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Abstract
Motivated by medical studies in which patients could be cured of disease but the disease event time
may be subject to interval censoring, we presents a semiparametric non-mixture cure model for the
regression analysis of interval-censored time-to-event datxa. We develop semiparametric maximum
likelihood estimation for the model using the expectation-maximization method for interval-censored
data. The maximization step for the baseline function is nonparametric and numerically challenging.
We develop an efficient and numerically stable algorithm via modern convex optimization
techniques, yielding a self-consistency algorithm for the maximization step. We prove the strong
consistency of the maximum likelihood estimators under the Hellinger distance, which is an
appropriate metric for the asymptotic property of the estimators for interval-censored data. We assess
the performance of the estimators in a simulation study with small to moderate sample sizes. To
illustrate the method, we also analyze a real data set from a medical study for the biochemical
recurrence of prostate cancer among patients who have undergone radical prostatectomy.
Supplemental materials for the computational algorithm are available online.
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1. INTRODUCTION
Medical advancements have made it possible for patients to be cured of certain types of
diseases. Monitoring for a non-fatal disease event, such as cancer biochemical recurrence or
AIDS drug resistance, is usually carried out through periodic clinical visits of patients (Lindsey
and Ryan, 1998). The exact time of the disease event is only known to have occurred during
two consecutive clinical visits if it did happen; however, a complication is that the disease
event may never happen because the patient can be cured of the disease. This type of interval-
censored event-time data with possibility of cure is commonly encountered in medical studies,
especially in follow-up studies when the cure of non-fatal event is of clinical interest.

For example, it is of routine practice to monitor serum prostate-specific antigen (PSA) for
cancer biochemical recurrence among patients who have undergone radical prostatectomy for
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their clinically localized prostate cancer. Radical prostatectomy removes the entire prostate
gland and presumably all tumor cells. Patients who are free of PSA for two to three years after
surgery are generally considered of being cured of biochemical recurrence because the
operation has successfully removed all PSA-generating tumor cells (Dillioglugil et al., 1997;
Pound et al., 1999). However, PSA may reappear in serum after surgery, which is called
biochemical recurrence, indicating the operation is not success and the cancer has come back.
Investigators would like to know why some patients are cured of the biochemical recurrence
but not the others, and how these relate to patient’s baseline characteristics such as cancer
clinical stage and tumor histology. During the follow-up, biochemical recurrence is found out
by detectable PSA level in serum as ascertained at periodic clinic visits for about every three
months after surgery. The actual time of biochemical recurrence is only known to have occurred
between two consecutive visits, or may not even happen for some patients who are cured of
the disease. It is therefore of great interest to develop new method for analyzing the probability
of cure for the interval-censored data in the regression-analysis framework for including the
patient baseline characteristics.

Extensive statistical literature has been devoted to interval-censored data, but without
incorporating the possibility of cure. The nonparametric maximum likelihood estimator
(NPMLE) for the distribution function for interval-censored data was first studied by Peto
(1973) and then by Turnbull (1976) using a self-consistency algorithm. Groeneboom and
Wellner (1992) proposed an iterative convex minorant algorithm for current status data and
case-2 interval-censored data. Wellner and Zhan (1997) discussed some efficient algorithms
for obtaining the NPMLE for these cases. Strong consistency of the NPMLE was proved for
interval-censored data under a L1 topology (Schick and Yu, 2000; Yu et al., 2001) and under
the Hellinger metric (van der Vaart and Wellner, 2000). Semiparametric regression methods
for interval-censored data have been investigated for the proportional hazards model
(Finkelstein, 1986), the proportional odds model (Rabinowitz et al., 1995), and the accelerated
failure time model (Betensky et al., 2001). Semiparametric models have also been proposed
for regression analysis of current status data (Huang, 1996; Rossini and Tsiatis, 1996; Lin et
al., 1998; Tian and Cai, 2006). In addition, Lam and Xue (2005) considered a mixture cure
model for current status data using the estimating equation approach.

Two major approaches to model the cure rate are the mixture cure model and the non-mixture
cure model (Chen et al., 1999). The mixture cure model is a mixture of two separate regression
models for the cure rate of the cured population and the survival function for the non-cured
population, which has been investigated extensively in the literature (Berkson and Gage,
1952; Yamaguchi, 1992; Taylor, 1995; Maller and Zhou, 1996; Sy and Taylor, 2000; Li et al.,
2007, among others). Chen, Ibrahim and Sinha (1999) pointed out that the mixture cure model
did not maintain the assumed survival model structure, e.g. proportional hazards, for the whole
population. As an alternative, the non-mixture cure model was proposed to keep the
proportional hazards structure for the whole population, while allowing for a straight-forward
interpretation of the covariate effects on the probability of cure (Tsodikov, 1998; Chen et al.,
1999; Tsodikov et al., 2003). As described by Chen et al. (1999) and Zeng et al. (2006), the
non-mixture cure model has a biological interpretation of tumor cell growth, for which the
model is also called the promotion time cure model. The works for both the mixture and the
non-mixture cure models are largely based on right-censored data, not on interval-censored
data.

In this article, we consider the regression analysis of interval-censored data for a
semiparametric non-mixture cure model. Let T be a nonnegative random variable representing
the event time and let Z be the vector of covariates. The survival function of T conditional on
the covariate Z is assumed to satisfy the following cure model:
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(1)

where (α, β) are the regression coefficients, and F is a completely unspecified cumulative
distribution function. For right-censored data, Tsodikov (1998) considered a cure model with
a bounded function F, where the intercept is not allowed. The regression model (1) is a natural
structure to keep the proportional hazards assumption while allowing a nonzero probability of
cure as t → ∞. When F is an unbounded cumulative hazard function, the model becomes the
Cox proportional hazards model by setting α = 0. Letting F be bounded by 1, we will show
that the model (1) is identifiable and leads to an improper survival function.

The paper is organized as follows. In Section 2, we describe the model, the identifiability issue
and the likelihood function. In Section 3, we develop the maximum likelihood estimation
(MLE) based on an expectation-maximization (EM) approach for interval-censored data. The
computation utilizes the expectation conditional-maximization (ECM) algorithm of Meng and
Rubin (1993), which alternates the M-step for (α, β) and the M-step for F in addition to the E-
step. The M-step for F is the nonparametric MLE, which imposes challenge for numerical
calculation. We apply a convex optimization method to develop a self-consistency-type
algorithm in the spirit of Turnbull (1976). In Section 4, we prove strong consistency of the
MLE estimators under the Hellinger distance using the modern empirical processes of van der
Vaart and Wellner (1996). In Section 5, we describe the simulation studies to evaluate the
performance of the proposed method, and illustrate the method through analysis of data for
serum PSA recurrence among prostate cancer patients. We provide concluding remarks in
Section 6 and the technical proofs in Supplemental Materials.

2. MODEL AND LIKELIHOOD
2.1. The Model

Under the non-mixture cure model (1), the overall survival distribution falls in the framework
of a proportional hazards model with the cumulative hazard function eαF(·). The intercept α in
the regression part of the cure model allows for the easy interpretation of covariate effects
while keeping a exible baseline function. When t → ∞, the probability of cure for a given Z is
exp(−eα+β′Z), the complimentary log-log regression. The proposed method can be easily
extended to a general regression model by replacing exp(·) with a known positive convex
function. When Z = 0, the baseline cure rate is simply exp (−eα), which depends on the intercept
α.

Let E0 denote the expectation under the true values α0, β0 and F0 that satisfy model (1). We

assume that  and |α0| < ∞. It is clear that the baseline survival function S0(t)
= exp(−F0(t)) is not a proper survival function because limt→∞ S0(t) = 1/e. The marginal
survival function P0(T ≥ t) = E0[P0(T ≥ t|Z)] is also not a proper survival function by Jensen’s

inequality , always
greater than 0.

In order to ensure the identifiability of model (1), we require F to be a regular distribution
function with limt→∞ F(t) = 1. To show the identifiability, let (α*, β*, F*) be a set of parameters

that satisfies (1), i.e., . Fixing ω in a set of probability 1 in the
underlying probability space, then S*(t|Z(ω)) = S(t|Z(ω)) implies that for each t ∈ (0,∞),

. Letting t → ∞ yields  because limt→∞
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F*(t) = limt→∞ F(t) = 1. This implies that  with probability 1. Suppose that if
P(b′Z = a) = 1 for a real number a and any real vector b, then a = 0 and b = 0. This implies that
α* = α and β* must be equal to β. Hence, F*(t) = F(t) for each t ∈ (0, ∞).

2.2. Data and Likelihood
We consider a setting in which the event time T may not be observed exactly, but instead is
known to have occurred in an interval [L, R]. Here, L is the latest examination time before the
event, and R is the earliest examination time after the event, where R = ∞ if the event has not
happened before the last follow-up. The data are n i.i.d copies of (L, R, Z), denoted by (Li, Ri,

Zi) for patient i, where Li < Ri for i = 1, ⋯, n. Denote θ′ = (α, β′) and . Then model
(1) can be re-expressed as SZi (t) = Sθ,F (t|Zi) = exp (−eθ′Z̃iF(t)), where the function SZi (t) is
left continuous, with right limits. If Ri < ∞,

where Pθ,F is the probability measure under the parameters θ and F. If Ri = ∞, then there are
two possibilities for the ith patient: the patient is cured, or the event of interest for that patient
occurs after the last examination time, which can be calculated by

The likelihood function for the n observed interval-censored data is then

(2)

Note that unlike the standard Cox model, the full likelihood function derived under the cure
model (1) needs to account for the probability of cure.

To obtain the maximum likelihood estimators (MLE) based on (2) for (θ, F), we now show
that the nonparametric MLE for F is only unique up to an equivalent class. This derivation is
an extension of the method of Peto (1973) and Turnbull (1976) for the NPMLE of interval-

censored data without covariates. Define a finite number of disjoint intervals 
constructed as follows: sj ∈ {Li : i = 1, ⋯, n} and rj ∈ {Ri : i = 1, ⋯, n}, the interval (sj , rj)
does not contain any members of {Li,Ri, i = 1, ⋯, n}, and s1 ≤ r1 < s2 ≤ r2 ⋯ < sm ≤ rm <
sm+1 < rm+1 = ∞. It is possible that sj = rj , j = 1, ⋯,m. Here sm+1 is the observed longest follow-

up time. Let . Note that function x ↦ e−exp(θ′Z)x is nonincreasing in x.

We first examine the maximization of the likelihood function with respect to F for an arbitrary
but fixed θ. For given data and fixed θ, the maximization of the likelihood function (2) depends
on F only through its values on  but not on the outside of . For fixed values of

, the likelihood function does not change with the value of F in (sj, rj). Let
pj = F(rj+) − F(sj−) for j = 1, ⋯, m. Then the vector p ≡ (p1, ⋯, pm) where

 defines an equivalence class of cumulative distribution functions that
are constant outside . Thus, we can limit our search for the MLE of F in the equivalence class
of the following step functions that have right-hand limits and are continuous from the left:
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, with the constraint . Without loss of generality, we still denote the function by F
in the equivalence class. The function is continuous from the right F(t) = F(t+) and takes a
constant value on [rj , sj+1], which is equal to F(rj) for j = 1, ⋯, m. Further, F(0) = 0 and F
(rm) = F(sm+1) = 1. The function F has jumps of size p1, ⋯, pm right before r1, ⋯, rm,
respectively. Subsequently, the survival function of T given Zi can be written as:

(3)

In particular, for j = 1, ⋯,m, SZi(sj−) = exp [−eθ′Z̃i(p0 + p1 + ⋯ + pj−1)], and

where p0 ≡ 0 for the convenience of notation.

The likelihood function (2) of the observed data is now a function of the parameters p = (p1,
⋯, pm) and θ. Let δij indicate whether [sj, rj ] belongs to [Li, Ri] for j = 1, ⋯, m+1. In particular,
δi,m+1 = 1 indicates whether the ith person has completed the follow-up without the occurrence
of the event (i.e. Ri = ∞). Using the above notation, we write the log-likelihood function of (2)
as

(4)

Since we assume a cure in our application, the data have at least one event-free subject (Ri =
∞) whose follow-up time is longer than rm. It follows that the term δi,m+1SZi(sm+1) does not
vanish from (4). The likelihood contribution of event-free subjects is determined by comparing
their follow-up times with rm. Only the subjects who are event-free and have Li > rm contribute
to the likelihood as the cured subjects. The random times {rm, sm+1} essentially serve the same
role as the deterministic “cure threshold” proposed by Zeng, Yin, and Ibrahim (2006) for right-
censored data. As with all cure modeling, the viability of this model requires the follow-up of
a study to be sufficiently long so that sm+1 is large enough for some subjects to be considered
cured in the given scientific context.

Due to the complexity of data notation, we use a hypothetical data example with 4 subjects to
illustrate the derivation of the equivalent class for the likelihood function as depicted in Figure
1. The cases for patients i = 1, 2, 3 are straightforward. We only describe the case for patient
i = 4, where δ4,1 = δ4,2 = δ4,3 = 1. The contribution of patient i = 4 to the log-likelihood function

(4) is  which is equal to SZ4(s1−) in the equivalent
class for the likelihood function (2).
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In summary, we have derived the nonparametric MLE F̂n(θ) = argmaxFln(θ, F) by an
equivalence class argument for a fixed but arbitrary θ. The MLE for θ can then be obtained by
maximizing the profile log-likelihood θ ↦ ln(θ, F̂n(θ)), which is equivalent to maximizing
the function θ ↦ supF Ln(θ, F). Maximizing the profile log-likelihood yields the
semiparametric maximum likelihood estimator (θ̂n, F̂n).

3. COMPUTATIONAL ALGORITHM AND PROPERTIES
We now develop the computational algorithm to obtain the MLE from (4). It is numerically
difficult to maximize the log-likelihood function (4), while the dimension of F̂n can increase
with the sample size n. To overcome this dificulty, we first consider an EM method for interval-
censored data as an extension of the method for the nonparametric estimation when the
covariates are absent (Kalbeisch and Prentice, 2002, page 80–81). The resulting expected log-
likelihood function has the appealing property of being concave. We then replace the M-step
by two conditional M-steps that alternate the M-step for θ and the M-step for p, which allow
us to utilize diffierent optimization techniques for maximizing the expected log-likelihood
function for θ and p, separately. This is essentially the ECM algorithm of Meng and Rubin
(1993), but we further exploit convex optimization techniques for a numerically stable and
efficient algorithm for the M-step. Our algorithm forces the search of p in the interior of a
constrained convex parameter space for obtaining MLE.

3.1. EM Method: Expectation-step
To simplify the notation in (4), for i = 1, ⋯, n, j = 1, ⋯, m, we define

The log likelihood function (4) is then

(5)

where  for each i = 1, ⋯, n.

By the equivalence of (2) and (4), the interval-censored data are now represented by Δi =
(δi,1, ⋯, δi,m, δi,m+1) for i = 1, ⋯, n. We may view Δi as the incomplete data arising from an
(m+1)-class multinomial distribution with index 1. Specifically, we consider the complete data
as denoted by X = {Xi ≡ (Xi,1, ⋯, Xi,m,Xi,m+1), Zi : i = 1, ⋯, n}. Conditional on the covariate
Zi, Xi is assumed to have an m+1 class multinomial distribution with index 1, and for j = 1,
⋯, m + 1,

The Xi for i = 1, ⋯, n are assumed to be independent of each other so the complete data log-
likelihood is

Liu and Shen Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2010 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

From the incomplete data {Δi, i = 1, ⋯, n}, we know that the ith outcome falls into one of the
classes j as indexed by δij but we do not know the specific class into which it actually falls,
except for the trivial cases. For example, in Figure (1), the event for patient 4 is known to have
occurred in either (s1, r1), (s2, r2) or (s3, r3), but in exactly which one is unknown. Under this
missing mechanism, the log-likelihood of the incomplete data is identical to (4).

The E-step is to calculate the expected log-likelihood function of (6). Given data {Δi, Zi : i =
1, ⋯, n} and current parameter estimation (θ(k), p(k)) of the k-th step,

(7)

Then the expected log-likelihood at the kth step is

where s0 is set to be −∞ for notational convenience. Denote

, which is independent of the parameters θ and p. The
expected log-likelihood can be expressed as

(8)

The following proposition shows that the expected log-likelihood is a concave function with
respect to both θ and pj > 0, j = 1, ⋯, m, which implies that any local maximizer of the function

is also a global maximizer on the set defined by  and θ in an open
convex set.

Proposition 1—The function l(k)(θ, p) is a concave function for each pj > 0, j = 1, ⋯, m, and
for each θ that belongs to an open compact set.

Proof: The function l(k) (θ, p) is a summation of functions of (θ, p) ↦ −pjeθ′Ẑi and (θ, p) ↦
log(1−exp(−pjeθ′Zi)), which are concave by noting that (x, y) ↦ −x exp(y) is concave and (x,
y) ↦ log(1 − exp(−xey)) is strictly concave for x > 0 and −∞ < y < ∞, respectively. A summation
of concave functions is still a concave function.
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The M-step will be followed to maximize the expected log-likelihood function using the ECM
algorithm: the maximization with respect to θ for fixed p, and the maximization with respect
to p for fixed θ, iteratively.

3.2. Maximization Step for Covariate Coefficients θ
The number of covariates is often much smaller than n, so it is straightforward to maximize
l(k)(θ, p) directly with respect to θ for a fixed p, for example, by a quasi-Newton method such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Boyd and Vandenberghe,
2004, Chapter 9). The first partial derivative of l(k)(θ, p) with respect to θ is

The second partial derivative of l(k)(θ, p) with respect to θ is

We may apply the inequality 1 − x < e−x for x < 1 to confirm that the gradient is positive definite

whenever the covariate matrix  is positive definite. For every i, j, the second term in the
above display is always nonnegative when pjeθ′Ẑi ≥ 1. When pjeθ′Ẑi < 1, this term is still positive
by noting that pjeθ′Ẑi − 1 > −exp(−pjeθ′Ẑi). Proposition 1 also infers that for each fixed p, l(k)

(θ, p) is strictly concave when the matrix  is positive definite and θ is in a bounded
convex set ℬ in ℝd+1. The concavity implies that a local maximizer is also the unique global
maximizer.

3.3. Maximization Step for F: Optimality Conditions
The next step in the ECM algorithm is to maximize the expected log-likelihood function with
respect to p conditional on θ. Although the maximization in p is numerically challenging, we
note that the function p ↦ l(k) (θ, p) is strictly concave by Proposition 1 when not all pj ∈ [0,

1] are zero for j = 1, ⋯, m, and not all  are zero for j = 1, ⋯, m. Thus, if we can find a local
maximizer for p, it is also the unique global maximizer for p in the conditional maximization
step. We first explore the optimality conditions for the maximization step for p by convex
optimization techniques (Boyd and Vandenberghe, 2004, Section 5.5). To develop a
numerically efficient and stable algorithm, we apply the primal-dual interior-point method for
constrained optimization (Boyd and Vandenberghe, 2004, page 609–613), which yields a self-
consistency algorithm for p in the sense of Turnbull (1976) and keeps the point mass pj positive.

For notational convenience, denote for j = 1, ⋯, m,
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where  is defined in (7) and k is the index for the current EM iteration. Here both θ and k

are fixed, so aj, eθ′Ẑi and , are positive constants in the maximization
step for F. Denote a = (a1, ⋯, am)′. Note that the last term in (8) is not a function of p, so the
part in the expected log-likelihood that involves p is

with the constraint that  and 0 ≤ pj ≤ 1 j = 1, ⋯, m. Because f(p) is strictly concave
in p, the maximization of f becomes a concave optimization problem with constraints:

(9)

The first-order partial derivative of f with respect to pj is given by

The second-order partial derivative of f with respect to pj is given by

The second-order partial derivative of f with respect to pj and pj′ is zero for j ≠ j′, j, j′ = 1, ⋯,
m, i.e., ∂2/∂pjpj′f(p) = 0. The Hessian matrix ∇2 f is thus a diagonal matrix, which we will exploit
to derive a simple and efficient algorithm.

First we characterize the optimal solution of the concave function with the Lagrangian function.
Let ν and τj, j = 1, ⋯, m be the Lagrange multipliers for the equality constraint and the inequality
constraint, respectively. Let τ = (τ1, ⋯, τm) and 1 = (1, ⋯, 1)T. The Lagrange function with
parameters τ and ν for the constrained maximization problem (9) is Γ(p, τ, ν) = f(p) + τT p +
ν(1 − 1T p). For a concave optimization, the necessary and sufficient conditions for a point
p* to be the optimal solution are the Karush-Kuhn-Tucker (KKT) conditions (Boyd and

Vandenberghe, 2004, page 243–244). Specifically, a point p* in [0, 1]m,  in
ℝm and ν* in ℝ is an optimal solution if and only if

(10)
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The maximization problem now is equivalent to solving the KKT conditions to find the solution
(p*, τ*, ν*) from (10). The nonlinear equations in (10) have a simple form because of the
diagonal Hessian matrix. Eliminating  from these equations, the KKT conditions become

If , then ḟj(p*) = ∞, which is impossible by the second inequality in the above display.
Thus, , and the maximizers p* and ν* must satisfy:

This implies that  must be less than 1 because of the constraint . The KKT
conditions are the necessary and sufficient conditions for the maximizers to satisfy our
constrained convex maximization. The sufficient condition suggests that the initial values start
from the “interior”, i.e., 0 < pj < 1 for each j. The solutions p* and ν* are found directly from
the equations for the equality constraint, while the interior-point method forces the inequality
constraints . The necessary KKT conditions infer that the interior point
constraints continue to hold strictly for each ECM iteration.

3.4. Maximization Step for F: Self-Consistent Algorithm
We now describe the details of the algorithm for the maximization step of (9) using the primal-
dual interior-point method, which avoids using a generic computer maximizer. The key step
is to apply Newton’s method to solve the nonlinear equations (10) for the modified KKT
conditions with a scalar parameter η > 0 that controls the inequality constraints. Specifically,
Newton’s method approximates the nonlinear equations by the Taylor’s expansion and solves
the following equations for the Newton steps (Δp, Δτ, Δν):

(11)

where ∇2f(p) is the Hessian Matrix, diag(p) is the diagonal matrix with diagonal entries p1,
⋯, pm, I is the identity matrix, and 1 is the vector with all components one (Boyd and
Vandenberghe, 2004, page 610).

We can solve (11) explicitly for (Δp, Δτ, Δν) because the Hessian matrix ∇2 f is diagonal

(12)

(13)
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(14)

Denote , and ν+ = ν + Δν. Equation (12) gives

(15)

Equation (13) gives . Plugging (15) into the equation, we get

When τj − pj f̈(p) ≠ 0, we have

(16)

Using equation (14),

This gives

provided that the denominator is not zero. The Newton step Δpj is then calculated by (16).
After calculating  by (15), we obtain the Newton steps Δν = ν+ − ν and . Newton’s
method is an iteration procedure. Given the current iteration (p, τ, ν), the next iteration is
determined by

(17)

where ψ is calculated by a standard backtracking line search, which further controls the
inequality constraints (supplemental materials available online).

Equations (17), similar in the spirit to the self-consistent algorithm of Turnbull (1976), are
explicit and simple self-updating equations. Equation (15) and Equation (16) provide accurate
calculations for the Newton step (Δp, Δτ, Δν). Another computational advantage of the
algorithm is that it provides a numerically stable solution to the maximization problem, even
if the dimension of p is large.
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3.5. Summary of the Iterative Algorithm for MLE
We now summarize the algorithm that combines the ECM algorithm with the primaldual
interior-point method for obtaining the MLE for the cure model with interval-censored data:

1. Take a random initial value θ(0) and a random initial value p(0) that satisfies

2. CM1: Obtain θ(k+1) by maximizing l(k)(θ, p(k)) with respect to θ,

where for i = 1, ⋯, n, ,

3. CM2 (obtain p(k+1) by the primal-dual interior method): given θ(k+1), define

 and update for j = 1, ⋯, m,

Start with the initial value p̃ = p(k); choose σ > 1 and τ = (τs, ⋯, τm) where τj > 0.
Repeat the following to update p̃ until convergence to get p(k+1):

a.
Determine η = σ/ξ̂, where .

b. Evaluate
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c. Update p̃, τ and ν by (17) with the standard backtracking line search as
described in supplemental materials available online.

4. Repeat steps 2–3 until ‖θ(k+1) − θ(k)‖ + ‖p(k+1) − p(k)‖ < ∊1 and the expected log-
likelihood converges for a pre-specified small ∊1 > 0.

Note that the convergence of the algorithm can be established by the general results for the
constrained ECM algorithms that have been shown in Meng and Rubin (1993) and Nettleton
(1999); see also Little and Rubin (2002, Theorem 8.1, page 173).

4. HELLINGER CONSISTENCY OF MLE
The technical challenge for studying the strong consistency of the MLE (θ̂n, F̂n) for the
proposed cure model comes from interval-censored data, for which a classical approach via
the Kullback-Leibler information cannot be easily applied. Instead, we prove the strong
consistency of (θ̂n, F̂n) to the true values θ0 and F0 under the Hellinger distance, which provides
a global consistency. The Hellinger distance is an L2-distance between the square roots of two
probability densities q1 and q2,

which does not depend on the dominating measure ν. This is a true distance that satisfies h
(q1, q2) ≤ 1 and h(q1, q2) = 0 if and only if q1 = q2 a.e. ν. For the nonparametric estimation for
interval-censored data, van der Vaart and Wellner (2000) proved the strong consistency of
MLE under the Hellinger distance. We extend their method to the semiparametric MLE under
the cure model for a general case of interval-censored data, for which the proof is largely based
on the theory of modern empirical processes (van der Vaart and Wellner, 1996, Chapter 2.4).

We first describe the setup of the general case of interval-censored data, which is similar to
these described by Schick and Yu (2000) and van der Vaart and Wellner (2000), but with a
modification to allow for the possibility of cure. This setup is necessary in order to take into
account of the randomness of the event inspection times, but it leads to the same likelihood
function (2), for which we have developed a computationally efficient algorithm for the MLE
(θ̂n, F̂n).

Let K be a positive random integer that denotes the number of inspection times for one person,
and YK = {YK,1, ⋯, YK,K} denote the inspection times for the event of interest, where YK,1 < ⋯
< YK,K. In practice, it is natural to assume E0(K) < ∞. The random observation times for one
person is a triangular array Y = {Yk,j : j = 1, ⋯, k, k = 1, 2, ⋯ }, where k is the realization of
K. Let Yk = (Yk,1, ⋯, Yk,k) be the k-th row of the array Y with the realization denoted by yk =
(yk,1, ⋯, yk,k).
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The event time T is only known to have occurred in one of the intervals [YK,j−1, YK,j), j = 1,
⋯, K, or [YK,K, YK,K+1], where YK,0 ≡ 0 and YK,K+1 ≡ ∞. We denote Λk = (Λk,1, ⋯, Λk,k+1),
where Λk,j = 1[Yk,j−1,Yk,j)(T) for j = 1, ⋯, k, and Λk,k+1 = 1[Yk,k,Yk,k+1](T), with the realization
denoted by λk = (λk,1, ⋯, λk,k+1).

We now formulate the likelihood under this setup. Assume that conditional on Z, (K, Y) is
independent of the event time T. We also make the noninformative inspection assumption that
the distribution of (K, YK, Z) dose not depend on the event time T and the parameters of interest
θ and F. Given Z, the conditional survival function of T follows cure model (1). Conditional
on (K, YK) and Z, the random vector Λk has a multinomial distribution, i.e., (Λk|K, YK, Z) ~
MultinomialK+1 (1, ΔSK(Z)), where the vector

Let V = (K, Λk, YK, Z) with the realization denoted by υ = (k, λk, yk, z). Denote z̃T = (1, zT).
The distribution of V has a version of density dPV / dµ with respect to a dominating measure
µ determined by the joint distribution of (K, YK, Z), which does not depend on the parameters
of interest θ and F by the non-informative inspection assumption. A version of density of the
distribution of V , which is the likelihood function for one observation υ that we will use, is
thus given by

(18)

The data are n i.i.d. V 1, ⋯, Vn copies of V , where , i = 1, ⋯, n. Define by

 the empirical distribution for a measurable real function g on the sample
space . The log-likelihood function for (θ, F) of Ṽ = (V 1, ⋯, Vn) is

(19)

where

The log-likelihood function (19) is same as the logarithm of the original likelihood function

(2) by noting that .
Therefore, Li = YKi,j−1 and Ri = YKi,j if YKi,j−1 ≤ Ti < YKi,j, and if Ti ≥ YKi,Ki, Li = YKi,Ki and
Ri = ∞. This setup is flexible enough to allow a “data-generating” mechanism for the interval-
censoring data [Li, Ri], where the observation stops after a random number Ki of inspections.
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There is no need to make specific distribution assumptions about the inspection process. This
setup is also convenient for the technical proof of the Hellinger consistency.

We will work with the log-likelihood function (19) to prove the Hellinger consistency, and
need the following regularity conditions:

C1. Parameter θ is restricted in a compact set Θ in ℝd+1, and the baseline distribution
function F is in the set ℬ of all sub-distribution functions on (0, ∞).

C2. E0(‖Z‖2) < ∞ for the Euclidean norm ‖ · ‖2 in ℝp. For the true parameter

.

C3. The true parameter function F0 is strictly increasing, and satisfies

Condition C3 is a technical condition for preventing E0(1/pθ0,F0) from escaping to infinity. It
regulates the variability of the inspection process {YK,1, ⋯, YK,K}. The following theorem
summarizes the strong consistency property of (θ̂n, F̂n). The detail of the technical proofs is
provided in Supplemental Materials.

Theorem 1
Under the regularity conditions C1–C3, the maximum likelihood estimate θ ̂n and F̂n satisfies

5. NUMERICAL STUDIES
5.1. Simulation Study

To examine the empirical properties of the proposed method, we perform a simulation study.
The event time T is generated under the cure model (1) for given Z,

There is a connection between the cure model (1) and the mixture cure model as pointed out
by Chen et al. (1999). The overall survival function can be written in the form of the mixture
cure model:

where  is the covariate-specific probability of cure, and
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The conditional survival function S* is a proper survival function.

To simulate T under (1), we consider a setting with one covariate Z, which has a uniform
distribution on (−1:0, 1:0). The first step is to generate a random variate distributed as Bernoulli
with π(Z) for a given single covariate Z. If it is 1, then T = ∞. If it is 0, then generate a random
variate T* distributed as the proper survival function S*(t|Z). To generate T* ~ S*(t|Z), we
apply the accept-reject method for simulating the random variate (Devroye, 1986, page 40–
65). For simplicity, we choose the baseline distribution function F0(t) = 1 − exp(−t).

The sample size is chosen to be 50, 100 or 200. The true value for β0 is chosen to be 0.0, 0.5
or 1.0. When β0 = 0.0, the probability of cure is exp(−eα0). The value of α0 is chosen to be
either 0.0 or 1.0, which corresponds to a baseline cure rate of either 0.37 or 0.07, respectively.
For small sample sizes, care has been taken to ensure that there is at least one cured patient in
the simulated dataset. The examination times are generated independent of Z and T, from a
homogeneous Poisson process. The inter-examination times are independent and identically
distributed as exponential with mean ζ of either 1/5 year or 1/2 year, corresponding to short or
long inter-examinations, respectively. The length of study is either 3 years for short inter-
examination or 5 years for long inter-examination. The simulation replicates are 1,000 for each
scenario.

The results of the Monte Carlo simulations are summarized in Table 1, including the bias, the
empirical estimate of the mean squared error (MSE) and its average standard error. The biases
of estimates for α and β are very small even for a small sample size, indicating that the algorithm
performs surprisingly well. The empirical estimates for the standard error, as well as the mean
squared error, decrease with the sample sizes. The MSE of the estimator under the long inter-
examination time is slightly higher than those under the short inter-examination time.

5.2. Data Analysis
The proposed method was motivated by the medical study for patients with clinically localized
prostate cancer, who were followed and monitored for biochemical recurrence of cancer after
undergoing radical prostatectomy. As a widely used surgical procedure, radical prostatectomy
takes away the entire prostate gland and surrounding tissue to remove all tumor cells, leading
to a very high cure rate for early prostate cancer (Kufe et al., 2003, Chapter 111). Although no
cells should remain to produce prostate-specific antigen (PSA), clinical studies have shown
that about 20% to 30% of these patients could still experience biochemical recurrence of cancer,
defined as a detectable serum PSA level (≥ 0.1 ng/mL) after surgery. Clinical studies have also
shown that the biochemical recurrence of cancer often occurs within 3 years after surgery,
which is a much earlier event than the clinical recurrence of cancer (Dillioglugil et al., 1997;
Pound et al., 1999). A patient who has remained free of serum PSA three years after his surgery
is generally considered to be cured of biochemical recurrence of prostate cancer. It is therefore
important to know what preoperative clinical characteristics might be prognostic for the rate
of cure for biochemical recurrence and how long it is likely to occur after surgery.

For this purpose, we obtained the clinical data of 260 men who underwent radical prostatectomy
for clinically localized prostate cancer performed by a single surgeon at an academic hospital
in Houston, Texas. The average age for the men at the operation was 59.5 (median age 59).
After the operation, these men were followed up periodically for serum PSA level examination
for about every 3 months. All patients were alive at their last follow-up. The longest follow-
up duration sm+1 was 4.1 years, and all biochemical recurrences were observed within rm = 3.3
years after surgery. This indicated that the patients’ follow-up times were adequate for the
analysis of the cure rate for biochemical recurrence. The exact time of biochemical recurrence
was only known to have occurred between the previous examination and the latest examination
for a patient. The possible prognostic factors for biochemical recurrence included the
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following: pathologic stage at surgery (T2, clinically organ-confined; T3, locally advanced),
preoperative PSA level, Gleason score, and positive surgical margins (PSM). The preoperative
PSA level was logarithmically transformed. The Gleason score graded histologically the
prostate tumor cells, ranging from 2 to 10 (the higher the worse). We classified the Gleason
score into 2 categories: less or equal to 7, and above 7(the baseline). Positive surgical margins
(PSM), defined as the presence of cancer cells at the inked margin of a resected tumor specimen,
might indicate incomplete excision of tumor, but it was not always clear in the medical literature
whether PSM was associated with biochemical recurrence. Of note, being cured of biochemical
recurrence is different from being cured of prostate cancer, which may be confounded with
over-diagnosis of prostate cancer.

The estimated covariate coefficients were shown in Table 2. The estimated baseline function
F̂ was plotted in Figure 2. For computational convenience, we used the nonparametric bootstrap
method to estimate the standard errors, where the replicates of the bootstrap samples were
1,000. The intercept, stage T2, and Gleason score ≤ 7 in the regression model were not
significantly different from zero, but their magnitude were negative, indicating an increased
cure rate (≈ 66.3%) for patients with the following clinical characteristics: tumor of stage T2,
preoperative PSA level 1.0, Gleason score ≤ 7, and a negative surgical margin. Only the
preoperative PSA level was significantly associated with the cure of biochemical recurrence
at the 0.05 level. The positive estimated coefficient indicated a lower preoperative PSA level
would lead to a higher probability of cure.

6. DISCUSSION
We have studied the semiparametric MLE for a non-mixture cure model for interval-censored
data. Besides its attractive properties and biological interpretation as explained by Tsodikov
(1998) and Chen, Ibrahim and Sinha (1999), one advantage of the non-mixture cure model for
interval-censored data is the parsimonious model of the covariate effects on both cure rate and
time to event. This is especially appealing when the primary goal of a study is to evaluate risk
factors for the cure rate. In addition, the proposed semiparametric non-mixture cure model S
(t/Z) = exp(−ϕ(θ′Z̃)F(t)) is flexible enough to allow a general function ϕ(·) to replace exp(·) in
the regression part. Our algorithm can be easily modified for the general function ϕ as long as
it is nonnegative and convex. It is important to assess the goodness-of-fit for the posited model
(1), perhaps based on the likelihood function developed herein. Another obvious extension
within the regression framework is to allow for time-dependent covariates, which may be useful
for checking the proportionality assumption in model (1). Although it will not be conceptually
difficult to develop the estimators, studying their properties requires substantial effort.

Interval-censored data provides unique opportunity and challenge for analyzing the cure rate
in the medical studies. We developed the likelihood function through the classic equivalence
class approach of Turnbull (1976). To estimate cure rate, the likelihood function requires that
at least one event-free subject be followed longer than rm. In contrast to the mixture cure model,
the definition of cure fraction for the non-mixture cure model is unchanged even in the case
of insufficient follow-up. However, for sound data analysis, one should always consult with
clinical investigators to assess whether the value of rm in a given data is appropriate for the
scientific context.

Another major contribution in this work for interval-censored data is the development of a
computational algorithm that incorporated some modern optimization techniques with the EM
method for solving MLE. The maximization step is a constrained optimization that requires
the sophisticated interior-point method to keep searching in the restricted parameter subspace.
Combined with the theoretically sound primal-dual method, our algorithm provides a
computationally robust solution for the nonparametric estimation of the function F. We further
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worked out an efficient and numerically stable algorithm for the M-step for F, which is self-
consistency in the sense of Turnbull (1976). Our experience is that the algorithm converges
very quickly in each M-step even when the dimension of p is large, although the convergence
for the entire ECM iterations still needs extra computation time.

The assumption of an independent and non-informative inspection process is for the
consistency proof. That assumption is, however, likely satisfied in our data example. This is
because biochemical recurrence after radical prostatectomy has been shown to occur much
earlier than symptomatic clinical recurrence (Pound et al., 1999). Therefore, it is unlikely that
the inspection process would be altered among the asymptomatic patients. The asymptotic
normality and efficiency of n½(θ̂n − θ0) may be obtained by deriving the efficient score function
of θ while treating F as the nuisance function, where the detail will be reported elsewhere. We
conjecture that the rate of convergence of θ̂n is n−½ and that of F̂n is n−1/3. It is difficult to
obtain the asymptotic distribution for n1/3(F̂n − F0), while the asymptotic normality of n½(θ̂n
− θ0) is relatively easy to prove by modifying the empirical process techniques for the case-2
interval-censored data as in the work of van de Geer (2000, page 228–230). The nonparametric
bootstrap is a valid approach to calculating the standard error for θ̂n. Alternatively, the
asymptotic variance-covariance matrix of estimator θ̂n and F̂n may be estimated by the
supplemented ECM (S-ECM) algorithm of van Dyk et al. (1995), which is a computational
byproduct of the ECM algorithm.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A hypothetic example with n = 4. Each pair of brackets [ ] corresponds to a patient data.
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Figure 2.
NPMLE of the function F̂. The dashed lines at the bottom are the non-overlapping intervals
(sj, rj] for j = 1, ⋯, m + 1.
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