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Abstract
Primitive myeloid leukemic cell lines can be driven to differentiate to monocyte-like cells by 1α,25-
dihydroxyvitamin D3 (1,25(OH)2D3), and, therefore, 1,25(OH)2D3 may be useful in differentiation
therapy of myeloid leukemia and myelodysplastic syndromes (MDS). Recent studies have provided
important insights into the mechanism of 1,25(OH)2D3-stimulated differentiation. For myeloid
progenitors to complete monocytic differentiation a complex network of intracellular signals has to
be activated and/or inactivated in a precise temporal and spatial pattern. 1,25(OH)2D3 achieves this
change to the ‘signaling landscape’ by: i) direct genomic modulation of the level of expression of
key regulators of cell signaling and differentiation pathways, and ii) activation of intracellular
signaling pathways. An improved understanding of the mode of action of 1,25(OH)2D3 is facilitating
the development of new therapeutic regimens.
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1. Introduction
Treatment of human myeloid leukemia cells, including HL60 myeloblastic cells [1-4], U937
monoblastic cells [5], and THP-1 cells [6], with physiological concentrations of 1,25
(OH)2D3 induces their differentiation into functional monocytes. For complete functional
differentiation to occur the leukemic cells have to be exposed to 1,25(OH)2D3 for between
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36-48 hours as during this period ‘differentiating’ adherent CD14-expressing HL60 cells revert
to an undifferentiated phenotype if 1,25(OH)2D3 is removed [7-9]. Examination of the behavior
of single HL60 myeloid cells exposed to 1,25(OH)2D3 revealed a complex response as to cell
behavior - there is an initial burst of proliferation which gives way to growth arrest and terminal
differentiation [10,11].

Direct regulation of the transcription of genes encoding proteins that control the cell cycle,
prevention of apoptosis and differentiation is important to 1,25(OH)2D3-driven monocytic
differentiation. Increased expression and/or activation of several intracellular signaling
pathways is also crucial. These include several protein kinase C (PKC) isoforms [12,13], the
phosphatidylinositol 3-kinase (PI3K)-AKT pathway [6,14-16], the p42 extracellular regulated
kinase (p42-ERK), p38-ERK and the c-Jun N-terminal kinases (JNK) families of mitogen
activated protein kinases (MAPKs) [17-22]. Pharmacological or genetic blockade of these
pathways abrogates 1,25(OH)2D3-driven monocytic differentiation. Control of these signaling
pathways is necessarily complex since they have to be both temporally and spatially integrated
so that the correct sequence of regulatory signals are generated in response to 1,25(OH)2D3.
Importantly, it is increasingly apparent that pathways are interconnected into networks, with
nodal points at which several pathways intersect. While these networks have not been well
delineated at this time, some suggested interactive pathways are presented in the Figures 1-3,
and an example of a nodal point may be c-Raf 1 [23]. In this review we examine the signaling
interplay that is provoked by 1,25(OH)2D3.

2. Translocation of vitamin D receptor (VDR) to the nucleus plays a central
role in 1,25(OH)2D3-induced monocytic differentiation

Vitamin D receptor (VDR) is a member of the nuclear hormone receptor super family, and
1,25(OH)2D3 acts similarly to the other steroid hormones, such as the thyroid hormone. VDR
functions as a ligand-activated transcription factor. Ligated VDR forms a heterodimer with the
retinoid X receptor (RXR) which regulates target genes by binding to vitamin D response
elements (VDREs) in the promoter regions of genes resulting in either gene activation or
repression [24-26]. Similarly, the VDR can directly interact with a number of other proteins
which can regulate its activity. For instance, VDR and β-catenin can physically interact so that
β-catenin functions are suppressed and VDR transcriptional activities are enhanced [27].
Conversely, the promyelocytic leukemia zinc finger protein (PLZF), which is often over-
expressed in acute promyelocytic leukemia (APL), physically interacts with VDR in U937
myeloid cells, neutralizes VDR function, and blocks 1,25(OH)2D3-stimulated monocytic
differentiation [28].

CD34+ve progenitor cells from VDR knockout mice failed to differentiate into monocytes when
challenged with 1,25(OH)2D3 in vitro [29]. However, the production of monocytes (and other
blood cells) appears to be normal in VDR knockout mice suggesting that VDR may not be
absolutely essential for monocyte differentiation in vivo [29]. Whether the latter is true in
humans is not known. However, myeloid progenitors isolated from patients with type II vitamin
D resistant rickets (which contain non-functional mutated VDRs) are refractory to 1,25
(OH)2D3-induced differentiation [30]. Similarly, reducing VDR protein levels by antisense
oligonucleotides [31] reduces the sensitivity of U937 cells to 1,25(OH)2D3-driven
differentiation [Hughes, unpublished observations]. Treatment of THP-1 cells with
lipopolysaccharide reduces VDR expression and interferes with 1,25(OH)2D3-driven
monocytic differentiation [32]. Conversely, topoisomerase II inhibitors potentiate 1,25
(OH)2D3-induced monocytic differentiation of HL60 and U937 cells, and this relates to
increased VDR expression [33].
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A role for the formation of VDR-RXR heterodimers during differentiation was revealed by the
enhancement of 1,25(OH)2D3-induced HL60 monocyte differentiation by RXR agonists, and
abrogation by RXR antagonists, but not by RAR antagonists [34]. RXRα is the principal partner
for VDR binding and formation of this heterodimer is an absolute requirement for translocation
to the nucleus and the activation of gene transcription [35]. Prevention of VDR-RXR hetero-
dimerization, and subsequent recruitment of transcriptional co-activators, has been observed
to reduce 1,25(OH)2D3-stimulated monocytic differentiation of myeloid cell lines [34,36-38].
Similarly, preventing the association of the VDR/RXR heterodimer with VDREs, by co-
expression of DR3-VDRE oligonucleotide decoys, reduced 1,25(OH)2D3-mediated monocytic
differentiation of HL60 cells [39].

In unstimulated cells most of the VDR is found in the cytoplasm, and upon 1,25(OH)2D3
stimulation rapidly translocates to the nucleus [40-44]. This requires activation of the mitogen
activated kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways [43].
Additionally, VDR expression increases within a few hours of exposure of myeloid leukemic
cells to 1,25(OH)2D3 [32,40-44]. This is due to increased transcription (which is indirect as
the VDR gene does not have a VDRE) and, perhaps, a reduction in proteosome-mediated
degradation of VDR [43]. It has recently been shown that the cardiotonic steroid bufalin
enhances VDR-mediated gene trans-activation, and hence monocytic differentiation, in HL60
cells by prolonging the period that the VDR is retained in the nucleus after 1,25(OH)2D3
stimulation, probably by preventing degradation of the VDR [45,46]. That translocation of the
VDR to the nucleus is required for monocytic differentiation is evidenced by the following
observations: i) VDR failed to accumulate in the nucleus in 1,25(OH)2D3-resistant HL60 cells
[41] and THP-1 sub-lines [40], and ii) in HL60 cells there is a correlation between the potency
of side chain-modified vitamin D analogs in inducing differentiation and their ability to drive
nuclear localization of VDR [44]. Interestingly, over-expression of the AML-associated gene
translocation products PLZF-RARα, PML-RARα and AML-ETO-1 in U937 cells blocked 1,25
(OH)2D3-stimulated translocation of the VDR to the nucleus and reduced the responsiveness
of cells to 1,25(OH)2D3-stimulated monocytic differentiation [47,48].

3. Activities of lipid signaling pathways are increased during 1,25(OH)2D3-
driven monocytic differentiation
3.1 Increased expression and activation of protein kinase C isoforms is important

The PKC family is made up of a number of highly homologous serine/threonine kinases, that
differ in their activation requirements and substrate specificities [49]. Members of the family
play important regulatory roles in many aspects of hematopoietic cell function including
differentiation [50]. An early indication that activation of PKC is important to monocytic
differentiation can be taken from the observation that a single dose of the potent but relatively
non-specific PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA), which cannot be
metabolized, differentiates myeloid progenitor cell lines towards monocytes, whereas multiple
doses of 1,2-dioctanylglycerol, a metabolized PKC activator (t½ ~ 8 hours), are needed to
achieve differentiation. This relatively crude experiment suggests that a long lasting PKC
signal is required for cells to complete the monocytic differentiation program, but does not
identify which of the PKC isoforms are involved [51].

Myeloid cells express all three subclasses of PKC isoforms [52], including the classical
diacylglycerol (DAG)- and calcium-activated PKC isozymes (α, βI, βII and γ). PKCα and
PKCβI/βII are important in different facets of 1,25(OH)2D3-induced monocytic differentiation
and in particular, PKCα is important in the maintenance of terminal differentiation [52]. The
failure of KG-1a cells to differentiate may relate to a low basal level of PKCβ and a failure to
up-regulate expression in response to TPA [53]. Resistance of a HL60 sub-line to TPA-
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mediated monocytic differentiation appears to be associated with failure of a cytosol-to-
membrane translocation of PKC isoforms [54].

PKC activity is increased following 1,25(OH)2D3 treatment of myeloid cell lines. In particular,
PKCα and PKCβI/βII activity starts to increase ~ 6-8 hours after exposure to 1,25(OH)2D3 and
remains elevated for several days (see figure 1) [51,53,55-58]. The importance of PKC to 1,25
(OH)2D3-mediated monocytic differentiation has been revealed by a number of approaches.
Pre-treatment of cells with small molecule inhibitors of specific PKC isoforms and antisense
oligonucleotides against PKCβI or PKCβII block 1,25(OH)2D3-driven monocytic
differentiation [58]. Treatment of myeloid cell lines with sub-differentiating concentrations of
1,25(OH)2D3 for at least 12-24 hours, but for no more than 36-48 hours, ‘primes’ the cells so
that they become ‘supersensitive’ to the differentiating actions of TPA. This involves the
activation of classical PKC isoforms and tyrosine kinases [59,60]. Similarly, treatment of a
HL60 sub-line that is resistant to TPA-mediated monocytic differentiation with a low
concentration of 1,25(OH)2D3 for 24 hours restores sensitivity to TPA. This appears to be
mediated by an increase in the level of expression of PKCβ (figure 1) [61]. There are many
examples of synergy between 1,25(OH)2D3 and PKC-activating phytochemicals in inducing
monocytic differentiation. For example, both silibinin or artemisinin synergise with 1,25
(OH)2D3 and increase the expression and activities of PKCβ and PKCα. Accordingly, HL-60
cell differentiation induced by silibinin or artemisinin in combination with 1,25(OH)2D3 is
blocked by PKC inhibitors [62,63].

3.2. Nuclear translocation and activation of phospholipase C by 1,25(OH)2D3
Increased cellular levels of both DAG and calcium are required for the activation of the classical
PKC isoforms [49,50]. Phospholipase C (PLC) hydrolyses phosphatidylinositol 4,5-
bisphosphate (PtdIns(4,5)P2) to generate DAG and inositol-1,4,5-trisphosphate (Ins(1,4,5)
P3), a second messenger involved in the release of calcium [49,50]. 1,25(OH)2D3 does not
produce a rapid (within minutes of stimulation) Ins(1,4,5)P3-dependent increase in [Ca2+]i in
HL60 cells [21,64]. Therefore, any changes in [Ca2+]i seen in myeloid leukemic cell lines must
rely on direct activation of store-operated Ca2+ entry (SOCE). Indeed, in HL60 cells [Ca2+]i
rises slowly to 20-30% above basal after 72-96 hours exposure to 1,25(OH)2D3 [21,64]. A
similar response is seen following stimulation of freshly isolated human peripheral blood
mononuclear (PBM) cells with 1,25(OH)2D3. In PBM the 1,25(OH)2D3-stimulated increase
in [Ca2+]i was produced by classical SOCE mechanisms :- an initial depletion of intracellular
calcium stores followed by a prolonged period of calcium entry due to activation of a Ca2+

release activated Ca2+ channel (CRAC) [65]. However, neither activation nor pharmacological
inhibition of internal calcium stores or calcium influx have a significant effect on 1,25
(OH)2D3 provoked monocytic differentiation of HL60 cells [21].

Treatment of HL60 or THP-1 myeloid leukemic cells with exogenous PtdIns-specific PLC is
sufficient to induce monocytic differentiation, which is associated with persistent activation
of several classical PKC isoforms [66,67]. However, 1,25(OH)2D3 failed to stimulate PLC
activity in HL60 cells. Also, inhibitors and activators of PLC activity failed to have any effect
on 1,25(OH)2D3-mediated differentiation [21]. Even so, the 1,25(OH)2D3-mediated
monocytic differentiation of HL60 cells is associated with an increased nuclear expression of
several PLC isoforms. Detection of intranuclear PLCβ2 and PLCγ2 increases progressively
from around 48 hours post exposure to 1,25(OH)2D3, and peaks at ~96 hours, while PLCβ3
increases between 48-72 hours, and then decreases until 96 hours post 1,25(OH)2D3 [68,69].
As yet, the importance of these increases is unclear, though it is possible that increased intra-
nuclear levels of PtdIns(4,5)P2 can have effects on chromatin structure and RNA processing
[70].

Hughes et al. Page 4

Leuk Res. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3. Phospholipase D is activated by 1,25(OH)2D3
DAG can be obtained from the breakdown of membrane phospholipids, such as
phosphatidylcholine, by the sequential actions of phospholipase D (PLD) and phosphatidate
phosphohydrolase (Figure 1) [71]. PLD activity is increased during monocytic differentiation
of U937 cells, induced by dibutyryl cyclic AMP [72], and during GM-CSF/IL-4-stimulated
differentiation of monocytes into macrophages [73]. TPA-induced monocytic differentiation
of U937 cells is augmented by the PLD activator Se-methylselenocysteine or by over-
expression of PLD-1 [74]. 1,25(OH)2D3-stimulated PLD activity has been observed in HL60,
U937, THP-1 and NB4 cells [21], and inhibitors of PLD and phosphatidate phosphohydrolase
blocked the 1,25(OH)2D3-stimulated differentiation of HL60, U937 and THP-1 cells [21,75,
76]. Hence, PLD-mediated generation of DAG, which in turn activates PKC isoforms, appears
to be important to 1,25(OH)2D3-driven monocytic differentiation.

3.4. 1,25(OH)2D3-induced stimulation of phospholipase A2 generates a differentiation
enhancing signal

The PLA2 super family of enzymes hydrolyses a variety of phospholipids generating a free
fatty acid (e.g. arachidonic acid), and lysophospholipid. Myeloid cells contain each of the five
main types of PLA2:- the secreted (sPLA2’s), the cytosolic (cPLA2’s), the Ca2+-independent
(iPLA2’s), the PAF acetylhydrolases, and the lysosomal PLA2’s. 1,25(OH)2D3 caused PLA2-
mediated release of arachidonic acid from HL60 and U937 cells, starting within a few hours
and lasting at least 48 hours (figure 1) [77-79]. Addition of exogenous arachidonic acid
potentiated 1,25(OH)2D3-mediated monocytic differentiation [79]. In keeping with all of this,
inhibition of PLA2 (with dexamethasone) blocked TPA-induced monocytic differentiation of
HL60 cells and 1,25(OH)2D3-stimulated monocytic differentiation of U937 cells. Arachidonic
acid can be further metabolized in myeloid cells, by either the cycloxygenases (to produce
prostaglandins) or lipoxygenase (to produce leukotrienes) pathways. However, to date no
prostaglandins or leukotrienes have been identified that either inhibit or potentiate 1,25
(OH)2D3-mediated monocytic differentiation.

3.5. Sphingomyelinase is activated by 1,25(OH)2D3
Sphingolipid breakdown products (ceramide, sphingosine and sphingosine-1-phosphate) are a
new class of lipids that regulate proliferation, apoptosis and differentiation [80]. A transient
rise in ceramide has been observed during TPA- and 1,25(OH)2D3-stimulated monocytic
differentiation of HL60 cells [81-83]. Post-1,25(OH)2D3-treatment there is also increased
expression and activation of a Mg2+-independent neutral sphingomyelinase in HL60 cells
[84] and an acidic sphingomyelinase in THP-1 cells [85]. Furthermore, treatment of HL60 cells
with exogenous bacterial sphingomyelinase enhanced the ability of low doses of 1,25
(OH)2D3 to induce monocytic differentiation [81]. Synthetic ceramides when added with sub-
threshold concentrations of 1,25(OH)2D3 triggered HL60 cells to differentiate to monocytes
without further conversion to sphingosine [81], suggesting that ceramide is a mediator of
myeloid cell differentiation. Recently, it has been shown that 1,25(OH)2D3-mediated
monocytic differentiation is potentiated by several ceramide derivatives, via modulation of the
activity of a signaling pathway involving PI3K, PKC, JNK and ERK [86].

Ceramide can be further metabolised to sphingosine (by ceramidase) and sphingosine-1-
phosphate (S1P, by sphingosine kinase), and activation of sphingosine kinase generates an
anti-apoptotic signal during 1,25(OH)2D3-mediated monocytic differentiation. The
mechanism by which 1,25(OH)2D3-stimulated S1P production prevents apoptosis in myeloid
cells is not understood.
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4. The phosphatidylinositol 3-kinase-Akt-1 signaling pathway plays an
important role in 1,25(OH)2D3-stimulated monocytic differentiation

Phosphatidylinositol 3-kinases (PI3Ks) generate lipid second messengers that control many
aspects of cell function, including growth, differentiation survival, metabolism and motility
[87,88]. In mammalian cells eight distinct PI3K isoforms have been described. These are
divided into three sub-classes depending on subunit composition and mode of activation [89].
The class I PI3Ks are heterodimers composed of a catalytic subunit (p110α, p110β, p110γ)
which physically associates with a regulatory subunit (p85 in the case of p110α, β, and δ or
p87/p101 for p110γ). Both p110α and p110β are found in most cells whilst p110δ and p110γ
are usually only found in cells of hematopoietic origin [90]. Upon receptor activation, class I
PI3Ks synthesize the messenger lipids PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in the plasma
membrane where they coordinate the recruitment and activation of pH-domain containing
protein effectors (e.g, the serine kinase Akt, sometimes called protein kinase B) [91]. PtdIns
(3,4,5)P3 is required for translocation of Akt to the plasma membrane where it is activated by
sequential phosphorylation by phosphoinositide-dependent kinase-1 (PDK-1) and mammalian
target of rapamycin complex 2 (mTORC2) or DNA-dependent protein kinase (DNA-PK)
[92,93]. Pharmacological or genetic inhibition of several components of the PI3K signaling
pathway point to an important role in both the survival and proliferation of hematopoietic
progenitors and in myeloid differentiation [94-98]. For example, Akt plays important roles
during lineage specification of hematopoietic progenitor cells whereby increasing Akt activity
promoted neutrophil and monocyte development, whilst reducing its activity resulted in
eosinophil differentiation [98]. Transplantation of CD34+ve cells ectopically expressing
constitutively active Akt into NOD/SCID mice resulted in enhanced neutrophil and monocyte
development [98].

Inhibitor studies suggest that activation of both PI3K and Akt are crucial to 1,25(OH)2D3-
mediated protection against apoptosis and induction of monocytic differentiation [6,14-16,
99]. For example, the 1,25(OH)2D3-mediated increase in the expression and activity of steroid
sulphatase (a marker of myeloid differentiation) was blocked by pharmacological and genetic
inhibition of either PI3K or Akt and involved activation of the transcription factor NF-κB by
a PI3K/Akt-dependent mechanism [15]. CD11b and CD14 are two cell surface markers that
are commonly used to assess the progress of 1,25(OH)2D3-stimulated monocytic
differentiation. However, no recognizable VDREs can be found in the promoter regions of
either gene. Binding of several universal transcription factors to their cognate response
elements in the promoter region of the CD11b and CD14 genes has been associated with their
up-regulation during monocytic differentiation. For example, PU.1, Sp1 and perhaps c-jun
have been reported to regulate expression from the CD11b promoter [100,101]. Similarly, Sp1
can activate the CD14 promoter in myeloid cells [102-105]. Although not formally
demonstrated at the CD14 promoter in myeloid cells, it has been shown that 1,25(OH)2D3
affects the transcription of several genes following the binding of a VDR-Sp1 complex to an
Sp1 response element [106-108] Transcription of the CD14 gene is regulated also by a C/
EBPβ transcription factor [103], whose expression is regulated by 1,25(OH)2D3 [19,37]. A
1,25(OH)2D3-stimulated increase in the activity and binding of the myeloid zinc finger-1
(MZF-1) transcription factor to the proximal promoter of CD11b and of CD14 may be essential
for expression of CD11b and CD14. Both the DNA binding functions and the transcriptional
activity of MZF-1 are dependent on a 1,25(OH)2D3-driven activation of PI3K [109].
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5. 1,25(OH)2D3 modulates mitogen activated protein kinase signaling
pathways

The mitogen activated kinases (MAPKs) are a family of serine threonine kinases that play
important roles in coupling cell surface receptors to changes in transcriptional programs. The
MAPKs are grouped into 3 principal families: the extracellular signal-regulated protein kinases
(ERKs): the p38 MAPKs and the c-Jun N-terminal kinases (JNKs) [110] (see Figures 2 and
3). MAPK signaling involves the creation of a multi-protein signaling complex (a signalosome)
and cellular targets include transcription factors that drive differentiation [111,112]. Recent
evidence suggests that the MAPK family plays an important role in regulating many aspects
of hematopoiesis [113]. As discussed below, 1,25(OH)2D3-mediated monocytic differentiation
is associated with increased ERK and JNK activity and is augmented by inhibiting p38 MAPK,
but most likely only its α and β isoforms (Zhang J and Studzinski GP, unpublished data). In
contrast, all-trans-retinoic acid (ATRA)-mediated granulocytic differentiation of HL60 cells
is thought to be associated with selective utilisation of ERK MAPKs, but not JNK or p38
MAPKs [114].

5.1 Activation of the Ras-Raf-ERKs signaling pathway has multiple roles in 1,25(OH)2D3-
stimulated growth arrest and monocytic differentiation

The ERK MAPKs are activated in response to both tyrosine kinase- and G-protein-coupled
receptors. Following activation of the small G-protein Ras [110-112], the serine/threonine
kinase Raf-1 is recruited to the plasma membrane and activated by multi-site phosphorylation
by PKC, protein kinase A and the Src family of tyrosine kinases. In the classical MAPK- ERK
pathway, activated Raf-1 phosphorylates mitogen-activated protein kinase (MAP) kinase
(MEK-1) which in turn phosphorylates and activates the p42 ERK1 and the closely related p44
ERK2 MAPKs. Active ERK is then released from MEK to dimerize and translocate into the
nucleus [110-112,115]. The 1,25(OH)2D3-stimulated p42 ERK MAPK pathway activates the
C/EBP family of transcription factors, which play an important role in driving monocytic
differentiation [19].

In serum-starved HL60 and NB4 cells, 1,25(OH)2D3-stimulates an increase in p42 ERK
activity (as assessed by its phosphorylation status) which starts within minutes and lasts less
than an hour (Figure 2) [21,116-118]. This rapid time frame remains to be demonstrated in
non-starved cells. Under both conditions, there is a more persistent delayed increase, lasting
between 24-48 hours, and then ERK activity gradually fades [21,23]. A kinetically similar
increase in Raf-1 activity is observed [23,116]. The initial rise in p42 ERK activation following
1,25(OH)2D3-stimulation of HL60 cells was blocked by pharmacological antagonists of VDR,
but not by RXR antagonists [15]. Inhibitors of PKCα, Src tyrosine kinase and Ras-Raf-1
interactions blocked 1,25(OH)2D3-induced activation of the p42 ERK MAPK [21,117,118].
Thus, components of the canonical pathway appear to mediate 1,25(OH)2D3 activation of p42
ERKs. Inhibitor studies suggest that activation of p42 ERK MAPK signaling cascade is
essential to 1,25(OH)2D3-stimulated monocytic differentiation of myeloid cells (Figures 2 and
3). However, the specificity of many of the small molecule inhibitors used in the above studies
has been questioned, especially when compounds are used at high concentrations [119-122].
Therefore, it seems desirable that the conclusions based on pharmacological inhibition alone
be reinforced by the use of more specific genetic or molecular biological approaches.

Raf-1 and its binding partners play roles in 1,25(OH)2D3-stimulated monocytic differentiation.
Compounds that prevent the recruitment of Ras and Raf-1 to the plasma membrane, or block
the physical association of Ras with Raf-1, block 1,25(OH)2D3-mediated monocytic
differentiation [21]. Similarly, transfection of myeloid leukemic cell lines with antisense Raf-1
or short interfering mRNAs (siRNA) against Raf-1 reduced 1,25(OH)2D3-stimulated
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monocytic differentiation [23,123]. In contrast, sensitivity of myeloid cell lines to 1,25
(OH)2D3-induced monocytic differentiation was enhanced by over-expression of Raf-1 [23],
by direct small molecule Raf-1 activators [21] or indirect Raf-1 activation [124].

The transcription factor C/EBPβ, and its association with the retinoblastoma protein (Rb), are
essential for 1,25(OH)2D3 stimulated monocytic differentiation. Up-regulation of C/EBPβ and
retinoblastoma protein (Rb) expression in response to 1,25(OH)2D3 stimulation appears to be
mediated by activation of the Raf-1/MEK/ERK MAPK signaling cascade [123]. Genetic
knockdown of the Raf-1 prevents the 1,25(OH)2D3-induced up-regulation in C/EBPβ of Rb
expression, and abolished C/EBPβ binding to Rb [123].

Raf-1 appears to have an additional signaling role during terminal monocytic differentiation
of HL60 cells. This is mediated via Raf-1 activation of p90 ribosomal S6 kinase (p90 RSK),
and independent of p42 ERK activation. During the later stages of 1,25(OH)2D3-stimulated
HL60 differentiation, p90 RSK is still active when MEK and ERK activation has returned to
basal levels [23]. Late p90 RSK activity was not reduced by inhibition of MEK or ERK, but
was abrogated by Raf-1 inhibition. Interestingly, p90 RSK plays a role in activating C/EBPβ
in many cell systems [125,126], and this could be important to monocytic differentiation.

There also seems to be a novel regulatory link between the PI3K-Akt signaling pathway and
the p42 ERK pathway. As described above, 1,25(OH)2D3 stimulates an initial increase in Akt
activity lasting for ~48-72 hours which then fall away as the cells enter growth arrest and
terminal differentiation. Activated Akt can bind to and inactivate Raf-1 signaling [Figure 3].
Wang et al [123] have reported that over-expression of Akt inhibited p42 MAPK signaling,
down-regulated p21CIP-1/waf-1 and p27KIP-1 and blunted differentiation in response to 1,25
(OH)2D3, while knockdown of Akt (by RNA interference) gave reverse effects. Therefore, the
loss of Akt activity seen prior to 1,25(OH)2D3-induced growth arrest of myeloid cells seems
to remove a functional brake on the p42 ERK signaling pathway. Wang et al [123] propose
that as Akt activity wanes Raf-1 is released from the inhibitory Akt-Raf-1 complex, leaving it
free to activate MEK and p42 ERK. It was also suggested that an indirect activation of p42
ERK is an absolute requirement for the 1,25(OH)2D3-mediated expression of p21CIP-1/waf-1

and p27KIP-1 in myeloid cells, and hence for growth arrest and terminal differentiation [123].

Several scaffolding proteins that modulate Raf-1 function are direct 1,25(OH)2D3 targets in
myeloid cells. For example, transcription of the genes encoding the scaffolding protein kinase
suppressor of ras-1 (KSR-1) and KSR-2 are directly increased by ligated VDR [127,128]. Both
KSR-1 and KSR-2 can associate with and phosphorylate Raf-1 in a stimulus-dependent manner
in several model systems, and can act as scaffolds to facilitate the assembly at the cell membrane
of Raf-1 protein and its downstream targets [129,130]. However, the scaffold function of
KSR-2, though likely on structural grounds, has not been formally demonstrated. Scaffolding
protein, such as KSR1 can play an important part in regulating the intensity, duration and
specificity of signaling pathways. Importantly, the relative stoichiometry of a scaffold protein
and its binding partners are important to signaling, since as the level of expression of the
scaffolding protein and Raf-1 approach parity, an optimal differentiation inducing signal is
generated [112]. Conversely, an excess of a scaffold protein actually inhibits downstream
signaling by titrating the client proteins, binding them individually rather than to the same
scaffold molecule at the same time [130-132].

Manipulating KSR-1 and KSR-2 expression can influence the sensitivity of myeloid leukemic
cell lines to differentiating stimuli (Figures 2, 3). Anti-sense knockdown of KSR-1 reduced
monocytic differentiation induced by low concentrations of 1,25(OH)2D3. At low 1,25
(OH)2D3 concentrations, p42 ERK MAPK and p90 RSK activation was also diminished
following KSR-1 knockdown [133]. Ectopic expression of a KSR-1 construct amplified the
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monocytic differentiation-inducing signals at low 1,25(OH)2D3 concentrations [133], while
siRNA knockdown of KSR-2 reduced the proportion of highly differentiated monocyte-like
cells in HL60 cultures treated with 1,25(OH)2D3 [128]. Knockdown of KSR-2 has also revealed
a role in increased cell survival indicating that optimal differentiation to monocytes requires
enhanced anti-apoptotic (including Bcl-2/Bax- and Bcl-2/Bad-mediated) events [128].

5.2. Inhibiting p38 MAP kinase signaling potentiates 1,25(OH)2D3-mediated monocytic
differentiation

The p38 MAPK family is made up of four members: p38α, p38β, p38γ and p38δ [134,135].
These proteins are encoded by separate genes and are approximately 60% identical at the amino
acid level. All four members of the p38 family are thought to be expressed in myeloid cells or
their precursors, with p38α being the most abundant and p38β, p38γ and p38δ expressed to a
lesser extent [136,137, Studzinski, unpublished observations]. It is thought that each of the p38
isoforms may play important roles in regulating several aspects of myeloid cell proliferation
and differentiation although, the exact function of each of the p38 isoforms is still unclear.
Multiple stimuli activate the members of the p38 MAPK family by phosphorylation mediated
by the following kinase cascade:- the MAPK kinases MKK 3 and MKK6 are the primary
upstream activators of p38 MAPK, although MKK4 has also been shown to activate p38 MAPK
in some cell types [134,135]. A variety of upstream MAPK Kinase Kinases (MAP3Ks),
including Tpl2/cot-1, are known to phosphorylate and activate specific MKKs in different cell
types [134,135,138]. p38 MAPK can also be activated by autophosphorylation [134,135].

One study has suggested that lower than normal levels of phosphorylated p38 (an indirect
measurement of its activation status) can be observed in hematopoietic progenitors found in
bone marrow core biopsy samples from patients with myeloproliferative disorders and this has
been suggested to be involved the increased proliferation seen in these cells [139]. In contrast,
p38 MAP kinase activity appears to be constitutively activated in myeloid cells from patients
with myelodysplastic syndromes (MDS) [139,140]. This has been correlated with incomplete
differentiation and enhanced apoptosis of MDS hematopoietic progenitors [139,140]. In
keeping, pharmacologic inhibitors of p38α/β decrease apoptosis in MDS CD34+ve progenitors
and which leads to dose-dependent increases in myeloid colony formation. Similarly, siRNA
knockdown of p38 leads to enhancement of hematopoiesis in MDS progenitors grown ex
vivo [139-142].

The effect of 1,25(OH)2D3 on p38 MAPK activity in myeloid cells is quite complex. In HL60
cells 1,25(OH)2D3 caused a fairly rapid and long lasting (~ 24 hours) activation of p38 [18],
followed by a fairly rapid return to basal level [18]. However, the degree of monocytic
differentiation induced by low doses of 1,25(OH)2D3 in myeloid leukemic cells is enhanced
by specific inhibition of p38α and β [143-145]. Similarly, treatment of freshly isolated human
monocytes with ouabain, which increases p38 activity, was associated with loss of expression
of CD14 [146]. Inhibition of p38 MAPK activity was associated with an increase in the activity
of the p42 ERK and particularly the JNK MAPK signaling pathways in myeloid cells
[143-145] and hepatocytes [147]. Hence, there appears to be either negative cross-talk or a
negative feedback loop between the MAPK signaling cascades.

5.3 The role of the c-Jun N-terminal kinases (JNKs) family of MAP kinases in 1,25(OH)2D3-
driven monocytic differentiation of myeloid cells

Three classes of the c-jun N-terminal kinase family (JNK) of MAP kinases are encoded by
jnk1, jnk2, jnk3 genes, and 10 separate JNK isoforms result from alternative splicing of these
gene transcripts [148-150]. HL60-40AF cells express both JNK1 and JNK2 [151], whilst in
THP-1 myeloid leukemic cells JNK1β1, JNK2α1, and JNK2α2 are found [152]. Recent
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evidence suggests that JNK1 and JNK2 may have mutually antagonistic roles in the regulation
of monocytic differentiation [151].

1,25(OH)2D3 stimulation of myeloid cells is associated with a fairly rapid but persistent
increase in JNK phosphorylation and activity [18,153]. Pharmacological inhibition of JNK
abrogated 1,25(OH)2D3-mediated monocytic differentiation [153]. Translocation of JNK to
the nucleus is essential to 1,25(OH)2D3-mediated monocytic differentiation [151]. Further
insight to the importance of JNK to monocytic differentiation came from studies using the
HL60-40AF cell line, which is resistant to the differentiating effect of 1,25(OH)2D3 [42,154].
In this cell line, 1,25(OH)2D3 failed to stimulate JNK activity. Resistance of HL60-40AF cells
to 1,25(OH)2D3 was reversed by co-treatment with 1,25(OH)2D3, carnosic acid (a plant derived
antioxidant), and the p38 MAPK inhibitor SB203,580 (DCS cocktail) [42,145,151] which
increased total JNK activity [155]. The central role of JNKs was reinforced by the observation
that the degree of 1,25(OH)2D3-mediated differentiation and JNK activity in HL60
myeloblastic cells were augmented in parallel following co-stimulation with ceramide
derivatives [86].

It is now clear that the interplay between JNK1 and JNK2 is important to resistance of
HL60-40AF cells to 1,25(OH)2D3 [151]. In unstimulated HL60-40AF cells the basal level of
JNK2 activity was found to be much higher than the basal activity of JNK1. In control HL60
cells the reverse was true and phosphorylated JNK1 (p-JNK) translocated to and accumulated
in the nucleus within a few hours of stimulation with 1,25(OH)2D3, while in HL60-40AF cells,
expression of p-JNK1 was restricted to the cytosol. Hence, exclusion of p-JNK1 from the
nucleus may be restraining differentiation in HL60-40AF cells. Consistent with this notion, in
HL60-40AF cells the DCS cocktail partially restored the appearance of phosphorylated p-JNK1
in the nucleus, and of phosphorylated c-Jun (a marker of JNK1 activation). This indicated that
an imbalance in nuclear JNK2 and JNK1 signaling restrains monocytic differentiation. When
siRNA was used to knock-down JNK1 in HL60-40AF cells, the ability of the DCS cocktail to
induce differentiation was reduced and this was associated with reduced activation of the c-
Jun/AP-1 transcription factor complex. On the other hand, knock-down of JNK2 amplified the
effectiveness of the DCS cocktail as revealed by up-regulation of activated JNK1 and increased
activities of the JNK-regulated transcription factors which are essential for monocytic
differentiation (e.g c-Jun, ATF2 and Jun B as well as C/EBPβ)[151]. These results show that
JNK2 signaling is restraining JNK1’s activity in driving 1,25(OH)2D3-stimulated monocytic
differentiation.

6. Role of microRNA in 1,25(OH)2D3-stimulated monocytic differentiation
MicroRNAs are small, noncoding and highly conserved RNA molecules that regulate
expression of genes post-transcriptionally by binding to the 3′-UTR regions of the mRNAs
[156,157]. Many studies have demonstrated the importance of individual microRNAs to
diverse physiological processes, including hematopoietic cell development [158-161]. Several
microRNAs are widely expressed in hematopoietic cells, and their altered expression (e.g. by
chromosomal translocations) has been correlated with leukemia [162,163].

MicroRNAs are down-regulated, in a dose- and time-dependent manner, during 1,25
(OH)2D3-stimulated monocytic differentiation of HL60 and U937 cells (Figure 3) [164]. The
microRNAs down-regulated are members of the miR-181 family; the one most markedly down-
regulated was miR-181a. In silico studies have revealed miR-181a binding sites in human and
mouse p27Kip1 3′-UTRs. In myeloid leukemia cells treated with 1,25(OH)2D3, miR-181a
contributes to the control of G1 to S phase transition by modulating expression of the cell cycle
regulator p27Kip1. MiR-181a also inhibits 1,25(OH)2D3-induced expression of CD14 and
markedly reduces G1 arrest of the cells. In proliferating HL60 cells, there is a high level of
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expression of miR-181a and the levels of p27Kip1 mRNA and protein are low and insufficient
to inhibit Cdk4/6 activity and trigger cell cycle arrest. 1,25(OH)2D3 down-regulates the level
of miR-181a, resulting in an increase first in the level of p27Kip1 mRNA, and then protein,
leading to G1 block [164]. Similarly, down regulation of miR-181a and a concomitant rise in
the level of expression of p27kip1 mRNA prior to G1 arrest has been associated with TPA-
induced monocytic differentiation of HL60 cells [165]. It is tempting to speculate that down-
regulation of miR-181b during ATRA-induced granulocytic differentiation of APL cells might
also relate to cell cycle control [166]. These studies are consistent with the report that levels
of expression of miRNA-181a are higher in poorly differentiated AML blasts (M1 and M2
subtypes) than in subtypes M4 and M5, which show partial monocytic differentiation [167].
Together, the above studies [166-167] support the hypothesis that a high constitutive level of
expression of miR-181 family members may contribute to the malignant transformation of
myeloid cells.

7. Strategies for improving the clinical utility of 1,25(OH)2D3

Animal studies have shown that 1,25(OH)2D3 significantly prolongs the survival of mice
transplanted with leukemic cells by promoting cell differentiation [168,169]. However, oral
administration of supra-physiological doses of 1,25(OH)2D3 to MDS patients has only
produced modest increases in neutrophil and platelet counts in a small minority of patients
treated [170-174]. There were no significant increases in patient survival. Moreover, a
significant proportion of AMLs are either refractory, or rapidly acquire resistance, to 1,25
(OH)2D3-mediated differentiation. The clinical utility of 1,25-(OH)2D3 in these patients has
also been compromised by the severe toxicity of therapeutic doses of 1,25(OH)2D3, primarily
by potentially fatal drug-induced hypercalcemia [175].

Attempts to resolve the hypercalcemia problem have focused on the generation 1,25
(OH)2D3 analogs (‘deltanoids’), with reduced calcemic activity whilst retaining the ability to
induce growth arrest and differentiation. Hundreds of such compounds have been developed
[176] ; some of them are used in the treatment of psoriasis [177], but their usefulness in treating
MDS and AML has yet to be demonstrated. For example, the non-calcemic deltanoid 1α-
hydroxyvitamin D3 (1α(OH)D3) was more effective than 1,25(OH)2D3 in in vitro studies
[168], but no clear beneficial effect was seen in MDS patients treated with the compound
[170,172]. Similarly, 19-Nor-1,25(OH)2D2 (Paricalcitol, Zemplar) is a potent inducer of
monocytic differentiation in myeloid leukemic cell lines in vitro [178], but real clinical benefit
in MDS patients has not been observed [179]. Other low calcemic analogs which deserve
further attention include 1,25-dihydroxy-16-ene-5,6-trans-cholecalciferol (Ro25-4020), which
significantly prolonged the survival time of mice inoculated with the myeloid leukemic cell
line WEHI 3BD+ at concentrations that did not affect calcium levels [180]. To date, the anti-
leukemic effects of this compound have not been evaluated in humans [180]. The Gemini
family of non-calcemic vitamin D analogs [181] are also worthy of examination in patients.
These compounds are considerable more potent than 1,25(OH)2D3 at driving growth arrest and
monocytic differentiation of a variety of myeloid leukemic cell lines in vitro [182]. One of the
family members, 1,25-dihydroxy-21(3-hydroxy-3-methyl-butyl)-19-nor-cholecalciferol (19-
nor-Gemini; Ro27-5646), has shown some promise in a mouse model of myeloid leukemia at
non-toxic doses [183]. However, the effects of the Gemini family of compounds have not been
evaluated in human subjects.

An important issue as to the failure of early clinical trials of 1,25(OH)2D3 for treatment of
MDS and AML is the heterogeneous nature of these diseases. It has recently become
appreciated that a detailed understanding of a patient’s cytogenetic and ‘genomic’ background
has contributed to the introduction of more effective ‘patient-specific’ chemotherapeutic
regimes [184], therefore it is likely that similar considerations will help identify subgroups of
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patients who will respond favourably to differentiation therapies from those that will not
[184]. A new WHO classification of AML identifies four main groups: AML with recurrent
genetic abnormalities, AML with MDS-related changes, therapy-related myeloid neoplasms,
and AML not otherwise specified [185]. The first group contains diseases that are different as
to genetic background, prognosis and treatment. For example, APL patients with specific
chromosomal translocation t(15;17)(q22;q12), which generates the PML-RARα fusion
protein, are unresponsive to the differentiating effect of ‘physiological’ doses ATRA but the
blockage in differentiation can be overcome by supra-physiological amounts of ATRA,
especially if combined with arsenic trioxide. ATRA treatment of APL patients significantly
improved clinical outcomes [186,187]. Similarly, 5-10% of paediatric patients with leukaemia
have chromosomal translocations involving 11q23 breakage. This is prevalent in patients with
acute lymphoblastic leukaemia (ALL), acute myelogenous leukaemia (AML) of the M4 and
M5 types according to the French-American-British (FAB) classification and mixed lineage
leukaemia (MLL), and is usually associated with a poor clinical outcome. A panel of cell lines
with translocations involving 11q23 has been established, each of which exhibit a differing
sensitivity to ATRA- or 1,25(OH)2D3-induced differentiation [188]. Those cell lines in which
expression of the cyclin-dependent kinase 4 and 6 (CDK4 and CDK6) inhibitor p16 is
compromised by the presence of 11q23 translocations failed to respond to either ATRA or 1,25
(OH)2D3, whereas those cell lines that express p16 responded to both ATRA and 1,25
(OH)2D3 [188]. It is, therefore, possible that differentiation therapy using 1,25(OH)2D3 or
other deltanoids might be limited to a specific sub-type(s) of AML. In vitro studies are
underway to identify whether AML subtypes can be further classified by their sensitivity or
resistance to 1,25(OH)2D3-driven differentiation. Therefore, perhaps only those patients who
carry favourable mutations or cytogenetic abnormalities should be included in clinical trials
of deltanoids.

Differentiation therapy strategies can be devised from our understanding of 1,25(OH)2D3-
driven signaling pathways. Toxicity can be avoided by combining relatively low doses of
deltanoids which have low calcemia-inducing activity with signal transduction pathway
enhancers. For example, 1,25(OH)2D3-induced monocytic differentiation of HL60 cells in
vitro may be enhanced by co-treatment with ascorbic acid and vitamin E [189] by a mechanism
that is believed to involve pertubations in arachidonic acid metabolism and cyclic AMP
generation [79]. Other antioxidants such as carnosic acid, curcumin, ebselen and silibinin are
also effective in potentiating monocytic differentiation of cells treated with low concentrations
of 1,25(OH)2D3 in vitro [145]. Recently, it was reported that in a mouse model of AML, Balb/
c mice inoculated with murine WEHI-3B D leukemia cells, treatment of the mice with a low
calcemic deltanoid (19-nor-Gemini) and carnosic acid markedly extended the life span of
leukemia-bearing mice [183]. The myelodysplastic disease was reverted to normal and there
was no significant liver toxicity or hypercalcemia. Hence, a combination of an antioxidant and
a deltanoid may be useful in the treatment of AML. As described above, inhibition of p38
MAPKα/β markedly enhances monocytic differentiation of HL60 cells treated with a low dose
of 1,25(OH)2D3. A combination of carnosic acid and an inhibitor of p38MAPKα/β is extremely
effective at increasing the sensitivity of HL60 cells to 1,25(OH)2D3-stimulated differentiation
in vitro and ex vivo [42,145]. It would be interesting to examine whether a further increase in
survival can be obtained in the Balb/c model by adding a p38 inhibitor to the cocktail. Inhibitors
of p38 kinase are very promising agents for combination therapy, since several of them are
now in pre-clinical and clinical trials to treat inflammatory diseases [190,191]. Such studies
will establish doses that are safe to use in the clinic. However, it seems likely that the role of
different isoforms of p38MAPK will have to be separately delineated. Thus, signaling of
differentiation by 1,25(OH)2D3 remains a fertile field for further pre-clinical investigations.
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Figure 1. Activities of lipid signalling pathways during 1,25(OH)2D3-driven monocytic
differentiation
1,25(OH)2D3 crosses the cell membrane and binds to VDR in the cytosol. Ligated VDR
translocates to the cell nucleus and, as a heterodimer with RXR, activates transcription of 1,25
(OH)2D3-regulated genes. In addition, 1,25(OH)2D3, through an unknown mechanism, slowly
activates and induces nuclear translocation of PLC isoforms. This leads to production of DAG
and InsP3 and to an increase in intracellular Ca2+. Another source of DAG is provided by
activated PLD, followed by the action of phosphatidate phosphohydrolase (PA-OH-ase).
Increased levels of DAG and Ca2+ cause activation of PKCα and β, which is indispensable for
cell differentiation. Activation of PLA2 causes production of prostaglandins and leukotrienes,
which, through unknown mechanisms, influence monocytic cell differentiation. For references
see text. Signal transduction downstream to Raf-1 will be discussed in next figures.
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Figure 2. Reported signal transducers at early (0-24h) stages of 1,25(OH)2D3-induced monocytic
differentiation
1,25(OH)2D3, through an unknown mechanism, induces rapid activation of various MAPKs
which leads to an increase in AP-1 activity. Ras-Raf-ERK activation is additionally modulated
by KSR-1, which is up-regulated by 1,25(OH)2D3. Activation of ERK1/2 and JNK1 positively
regulates cell differentiation, while p38 MAPK α/β and JNK2 have a negative influence. There
is also a potential negative feedback mechanism between p38 MAPK and ERK MAPK signal
transduction pathways, as ERK activities increase when p38 α/β is inhibited.
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Figure 3. Examples of known signal transducers at late (24-48h) stages of 1,25(OH)2D3-induced
monocytic differentiation
At later stages of 1,25(OH)2D3-induced monocytic differentiation there is increased expression
of the transcription factor C/EBPβ. C/EBPβ is then phosphorylated and translocates to the cell
nucleus, where it regulates many differentiation-related genes. Activation of the Ras-Raf-
ERK1 signal transduction pathway may contribute to increases in the cyclic dependent kinase
inhibitors p21CIP-1/waf-1 and p27KIP-1, which causes cell cycle arrest. Activated Akt (pAkt)
may inhibit the activation of ERK by binding to Raf. Increases in the cyclic dependent kinase
inhibitors appear to be reversed by high levels of either miR-181a.
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