ± SD, 22.3 ± 2.3 years) with 11 to 17 years of education
(mean ± SD, 15.5 ± 1.8 years). Participants did not have medical or psychiatric disorders as
determined by medical history and diagnoses according to the Structured Clinical Interview
for Diagnostic and Statistical Manual of Mental Disorders, Revised Fourth Edition 91. Subjects
had no history of drug or alcohol abuse and no history of previously taking benzodiazepines,
SSRIs, monoamine oxidase inhibitors (MAOIs), or neuroleptics. All participants had a negative
urine drug screen at baseline. EKG and routine laboratory blood tests, which included a CBC,
electrolytes, and liver function tests, were within normal limits. Subjects were instructed to
maintain their regular bedtimes and wake times for 1 week before and throughout the study
period.

Study design
This study used a randomized, cross-over, double blind design (see Figure 1). Once it was
determined that a subject was eligible for the study, and informed written consent was obtained,
the subject was randomized to receive either escitalopram (5 mg/d for the first 3 days, then 10
mg/d for another 18 days) or placebo, administered in identical, capsular form. Subjects were
instructed to take the medication each morning throughout each 21 day arm of the study. In
between arms, there was a 14–28 day tapered wash-out period, during which the medication
was reduced from 10 mg/d to 5 mg/d for 3 days, and then discontinued. The study physician
(MPP) also met with subjects weekly in order to address any concerns and to ensure that
compliance with the medication was maintained.

At the end of each 21-day medication arm (prior to taper), subjects were scheduled for an fMRI
visit. During this visit, and prior to the scanning session, subjects completed several self-report
questionnaires, including the State-Trait Anxiety Inventory (STAI-S) 92, Beck Depression
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Inventory (BDI) 93, Social Interaction Anxiety Scale SIAS 94, and the Brief Symptom
Inventory BSI 95 to evaluate their psychological state at that time and provided a urine sample
for escitalopram measurement.

Task
The task combined a continuous performance task (CPT), similar to a task described previously
96, with the interspersed presentation of aversive affective stimuli. During the CPT, subjects
were asked to press a LEFT mouse button whenever they saw a blue circle and a RIGHT mouse
button whenever they saw a blue square on the screen. Stimuli were presented at a visual angle
of 4 degrees at a rate of 0.5 Hz. Simultaneously, a 250 msec long 500 Hz tone was presented
every 2 seconds. Subjects were instructed prior to the task that a switch from a blue to a green
circle or square accompanied by a 250 Hz tone would indicate that a positive image was going
to appear on the screen. In contrast, a switch from blue to red stimuli together with a 1000 Hz
tone signaled an impending negative image. The picture stimuli were comprised of 17 positive
(i.e., pleasant) and 17 negative (i.e., unpleasant, or aversive) images taken from the
International Affective Picture System (IAPS) 97, which consisted of superficial physical
injuries, assaults, traffic accidents or other common traumatic events. The anticipation periods
during the task (red and green shapes) lasted 6 seconds and the image presentation lasted 2
seconds. The baseline CPT task was interspersed for variable duration averaging about 8
seconds in between these task components. The total duration of the task was 580 seconds. No
response from subjects was required when a picture stimulus was presented on the screen.

Response accuracy and response latency were obtained for the CPT, anticipation of a positive
image (API), and anticipation of a negative image (ANI). To examine the behavioral effect of
anticipation, we examined the difference between behavioral measures during the API and
ANI.

Image Acquisition
During the task, one fMRI run sensitive to blood oxygenation level-dependent (BOLD) contrast
was collected for each subject using a Signa EXCITE (GE Healthcare, Milwaukee) 3.0T
scanner (T2 * weighted echo planar imaging, TR = 2000 ms, TE = 32 ms, FOV = 250 × 250
mm3, 64 × 64 matrix, 30 2.6mm axial slices with a 1.4mm gap, 290 scans). fMRI acquisitions
were time-locked to the onset of each trial. During the same experimental session, a high
resolution T1-weighted image (SPGR, TI = 450, TR = 8 ms, TE = 4 ms, flip angle = 12°, FOV
= 250 × 250, ~1 mm3 voxels) was obtained for anatomical reference.

Data were preprocessed and analyzed with the Analysis of Functional NeuroImages (AFNI)
software package 98. Preprocessed time series data for each individual were analyzed using a
multiple regression model. Regressors of interest included four orthogonal regressors that were
constructed to quantify the neural substrates contributing to the different components of the
task: 1) the API, capturing the anticipation of a positive image, 2) the ANI, capturing the
anticipation of a negative image, 3) the positive image (PI) phase, which assesses the processing
of positive stimuli, and 4) the negative image (NI) phase, which assesses the processing of
negative stimuli. In addition, six nuisance regressors were entered into the linear regression
model: three movement-related regressors used to account for residual motion (in the roll,
pitch, and yaw direction), a white matter mask to control for physiological noise 99, and
regressors for baseline and linear trends used to eliminate slow signal drifts. The CPT task
(blue shapes) provided the baseline condition and was accounted for by the baseline regressor.
Percent signal change was calculated by dividing the regressor of interest by the baseline
regressor. Subsequently, simple contrasts were constructed on an individual subject level for
all anticipation (ANI+API) and differential anticipation (DA) of negative versus positive (ANI
−API). A Gaussian filter with full width- half maximum 6 mm was applied to the voxel-wise
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percent signal change data to account for individual variations in the anatomical landmarks.
Data of each subject were normalized to Talairach coordinates.

Voxel-wise percent signal change data for whole brain were entered into a paired samples t-
test for drug effects during anticipation and image presentation between SSRI dosing and
placebo dosing. A threshold adjustment method based on Monte-Carlo simulations was used
to guard against identifying false positive areas of activation 100. A prior voxel-wise probability
of p< 0.05 in a cluster of 1440 μL resulted in whole brain corrected probability of p <0.05.
Finally, the average percent signal difference was extracted from regions of activation that
were found to survive this threshold/cluster method and the t-values were calculated with and
without education as a covariate. All analyses for the behavioral data were carried out with
SPSS 12.0 101.

In addition, a region of interest (ROI) based analysis was performed on several apriori areas
of interest: the bilateral insula, bilateral amygdala, ventral ACC, and dorsal ACC. These
corrected voxel probabilities are based on Monte Carlo simulations via AFNI’s program
AlphaSim, using the filtered data and the a-priori defined regions of interest. Stereotactic
coordinates of the ROIs were based on standardized Talairach atlas locations 102. This resulted
in minimum clusters sizes of 128 μL for the amygdala ROIs and 256 μL for all remaining ROIs.
While the cluster significance is p<.05 for the ROIs, the corrected voxel-wise probabilities are
as follows: amygdala p < 0.012, insular cortex p < 0.00007, ventral medial prefrontal cortex p
< 0.00014, and dorsal medial prefrontal cortex p < 0.00014.

Correlational analyses were also conducted for the placebo minus escitalopram effects for
particular contrasts of interest, including imaging, behavioral, and self-report data.

Results
Behavioral Analysis

Subchronic administration of escitalopram had no significant effect on task performance during
the different task conditions (CPT, ANI, and API) as measured by response latency or accuracy
(F(1,14)=2.303, p = ns; F(1,14)=0.007, p = ns, respectively). Escitalopram did not alter self
report measures of various types of anxiety symptoms or depression (i.e., BDI, BSI, SIAS,
STAIS; data not shown) in this group of healthy volunteers.

Brain Activation Analysis
Task Effect—ROI analysis of the task related activation (combined placebo and SSRI) was
observed for differential anticipation (DA; ANI−API) in the bilateral anterior insula (Ia) (right
Ia: F(1,14)=4.645, p=0.001; left Ia: F(1,14)=4.005, p=0.001; see Figure 2) in the ROI analysis.
The bilateral anterior insula regions did not differ significantly across conditions.

SSRI Effect—There was a main effect of subchronic administration of escitalopram, which
was seen as a relative deactivation during differential anticipation (ANI−API) in the ventral
ACC (2624μl, x=5, y=32, z=−12; F(1,14)=3.259, p=0.005; see Figure 2). Moreover,
individuals after escitalopram administration relative to the placebo condition showed relative
deactivation for all anticipation (ANI+API) trials in the right posterior insula (1344μl, x=42,
y=−19, z=3; F(1,14)=4.496, p=0.001), left inferior posterior insula (1088μl, x=−42, y=−17,
z=2; F(1,14)=2.855, p=0.05), left superior posterior insula (832μl, x=−41, y=−13, z=25; F
(1,14)=3.028, p=0.01), and left middle insula (1216μl, x=−40, y=6, z=−9; F(1,14)=3.011,
p=0.01) (see Figure 3).
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Correlations—There were no significant correlations between the change in response latency
or accuracy, any self-report measures (i.e., BDI, BSI, SIAS, STAIS), or the change in the degree
of activation in the insula or cingulate during the task across drug conditions (data not shown).

Discussion
This experiment yielded three main findings. First, sub-chronic administration of “therapeutic
doses” of the SSRI escitalopram resulted in significant relative deactivation of the ventral ACC
during anticipation of negative compared to positive visual stimuli. Second, escitalopram
reduced middle to posterior bilateral insula activation during anticipation regardless of the
valence of the stimulus. Third, we confirmed previous observations22, 23 that bilateral anterior
insula is important for anticipation of negative (aversive) compared to positive (pleasant) visual
stimuli. Taken together, these results show that escitalopram influences anticipatory processing
by modulating insula and ventral ACC activity during emotion processing. This is a compelling
hypothetical mechanism by which SSRIs may act as anxiolytics. Therapeutic effects of SSRIs
may involve modulation of cues that signal expected emotional states such that they contribute
less significantly to emotion processing. These observations add to the growing literature that
pharmacofMRI may be useful in revealing effects of well-established anxiolytics and
antidepressants in the brain and could thus be a useful tool in the development of novel
therapeutics 90.

The current study replicated the relative increases in the bilateral insula during anticipation
seen in our prior work 22, 23. The insula has been suggested to play a key role in evaluating
the impact that environmental stimuli may have on the interoceptive body state 15, 88. Activity
in this region relates to anxiety during risk-taking decision making 103, is elevated in individuals
with specific phobia when viewing fearful faces 104, is increased during anticipation of emotion
face processing in those with high trait anxiety 23, 105, relates to anticipatory anxiety in those
with social phobia 57, and is associated with increased perfusion in patients with panic disorder
106. Taken in combination, these studies suggest that altered insula activity may be a common
denominator that could be used as a biomarker for treatment effects. The anterior subdivision
of the insula has been highlighted as an important region for the integration of physiological
and psychological self 32, 88, and is of particular importance in down-modulating the posterior
insula 28. In the present study, activity in the posterior insula was reduced by the administration
of escitalopram, suggesting that SSRIs may contribute to central reduction in physiological
reactivity during emotional anticipation. Escitalopram did not affect processing within the
anterior insula, which is important for the integration of cognitive, affective, and physiological
processes. In comparison, escitalopram attenuated the more posterior aspects of the insula,
which are important for the physiological representation of potentially aversive emotional
experiences. Therefore, escitalopram (and, by inference, other SSRIs) may have a more subtle
“bottom up” effect, i.e., modulating the physiological associations of anticipatory stimuli,
rather than a “top-down” modulation, i.e., modulating the cognitive attributes of anticipatory
stimuli, which is consistent with models proposed by Mayberg and colleagues 107, 108. In fact
the model proposed by Mayberg focus3w on the subgenual cingulate, directly inferior to the
region found in this study, as being in the critical path for the treatment effects of SSRIs due
to the serotonin density of this region 107–111. Slight discrepancy in location of the effects of
SSRI in the current study may be due in part to the selection of an anticipatory task to probe
brain functioning. As a cautionary note, however, it is important to point out that activation
differences between the anticipation and baseline condition in posterior insula regions were
mostly negative. This may be due to uncorrected physiological effects such as breathing 99 or
alternatively there may be a dampening of somatic information during anticipation112.

We also found a significant attenuation of the ventral ACC during anticipation of negative
versus positive visual stimuli. This region is often linked with self-focus and emotional
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evaluation 44–52, as well as anticipatory processing 19, 24, 59, 113. Thus, the attenuating effects
of escitalopram in this region may reflect decreases in self-focus during the anticipation of
aversive stimuli. Numerous studies have found an anticipatory activation in the dorsal ACC
particularly in contrast with uncued anticipatory phases 25, 26; considering the strong
connections between the insula and dorsal ACC/MPFG 29 this relationship may play a part in
top-down modulation of interoceptive processing.

Our findings are based on results from healthy volunteers who did not report significant
subjective changes during subchronic escitalopram administration. Nevertheless, imaging of
healthy volunteers is an important step in proof of concept in drug discovery 114. In particular,
the use of a relatively homogenous, healthy population may allow for the use of smaller groups
to detect neural effects of a compound. It should be noted that healthy volunteers may show
brain changes without behavioral changes 114. Although escitalopram is an approved, marketed
drug, proving that sub-chronic doses of SSRIs act on specific neural pathways can provide
biomarkers for efficacy in similar drugs entering phase I or II (i.e., safety/efficacy studies). In
comparison, the advantage of using patient samples may be the ability to determine the
relationship between the neural substrate effects of potential therapeutics and subjective or
objective changes in disorder symptoms.

In terms of the mechanistic actions of SSRIs, these findings suggest that direct or indirect
serotonergic modulation of insular cortex, among other regions, results in relative deactivation
of affective neural substrates during anticipation. Specifically, the mechanism of action could
be explained as a reduction of the affective/physiological reactivity to anticipation that may
then result in decreased feelings of anxiety and/or depression. Reduction of self-focused
attention during negative anticipation may relate to less concern about the internal body state.
Given the importance of somatic reactivity in both anxiety and anticipatory processing 3, 4,
115, this mechanism may be considered as a potentially effective way to modulate affect through
particular pharmacological interventions. This model would help explain why SSRIs are
effective at modification of mood only in conditions of distress, such as anxiety, and in the
current study are only seen when the individual is momentarily provoked by an affective
anticipatory task that can induce physiological or homeostatic distress.

The current study has several limitations. First, as noted above, this study was conducted with
healthy volunteers and generalizability to patient samples still need to be established. In
particular, we did not observe changes in subjective ratings on scales measuring anxiety or
depression. This range restriction in the emotional state of healthy volunteers may explain the
lack of significant correlations between change in psychological measures and change in
BOLD signal in functional ROIs during SSRI treatment. Because physiologic reactivity to
anticipatory anxiety is greater in anxious individuals 4, 115, future studies with patients
suffering from anxiety disorders may reveal even larger BOLD changes during SSRI treatment.
Also the neural expression of escitalopram appears to be task dependant both in the mechanism
and strength of the effect 116, so these findings should not be over-generalized in its effects.

In summary, our results suggest that treatment with escitalopram results in attenuation of the
neural response to affective anticipation in brain regions responsible for the integration of
physiological and affective well-being. Specifically, sub-chronic SSRI treatment may reduce
the anticipatory reactivity to emotional—especially aversive—stimuli. These findings can have
important implications for the development of pharmacological interventions to treat anxiety
disorders, suggesting that BOLD signal in the insula and ACC during anticipatory anxiety may
be a useful biomarker for measuring psychopharmacological effects of extant and novel
anxiolytic agents.
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Figure 1.
Study design
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Figure 2.
Task activation: greater activation (% signal change) in the bilateral anterior insula for negative
anticipation minus positive anticipation [A] shown at . Condition activation: deactivation (%
signal change in ventral anterior cingulate [C]) in negative minus positive anticipation during
escitalopram versus placebo conditions shown at x=0 [D].
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Figure 3.
Deactivation (% signal change) in positive and negative anticipation during escitalopram
versus placebo conditions in the (1) left middle (2) left posterior, and (3) right posterior insula.
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