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ABSTRACT

DNA stretching in the nucleosome core can cause
dramatic structural distortions, which may influence
compaction and factor recognition in chromatin.
We find that the base pair unstacking arising from
stretching-induced extreme minor groove kinking
near the nucleosome centre creates a hot spot for
intercalation and alkylation by a novel anticancer
compound. This may have far reaching implications
for how chromatin structure can influence binding of
intercalator species and indicates potential for the
development of site selective DNA-binding agents
that target unique conformational features of the
nucleosome.

INTRODUCTION

DNA structure in the nucleosome displays sequence- and
context-dependent features, which could be potentially
exploited for gene-specific drug targeting (1–3). DNA
stretching in the nucleosome entails increased twist and
unstacking of bases, resulting in a shift in histone–DNA
register by displacement of a single base pair (Figure 1; 2).
From crystal structure analysis and solution studies of
different nucleosome core particle (NCP) constructs,
there are four known sites of potential stretching at
around 2 and 5 double helical turns from the nucleosome
centre (dyad; 1,2,4–7). Comparison of average double
helix twist values from crystal structures with those
observed for NCP isolated from cellular chromatin (8)
suggests that stretching has an average incidence of
once or twice per nucleosome in vivo (1,2). Although its
functional consequences in the genome are not fully
understood, stretching can be associated with extreme
DNA kinking at a site 1.5 turns from the nucleosome
centre (2), which is a principal location for gene insertion

by HIV-integrase that prefers highly distorted substrates
(9,10). Moreover, by providing variability in DNA twist
and length relationships, stretching may serve as a buffer
against linker DNA constraints between nucleosomes to
facilitate chromatin compaction (1,11).
Since the binding of even simple metal hydrates can be

affected by single base pair changes of DNA orientation
in the nucleosome core (12), factors which are able to
stabilize or alter stretching could influence molecular rec-
ognition potential by modulating structure and dynamics.
Such has been observed previously in the binding of
polyamide minor groove ligands, which are capable of
changing stretching location and thus histone–DNA
register (13,14). Considering that stretching can also be
associated with extreme DNA kinking in the nucleosome
core (2), we investigated how it may influence reaction
with a novel DNA-binding therapeutic candidate.
N-(2,3-epoxypropyl)-1,8-naphthalimide (ENA) was
recently discovered as a strong anti-proliferative agent,
which displays potent anti-tumour and anti-fungal
activity by inducing S phase arrest in the cell cycle (15).

MATERIALS AND METHODS

Material preparation

NCP was prepared from recombinant Xenopus laevis
histones and 145, 146 or 147 base pair DNA fragments
derived from human a-satellite DNA (2,4,5), using estab-
lished methodologies (16). Crystals were grown as
described previously (5). To screen for conditions
allowing structural characterization of an ENA–NCP
complex, NCP145 crystals were incubated for various
durations in a stabilization buffer with a range of ENA
concentrations. Results reported correspond to crystals
soaked in buffer containing 37mM MnCl2, 40mM KCl,
20mM K-Cacodylate (pH 6.0), 24% 2-methyl-2,4-
pentanediol, 2% trehalose, 133 mM or 1mM ENA and
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2.7% or 10% dimethyl sulfoxide, respectively. ENA was
allowed to react for 3–4 days prior to X-ray data
collection.

Structural analysis

X-ray diffraction data for ENA-treated NCP (Table 1)
were recorded as described previously (2) at the X06SA
beam line of the Swiss Light Source (Paul Scherrer
Institute, Villigen, Switzerland) using the PILATUS
detector (NCP+1mM, �=1.07 Å) and on a Rigaku
MicroMax-007HF diffractometer with a Rigaku

Raxis IV++ image plate (NCP+0.1mM, �=1.54 Å;
Nanyang Technological University, Singapore). Data
were processed using MOSFLM (17) and SCALA from
the CCP4 suite (18). The initial model for solution of
the ENA-NCP145 complex by molecular replacement
consisted of the DNA, histones, and one Mn2+ ion at
the major interparticle interface from the structure of
native NCP145 (pdb code 2NZD; 2). Structural refinement
and model building were carried out with routines
from the CCP4 suite (18). Graphic figures were prepared
with PyMOL (DeLano Scientific LLC, San Carlos, CA,
USA). Atomic coordinates and diffraction data have been

Figure 1. DNA wrapping and stretching in the nucleosome core (2). (A) View of the NCP147 crystal structure (1,5) down the DNA superhelix axis
showing the major groove-inward (grey DNA bases) and minor groove-inward (white DNA bases) facing regions for approximately one-half of the
particle. Numbers correspond to double-helical turns from the nucleosome centre (0), which coincides with the central base pair at the particle
pseudo dyad axis where the major groove directly faces the histone octamer. Long magenta arrows indicate potential regions of DNA stretching
around the 2-turn and 5-turn locations. Small arrows correspond to base pairs ±3 that are absent in NCP145 (2). The phosphodiester backbone of
the DNA strands appears as cyan and orange. Histone proteins are colored blue for H3, green for H4, gold for H2A, and red for H2B.
(B) Comparison of DNA sequence and histone–DNA register in NCP crystal structures described in the main text. NCP145, NCP146, NCP147
and NCP146b are particles with Xenopus laevis histones (1,2,4,5), whereas hNCP146 corresponds to a particle with the same DNA sequence as
NCP146, but with histones from Homo sapiens (7) (altered crystal packing interactions between particles in the crystal apparently underlie the
differences in stretching between NCP146 and hNCP146; 2). Minor groove-inward facing regions are highlighted in orange, and the base numbering
scheme (b), relative to NCP147, corresponds to the 50 (�) to 30 (+) direction of either DNA strand in the duplex (only one strand is shown for each
construct; SHL=superhelix location, turns from center). Observed regions of stretching are underlined in magenta, and a gap in the DNA sequence
represents the resulting shift in histone-base pair register. Asterisks denote the extreme kinks into the major groove at the 1-turn location and into the
minor groove at the 1.5-turn position associated with stretching in NCP145.
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deposited in the RCSB Protein Data Bank under accession
code 3KUY.

Crystals of ENA were obtained by slow evaporation
from a saturated acetone solution. Single crystal
(0.18� 0.18� 0.13mm) diffraction data were recorded at
�163�C with a Rigaku Saturn CCD area detector
diffractometer using graphite monochromated Mo-Ka
radiation (�=0.71 Å). Data were collected and processed
using CrystalClear (Rigaku/MSC), and the structure was
solved by direct methods (SHELX97, 19) and expanded
using the Fourier technique (DIRDIF-99, 20). All

calculations were carried out using the CrystalStructure
crystallographic software package (Rigaku/MSC), and
the crystal structure image was generated with Mercury
(Cambridge Crystallographic Data Centre). Crystal
data for ENA: space group P21/c (#14), a=7.750(4) Å,
b=12.748(6) Å, c=11.584(8) Å, �=95.65(3)�,
V=1138.9(12) Å3, Z=4, Dc=1.477 g/cm3, 6353 reflec-
tions collected, 2980 independent reflections, R1=0.0714,
wR2(I> 2s(I))=0.0655. Atomic coordinates have been
deposited in the Cambridge Crystallographic Data
Centre under deposition code CCDC 756223.

Figure 2. X-ray crystallographic analysis of ENA and NCP crystals treated with ENA. (A) Crystal structure of ENA with thermal ellipsoids shown
at 50% probability for non-hydrogen atoms (carbon, green; oxygen, red; nitrogen, blue; hydrogen, grey). (B and C) Crystal structure of an
ENA-NCP145 complex (yellow carbon atoms, NCP; green carbon atoms, ENA) with an omit difference electron density map (B) or the native
NCP145 crystal structure (grey atoms; C) superimposed. The image pairs correspond to pseudo-symmetry-related sites in the two particle halves,
which display either a minor groove kink at the 1.5-turn GG dinucleotide (base �15 and �14; upper panels) or a major groove kink at the 1-turn CA
dinucleotide (base 10 and 11; lower panels) in the native NCP145 structure (Figure 1). The Fo–Fc electron density map, contoured at 2.5s, was
calculated from an initial model prior to inclusion of ENA (B). Arrows designate the apparent primary site of attack by the ENA epoxy group
(B) and conformational rearrangements accompanying binding of ENA (C).
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DNA footprinting

ENA, from a stock solution of 4mM in 100% dimethyl
sulfoxide, was added to 2.5 mMDNA or NCP in TE buffer
[10mM Tris (pH 7.4) and 0.1mM EDTA] at molar
stoichiometry given in Figure 3. Samples were allowed
to incubate overnight at room temperature prior to the
addition of 4M NaCl and phenol–chloroform extraction
to remove unreacted ENA and histone proteins. DNA was
subsequently ethanol precipitated, resuspended in TE
buffer and 50 end-labeled (32P) with polynucleotide
kinase. Thermal depurination and strand cleavage
reactions were effected by 30-min incubation at 99�C,
followed by an additional 30-min incubation with 10%
piperidine (21). Maxam–Gilbert purine sequencing stan-
dards (22) were prepared as markers. DNA fragments
were resolved by denaturing PAGE (10% polyacrylamide,
8M urea, 88mM Tris–borate, 2mM EDTA, pH 8.3),
followed by phosphorimage (BioRad) analysis of the
dried gel.

RESULTS

ENA site selectivity

Crystal structure determination of ENA reveals that the
chiral epoxy carbon is in the R configuration (Figure 2A).
The planar naphthalimide group intercalates between
DNA base pairs, placing the epoxy group in a position
to potentially undergo electrophilic attack at base
substituents on the major groove side (Figure 2B and C,

Table 1 and Supplementary Figure S1). For investigating
the reactivity and site selectivity of ENA, we utilized
a footprinting method, which functions for DNA-
alkylating agents that yield base modifications rendering
the phosphodiester backbone susceptible to thermally
induced cleavage. We find that ENA is indeed an
alkylating agent, reacting exclusively with guanine bases
(Figure 3). For naked DNA, reaction is apparent at all
guanine sites, with a modest degree of preference for
certain sequence motifs.

In order to elucidate potential influences on ENA
reactivity from histone association, we conducted foot-
printing analysis with four different NCP constructs,
which have displayed differing incidences of DNA
stretching (Figures 1, 3 and 4; 2,4–7). Nucleosome
packaging reduces the overall DNA reactivity towards
ENA by roughly 10-fold relative to the naked state, con-
sistent with histone-imposed restraints on DNA
distortability, which would tend to oppose intercalation
(3,23,24). In addition, the general reactivity of guanine
sites is maximal at the nucleosome termini, decreasing
inward towards the centre. This is in accordance with
the profiles of differential inaccessibility and histone–
DNA interaction strength, which become greatest at
the nucleosome centre (5,25–28). In stark contrast to
these general trends, the most preferred site of alkylation
in a 145 base pair core particle (NCP145) is located
1.5 turns from the centre. Reaction at this minor groove
inward-facing AAGGC element is strongly selective for
the 50 guanine (base �15; Figure 3).

Modulation of ENA association by DNA stretching

The crystal structure of NCP145 displays two incidences
of stretching around the 2-turn locations in both pseudo
symmetry-related halves of the particle (Figures 1 and 2C;
2). In one half, stretching is accompanied by a massive,
�55� kink into the minor groove at the 1.5-turn GG=CC
dinucleotide. This pronounced base pair unstacking
underlies the translational component of the stretch,
which in the opposing half of NCP145 instead coincides
with a 35� kink into the major groove at the 1-turn
CA=TG dinucleotide. Although heavy derivatization
of NCP145 crystals with ENA gives rise to uninterpretable
X-ray diffraction electron density apparently from DNA
disordering (Table 1), data collected from milder treat-
ment reveals intercalation of the naphthalimide group
exclusively within the 1.5-turn GG dinucleotide sites in
either half of the particle (Figure 2B and C). The crystal
seems to contain a mixture of pre- and post-reaction
states, with the epoxy group situated on the major
groove side of the 50 guanine within 3–4 Å of the N7
ring nitrogen atom—the apparent site of alkylation.
This is consistent with the footprinting results showing
absolute selectivity for guanine and preferential alkylation
at the 50 guanine of the 1.5-turn GG element (Figure 3).
Moreover, in the one half with the preexisting kink at GG,
intercalation results in relatively minor structural
rearrangements stemming largely from realignment of
the 50 guanine to stack in a coplanar fashion with the
naphthalimide group (Figure 2C, upper panel). In the

Table 1. Data collection and refinement statistics for ENA-treated

NCP

NCP+0.1mM ENA NCP+1mM ENA

Data collectiona

Space group P212121 P212121
Cell dimensions
a, b, c (Å) 106.2, 109.6, 182.4 104.1,107.3,176.4
a, �, � (�) 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 2.90–54.8 (2.90–3.06) 2.85–51.4 (2.85–3.00)
Rmerge 6.8% (48.3%) 10.5% (47.4%)
I/sI 22.6 (2.9) 16.7 (2.3)
Completeness (%) 99.9 (99.2) 98.1 (97.3)
Redundancy 7.4 (5.3) 5.6 (5.4)

Refinement

Resolution (Å) 2.90–54.8 2.85–51.4
No. reflections 46 854 44 886
Rwork/Rfree 23.8%/28.6% 41.6%/49.5%
No. atoms 12 056 12 018
Protein 6078 6078
DNA 5939 5939
ENA 38 0

B-factors (Å2) 76.1 66.4
Protein 49.4 44.8
DNA 103.4 88.6
ENA 135.6 �

R.m.s. deviations
Bond lengths (Å) 0.008 0.013
Bond angles (�) 1.39 1.88

aData sets are based on single crystal diffraction, and values in
parentheses are for the highest-resolution shell.
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other particle half, there is a substantial rearrangement
from intercalation, wherein the 1-turn CA kink is
replaced by kinking/unstacking at the 1.5-turn GG to
yield a very similar configuration in both halves of the
NCP (Figure 2B and C, lower panel). This emphasizes
the conformational selectivity of ENA intercalation,

which in this instance likely relates to the greater steric
access provided by base pair unstacking at the major
groove side (1.5-turn GG kink) compared to that at the
minor groove edge (1-turn CA kink).
Although the two 1.5-turn sites settle into a very similar

conformation subsequent to ENA binding, differences in

Figure 3. Footprinting analysis of ENA-DNA alkylation sites by thermally induced strand breakage. (A and B) Thermal cleavage reactions were
conducted with DNA samples isolated from naked DNA and NCP, which had been incubated with ENA. The ENA:DNA molar stoichiometry was
2:1 and 20:1 for the naked (D) and nucleosomal (N) samples, respectively (A), and it corresponds to the number shown above the lanes for the naked
(DNA145) and nucleosomal (NCP145) samples (B). Fragments from four different DNA constructs (145, 146, 147 and 146b) together with the
respective Maxam–Gilbert purine sequencing standards (m) were separated by denaturing PAGE, revealing alkylation site preference. Numbers
flanking the gels represent base position with respect to that at the nucleosome centre (0). Grey arrows designate regions of stretching observed in the
nucleosome core (Figure 1).
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the electron density profiles suggest that the site with the
initial 1-turn CA kink, which displays more density near
the �15 guanine N7 atom, may contain a greater fraction
of alkylation product (Figure 2B). This could come about
if there were a strong requirement for conformational

flexibility in the alkylation event, in which case the site
with the preexisting GG kink may readily favor intercala-
tion, but otherwise lack the structural freedom seemingly
inherent in the opposing half. Alternatively, the two halves
may share a similar fraction of alkylation product, but
differ in the portion of bound unreacted ENA. Thus,
whereas the pre-kinked GG site would be predisposed
for the intercalator-bound state, the other location may
require covalent attachment of ENA in order to provide
sufficient stability for sustained intercalation.

Considering both the footprinting and crystallographic
analysis, it is apparent that the base unstacking at
the major groove side promoted by DNA stretching
facilitates intercalation and reaction of ENA. Although
the effect is most prominent in NCP145, some degree of
relative enhancement at the 1.5-turn GG site can also be
seen in NCP146 and NCP147, which are composed
of 146 and 147 base pair sequences nearly identical
to that of NCP145 yet display either a mixture of
stretched-versus-unstretched states or no incidence of
stretching, respectively (Figures 1 and 3A; 2,4–7). Thus,
even in the absence of sustained stretching, DNA at
the 1.5-turn location appears to have special reactivity
attributes as we have previously also observed distinctions
towards platinum drug binding at this site in NCP147
(29). Conversely, the 5-turn region is proximal to the
nucleosome termini and appears to impose fewer
conformational constraints on the DNA (5). It is thus
likely that stretching at this location has distinct struc-
tural–dynamic character relative to the 2-turn position.
Nonetheless, in a 146 base pair particle (NCP146b)
composed of a distinct sequence and displaying stretching
only at the 5-turn location in one half (5), there is some
degree of relative enhancement of ENA reactivity
apparent at a guanine site nearby the region of stretching
observed in the crystal (base �39; Figures 1 and 3A).
In any case, since ENA alkylates only guanine, and we
find conformation-dependent reactivity in NCP145, the
degree of stretching-induced enhancement likely depends
on the precise location of potential guanine sites.

DISCUSSION

DNA packaging into nucleosomes has previously
been shown to allow unrestricted monoalkylation by
certain minor groove-associating compounds (21,30).
In contrast, multifunctional adduct formation or non-
covalent binding, such as intercalation, which necessitate
pronounced conformational change in the DNA are typ-
ically suppressed by the nucleosomal state (3,23,24,30,31).
As an apparent prerequisite for guanine alkylation,
intercalation of ENA is also more favoured overall for
naked DNA, but the hot spot for intercalation and
reaction created by DNA stretching would promote
adduct accumulation near the nucleosome centre.
Moreover, ENA’s cytotoxic activity appears to arise
through inhibition of DNA synthesis by halting fork pro-
gression at or near replication origins (15). Since the
increased twist downstream accompanying unwinding of
the double helix would be expected to favour stretching,

Figure 4. Footprinting analysis of ENA-DNA alkylation sites in the
146b construct by thermally induced strand cleavage. The gel has been
run out to resolve detail at the DNA 30-end. The labeling scheme and
experimental conditions are identical to those for Figure 3A.
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it raises the possibility that this overtwisting ahead of
replication forks further promotes ENA attack at
nucleosomal sites. This is significant since the cellular
response to adducts located on histone-free versus
nucleosomal regions in the genome can be distinct. For
instance, the repair of different types of DNA lesions
has been found to be suppressed by histone octamer
association (32,33), and the inhibitory effect may be
maximal at the most inaccessible sites nearest the
nucleosome centre (3,33).

The acquisition of superior medicinal agents will
ultimately depend on improving site discrimination
attributes. Considering their context-dependent DNA
conformation and histone proximity characteristics,
nucleosomes appear to have a targeting potential greater
than that of naked DNA (3). One example is small
molecule recognition of adjacent DNA duplex sections
within a superhelix, the nucleosomal ‘supergroove’ (34).
The reactivity behaviour observed for ENA suggests
possibilities for exploiting DNA stretching and other
unique—perhaps yet undiscovered—features of the
nucleosome for drug development.
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