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Summary
Public health concerns over the occurrence of birth defects and developmental abnormalities that
may occur as a result of prenatal exposure to drugs, chemicals, and other environmental factors has
led to an increasing number of developmental toxicity studies. Because fetal pups are commonly
evaluated for multiple outcomes, data analysis frequently involves a joint modeling approach. In this
paper, we focus on modelling clustered binary and continuous outcomes in the setting where both
outcomes are potentially observable in all offspring but, due to practical limitations, the continuous
outcome is only observed in a subset of offspring. The subset is not a simple random sample (SRS)
but is selected by the experimenter under a prespecified probability model.

While joint models for binary and continuous outcomes have been developed when both outcomes
are available for every fetus, many existing approaches are not directly applicable when the
continuous outcome is not observed in a SRS. We adapt a likelihood-based approach for jointly
modelling clustered binary and continuous outcomes when the continuous response is missing by
design and missingness depends on the binary trait. The approach takes into account the probability
that a fetus is selected in the subset. Through the use of a partial likelihood, valid estimates can be
obtained by a simple modification to the partial likelihood score. Data involving the herbicide 2,4,5-
T are analyzed. Simulation results confirm the approach.
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1. Introduction
Growing concern over the occurrence of birth defects and developmental abnormalities that
may occur as a result of prenatal exposure to drugs, chemicals and other environmental factors
has led to agencies such as the U.S. Environmental Protection Agency (EPA) and the Food
and Drug Administration (FDA) to place emphasis on setting exposure limits in order to protect
the public from the adverse effects of these substances. Because data on humans are often
unavailable, information from controlled animal experiments accounts for a large proportion
of the data on the effects of toxins.

Fetal toxicity studies often involve exposing a pregnant dam to the study agent at the peak of
fetal organogenesis. Experiments known as segment II studies, intended to evaluate dose
response, follow federal testing guidelines and have been described in detail elsewhere
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(Manson, 1994). Briefly, these experiments typically involve 3–4 dose groups including a
control group, with each dose group containing 20-30 dams. Just prior to normal delivery, the
dams are sacrificed and the uterine contents are examined. Typically, offspring are evaluated
on multiple outcomes which may include a mix of discrete and continuous responses. Outcomes
include prenatal loss (i.e., resorptions and fetal deaths), and among viable offspring, a number
of outcomes including fetal weight, externally visible malformations, and malformations of
internal organs and the skeleton. In addition, as it is well known that offspring from the same
dam tend to respond more similarly than those from different dams, possibly due to genetic
similarity and a shared maternal environment during gestation, clustering within litter is a
common characteristic of data from these experiments. The statistical challenges involved have
been discussed by others (Ryan, 1992; Aerts et al., 2002).

While much is known about a number of toxins, the biological mechanisms involved are usually
not well established. Another area of fetal toxicity studies involves experiments that are
intended to evaluate specific mechanisms of the developmental processes that may be
interrupted by prenatal exposure to a toxin. Often, these studies require detailed assessments
of offspring involving a continuous response, that may reflect minute changes that are not
easily determined by gross examination of the fetus. These studies extensively evaluate a small
number of animals and are often restricted to two groups, exposed and unexposed. For example,
in studies of ocular development, Inagaki & Kotani (2003) reported the rate of microphthalmia
and conducted detailed morphometric evaluation of the embryos of rats exposed to soft X-ray
irradiation. Examination by stereo-microscope revealed reduced growth of the optic cup in
exposed offspring. Others have included detailed evaluation in studies of lung maturation,
development of the eye and of the liver (Grasty et al., 2005; Martins et al., 2005; Rogers &
Hurley, 1987).

Although these types of studies differ somewhat in their objectives, they have some shared
characteristics which includes evaluating multiple outcomes. Some outcomes may be cheap
and quick to assess, such as malformation determined by gross examination, while others, such
as the size of the ocular cup, are time-consuming and expensive to measure. While there may
be sufficient resources to evaluate all offspring in small toxicity studies, in large studies, cost
constraints limit the extent to which detailed assessments can be made, so collecting detailed
measures on all subjects is unrealistic. To overcome this limitation, some studies evaluate a
fixed number of pups per litter (Rogers & Hurley, 1987; Grasty et al., 2005) while others select
pups from a fixed number of litters (Kennedy & Elliott, 1986).

If exposure-related changes in the detailed measure are more likely to occur in affected
offspring, the experimenter might preferentially select affected offspring in which to observe
the detailed measure. While there might be resources to do detailed assessment among a
fraction of offspring, a simple random sample (SRS) might not be the best use of limited
resources and therefore, selecting a SRS may not be optimal. One approach to selecting a subset
is to oversample the affected offspring. Oversampling has arisen before in evaluating eye size
and malformation of the eye (Weller et al., 1999).

We consider a case in which a binary trait, such as malformation, is observed in all offspring
while a continuous outcome, corresponding to the detailed assessment, is observed in a subset
of offspring selected from the main study. The subset is not a SRS in the sense that the
probability of selecting an affected offspring is not equal to that of an unaffected offspring.
We were motivated by the idea that a probability-based subsample that is not a SRS might be
obtained, and sought an approach to analyze these data. Our approach pairs existing methods
for mixed effects models, which have been previously applied to analyze fetal toxicity data
(Gueorguieva & Agresti, 2001; Dunson, 2000), with the concept of two-phase sampling, which
has been used in screening and surveys in psychiatry (Deming, 1977; Shrout & Newman,
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1989). In our approach, the screening variable, which is the variable at the first phase of
sampling (i.e., malformation), does not necessarily reflect the same phenomenon as the variable
at the second phase (the detailed assessment), though the two are expected to be correlated.
Our intent, in the application of two-phase sampling, differs somewhat from the screening
context in that malformation status itself is of interest because it carries information on
exposure. Thus, we were concerned with analyzing the variable at the first phase as well as the
variable at the second phase. We refer to the sampling procedure at the second phase as
subsampling to reflect this difference in intent. While the application to toxicology is presented
as a working example, our approach can be applied more generally to analyze a mix of binary
and continuous outcomes when the continuous response is missing by design. We apply our
approach to a segment II study involving a number of doses that also allows for estimation of
a joint dose response curve.

We begin with a bivariate regression model in Section 2. The model is an extension of the
clustered ordinal regression approach of Hedeker & Gibbons (1994) that includes the
continuous outcome. To handle subsampling, we then derive a partial likelihood (PL) that is
based on the bivariate model, and give an expression for the PL score in Section 3. We show
that consistent estimates can be obtained by adjusting the PL score via a simple weighting
scheme that accounts for the sampling design. Results from a data analysis involving the
herbicide 2,4,5-T are presented in Section 4 and a simulation study confirms the PL approach
in Section 5. Some of the technical details are relegated to a separate technical report available
from the authors.

2. Bivariate random effect regression model (BRM)
Our approach follows the method of Hedeker & Gibbons (1994) for modelling clustered ordinal
outcomes. Central to the model are a normally distributed unobservable latent trait and fixed
but unknown threshold values which generate the observed ordinal outcomes. In extending the
model of Hedeker & Gibbons (1994) to account for a continuous outcome, the latent trait and
continuous outcome are assumed to have a bivariate normal distribution. For the purpose of
modelling fetal malformation, attention is restricted to clustered binary outcomes. The bivariate
random effect model (BRM) accounts for a binary and a continuous outcome. We assume that
mean fetal response depends only on fixed effects so a one-dimensional mean zero random
effect for litter is assumed. As the latent trait and the continuous outcome may not be in the
same scale, a parameter for each outcome is used to scale the random effect. In addition,
consistent with assumptions typical for fetal toxicity studies, no fetus-specific effects are
assumed so that only litter-level covariates are considered. Finally, the latent trait and the
continuous outcome are assumed to be positively correlated, so that small values of the latent
variable, corresponding to malformation, are correlated with lower values of the continuous
outcome. We first assume there is a latent variable for malformation, , with unknown latent
variance , and a continuous outcome, Sik, for fetus k in litter i. The joint model for

 is written

where the random effect, , is independent of the vector of error terms (ε̃1ik ε2ik)
where (ε̃1ik ε2ik)T ∼ N (0, Σ̃) and
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As  is unobservable, the unknown latent variance  is not uniquely identifiable.  can
be rescaled by the unknown latent variance producing a second latent variable, , with
variance 1. Denoting  and Sik for latent malformation and the continuous outcome,
respectively, for fetus k in litter i, the joint model for , for a single fetus is written

where , , . σb1 = σ̃b1/σ1, and ε1ik = ε̃1ik/ σ1. εik =
(ε1ik ε2ik)T is a mean zero bivariate normal random variable with covariance matrix

We assume ρ > 0 so that malformations are correlated with lower values of the continuous
outcome.

A malformation occurs when the latent variable falls below the fixed threshold, γ1. The
observable pair of variables is (Oik, Sik) where Oik = 1, a fetal malformation, if  and
Oik = 2 (no malformation) if . We take γ0 = −∞ and γ2 = ∞. When a binary outcome
is generated from the unobservable latent variable, it is well known that the unknown threshold
is not individually estimable. Therefore, while  is not estimable, a parameter, α1, that is a
transformation of  that depends on γ1 can be estimated. For example, in the simplified case
where there is no clustering, if the latent mean is , only  and

 are estimable since only the probability of malformation can be estimated from the
data. For the data analysis, we were primarily interested in modeling the dose effect of a toxin.
For convenience, we chose to set γ1 = 0, although other values could be chosen, which would
result in shifting the intercept term for malformation.

Supressing the subscript for litter, i, temporarily, the marginal between-fetus and within-fetus
correlations are found to be

This marginal correlation structure is represented in Figure 1. The marginal joint distribution
is
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where , , and . V can be rewritten

where  and . Of interest is to estimate η = (α1 α2 σb1 σb2 σ2 ρ)T. The mean
parameters, α1 and α2, and the within-litter variance for fetal weight, σ2, are uniquely
identifiable as they can be estimated by analyzing the outcomes separately. As the marginal
correlations, ρY, ρS, and ρY S can be individually estimated, σb1, σb2, and ρ are also uniquely
identifiable which is seen by rewriting the expressions relating model parameters and the
marginal correlations (see Appendix A).

2.1. Estimation for complete data pairs
If (oik, sik) are observed for every fetus k = 1, ⋯, ni and litter i = 1, ⋯, N, the marginal joint
likelihood is given by

(1)

where . Estimation proceeds via Fisher scoring in a fashion
similar to the univariate ordinal model. Estimates are obtained by solving the score equation

where derivatives of the log likelihood are obtained by directly differentiating the log of (1)

(2)

where , P (Oik = 1∣sik, θi) = Φ(vik), P (Oik = 2∣sik, θi) = 1 − Φ(vik),

, mik = z1ik + ρ(sik − z2ik)/σ2, and . φ() and Φ() denote,
respectively, the probability density function and cumulative distribution function of the
normal distribution. Substituting terms, the right hand side of (2) is written
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(3)

Standard error estimates are based on the inverse observed information. Marginal quantities
are approximated by numerical quadrature (Najita, 2006).

3. Partial likelihood approach
To account for subsampling, the mechanism generating the observed data is viewed in terms
of two steps: a sampling step and an additional selection step. In the sampling step, a fetus
potentially observable for the data pair, (o, s), is sampled at random from the population,
depicted on the left in Figure 2. This step corresponds to viable offspring observed when the
uterine contents are examined. The sampled data pair falls in one of two strata, based on
malformation status. At the selection step, a subsample is obtained where offspring are selected
from stratum 1 (abnormality or affected) with probability p1 and from stratum 2 (healthy or
unaffected) with probability p2. The continuous outcome, S, is observed only for pups selected
at the second step. Thus, in affected pups, a data pair is observed with probability p1 while in
unaffected pups, the data pair is observed with probability p2. For pups not selected at the
second step, only malformation status is observed.

The case p1 = p2 = 1 corresponds to the complete data setting where the selection step is absent.
p1 = p2 = p < 1 corresponds to the SRS case where the population-based relative frequencies
are retained in the subsample. p1 > p2 corresponds to oversampling malformations while p1
< p2 corresponds to undersampling. When there is subsampling, the likelihood involves a
normalizing constant that depends on the unknown probability of malformation, so the full
likelihood is complex. We base inference on a PL in which the selection process is not formally
modeled.

3.1. Partial likelihood under subsampling
We now derive expressions for the PL and the PL score. Let, Δik be the variable indicating
whether the continuous outcome is observed for the kth fetus where

. Write the data available for the kth fetus as  if

δik = 0 and  if δik = 1. Conditional on the random effect for litter, the distribution

of the observed data for a single fetus is  which we
write as

(4)

where dℓjik = 1(δik = ℓ, oik = j), ℓ = 0, 1 and j = 1, 2. Setting  and
integrating over the random effect gives the PL

(5)
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Setting , the PL score is obtained by substituting (4) in (5) and directly
differentiating the log PL:

(6)

where

(7)

Writing P(Oik = j∣θi) = Φ(uik)1(j =1) (1 − Φ(uik))1(j=2) where uik = −z1ik, the derivatives in (7)
can be expressed as

with P(sik∣θi) and vik as defined in Section 2.1. Substituting terms, (7) can be written as

(8)

It can be shown that when selection occurs at rates that differ by malformation status, the
expected value of (6) is non-zero for α2, the component corresponding to the mean continuous
outcome. To correct for bias, the PL score is modified by sampling weights. The weighted PL

score, Ũ(η), can be written , where

(9)

Dw has the form of D1 in (7) with wℓjdℓjik substituted for dℓjik where w1j = 1/pj and w0j = 1/(1
− pj), j = 1, 2. It is straightforward to show that the weighted PL score equation is an unbiased
estimating equation by conditioning on the random effect and taking expectations (Najita,
2006). PL estimates (PLE's) are obtained by solving the weighted score equation Ũ(η) = 0.
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Standard error estimates are based on the robust sandwich estimator. To obtain an expression

for the robust SE, we write the estimating function  where

. Expansion of GN around η0 gives, for large N,

where ĠN(η0) denotes  evaluated at η = η0. Following general results
for M-estimators (Huber, 1967), PL estimates are asymptotically normal, so, for large N, η ̂ ≈

N (η0, 1/N A(η0)−1B(η0) [A(η0)−1]T) where  and B(η0) = E [Ũi(η0)
Ũi(η0)T]. Therefore, we estimate the robust sandwich variance by

(10)

Expressions for the derivatives are obtained by direct differentiation (see Appendix B).

4. Application to 2,4,5-T data
We have confirmed the PL method via extensive simulations (Najita (2006) and summarized
in Section 5 below) and here we show results from an analysis of a large toxicity study. For
the data analysis, we wanted to evaluate the PL approach by comparing PLE's to MLE's as we
wanted to directly compare differences due only to subsampling. Our motivation in this
approach was to compare MLE's obtained from an “expensive” study, in which all offspring
are evaluated, with PLE's that could be obtained had the study been implemented by
oversampling affected offspring, a potentially less expensive study.

In order to evaluate the PLE's directly against MLE's, we focused on live outcomes. We believe
that limiting the analysis to live outcomes was the simplest approach to make the comparison
as the subsampling is intended for live outcomes only. Thus, our analysis excludes non-live
outcomes and while experimenters who are interested in risk assessment (evaluating safe doses)
may eventually wish to include non-live outcomes, existing approaches to augment the
likelihood can be easily applied to the PL as well (Catalano & Ryan, 1992; Regan & Catalano,
1999).

For live outcomes, we focused on malformation and fetal weight which are typical primary
endpoints for live offspring. Given a subsampling of fetal weight, we wanted to show that valid
estimates could still be obtained when the subsample is not a SRS, and because fewer pups
would be evaluated, there is potential for cost-saving. For continuous outcomes that are more
expensive to measure than fetal weight, such as the size of the ocular cup or eye size, the
potential for cost-savings would be greater.

In applying the PL approach, we sought a single data set in which we could compare MLEs
with PLE's. To make the comparison, we began with data containing information on all
offspring (complete pairs). A second data set was derived by oversampling malformations from
the complete pairs data set (subsampling data set). Because we were interested in making a
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direct comparison between the MLE's and PLE's, a subsampling data set alone was not
sufficient for our purposes. We chose to analyze data from a large developmental toxicity study
of the herbicide 2,4,5-tricholorophenoxyacetic acid (2,4,5-T) in C57BL/6 mice (Holson et al.,
1992).

Between gestational days 4–16, dams were exposed to 2,4,5-T at one of seven dose levels (0,
15, 30, 45, 60, 75, 90 mg/kg/day). The number of pregnant dams at each dose level varied by
dose group by design (13-66 dams per dose). The main study was comprised of 367 litters and
we focus on the 337 litters containing at least one viable pup. While the most pronounced
effects were reduction in fetal weight and the incidence of cleft palate, our analysis involved
malformation of any type. Fetal weight and malformation status were available for 2,295
fetuses, which comprise the complete pairs data set of 337 litters. Dose effects of 2,4,5-T were
evident in fetal weight and malformation. The proportion of fetal malformations increased
steadily with dose ranging from a background rate of approximately 1% to 37% at the highest
dose (see left panel, Figure 3). A plot of malformation rate transformed on a normal quantile
scale suggested a linear trend in dose.

Fetal weight declined with dose, from 815 mg at the control dose to 548 mg at the highest dose.
As there appeared to be some deviation from this trend at 15 mg/kg (see right panel, Figure 3),
attempts were made to fit a quadratic term for dose in a univariate model for fetal weight in
order to determine whether non-linear terms were appropriate before fitting the bivariate
model. While the linear term for dose was significant, the quadratic term was not significant
(possibly due to a smaller number of litters at the 15 mg/kg dose level). We fit the regression
model

(11)

(12)

(13)

where σb1, σb2, σ2, and ρ were included as fixed constants. A summary of dose levels,
malformation rates and fetal weight are presented in Table 1.

To apply the PL approach, the subsampling data set was created from the complete data set by
oversampling malformations (p1=0.9, p2=0.6). The subsampling data set consisted of data on
fetal malformation (n=2295) and fetal weight (n=1469) for pups from the 337 litters. Seven
litters contained no fetal weight observations while fetal weight was observed for a single pup
in 21 litters. Among the remaining 309 litters, there was information on both outcomes for at
least two pups. As a result of oversampling malformations, mean fetal weight in the
subsampling data set was generally lower than that in the complete data set. MLE's were
obtained from the complete data set and PLE's were obtained from the subsampling data set.
The regression estimates were used to calculate marginal fetus-level correlations as described
in Section 2.

A comparison of parameter estimates is presented in Table 2. Overall, regression estimates
were similar (see Figure 3). MLE's of the within litter variance of fetal weight and the PLE's
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were similar (MLE: σ2 = 0.073 versus PLE: σ2 = 0.072). Estimates of the random effect SD's
were also similar (MLE: σb1=0.48, σb2=0.09 versus PLE: σb1=0.54, σb2=0.10). As a result,
there was very good agreement in estimates of marginal correlations within litter (MLE:
ρY=0.19, ρS=0.62 versus PLE: ρY=0.23, ρS=0.67). In addition, the within-fetus correlations
between fetal weight and latent malformation were also similar (MLE: ρ=0.40 versus PLE:
ρ=0.39) and this led to similar estimates of the marginal within-fetus correlations between
outcomes (MLE: ρY S=0.56 versus PLE: ρY S=0.59). Between-fetus correlations between
outcomes were comparable (MLE: ρY S′=0.34 versus PLE: ρY S′=0.39). As expected, robust
SE's tended to be larger than ML SE's. Although robust SE's for latent malformation were twice
that of the ML SE's and the robust SE's for fetal weight were 3–4 times the ML SE's, all model
parameters remained highly significant and qualitatively, the overall conclusions were
unaffected by the larger robust SE's. The smaller sample size of fetal weight may be one
explanation for the larger robust SE's.

We chose to model the variance and correlation terms, σb1, σb2, σ2, and ρ, as constants because
this is frequently assumed in developmental toxicity studies and because it is consistent with
a prior analysis of the data (Holson et al., 1992). In other toxicity studies, the experimenter's
prior knowledge of the test agent's effects on the animal species selected for testing is expected
to play a large role in specifying a model for these second order terms. The model is
generalizable in the sense that analysts who may not want to assume homogeneity in the
variances and correlations can specify dose-dependence. This is possible when studies involve
a small number of doses and many replicates at each dose level, however, the precision of
estimates would be limited by the sample size at each dose level.

In developmental toxicity studies, litter size often carries information about the live outcomes.
For example, for fetal weight, it is well known that weight can be inversely related to litter size
as there are fewer pups competing for a fixed amount of nutritional resources when the litter
size is smaller. The dose effect can be underestimated if the test agent induces embryolethality
and therefore smaller litters. This bias has been described previously by Romero et al.
(1992). Approaches have proposed adjusting for litter size by including it as a covariate
(Catalano & Ryan, 1992; Regan & Catalano, 2000; Gueorguieva & Agresti, 2001; Chen,
1993) while others have proposed jointly modeling litter size and the live outcomes (Dunson
et al., 2003; Catalano et al., 1993). In the data analysis, we focused on modelling live outcomes,
and therefore condition on the litter size. Thus, there is the potential for biased inference of the
dose effect. However, here we found that estimates of the dose effect did not change when
litter size was included in the model, hence we chose to fit the simpler model including only
dose effects in our bivariate model. The model we fit is also consistent with a prior analysis of
the data.

5. Simulation Study
In applying the PL approach to the 2,4,5-T data, application was limited to the oversampling
case (p1 > p2). In this section, we give results from a simulation study where we compared
MLE's and PLE's under a range of subsampling scenarios. For the purpose of the study,
simulations involved binary and continuous outcomes with characteristics similar to the 2,4,5-
T data and while there are differences in some of the details, the simulated data are consistent
with data commonly seen in practice. Specifically, simulated experiments included four doses
and a control, assuming the rate of malformation, transformed by the inverse probit function,
increased linearly with dose while mean fetal weight decreased linearly with dose. The
malformation rate ranged from 7% (background) to 69% at the highest dose. Comparing
controls and those exposed to the highest dose, mean fetal weight was reduced by 300 mg. For
each outcome, within-litter correlations were modest (ρY=0.10, ρS=0.10) while a moderately
high within-fetus correlation was assumed (ρY S=0.60). Correlations were held constant over
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dose. Therefore, we fit the models in Equations (11)–(13) with α1w1i=1.5-2di, α2w2i=5-3di,
σb1=0.33, σb2=0.33, σ2=1.0, and ρ=0.56. Dose levels were spaced equally between the control
dose and the maximum (i.e., set to 0, 0.25, 0.50, 0.75, and 1.0). The number of live offspring
in each litter was fixed at 10 and the number of dams assigned to each dose level was fixed at
30, corresponding to study sizes of 1,500 pups.

Subsampling scenarios were achieved by varying the sampling rates in malformation strata
(p1 and p2). Specifically, for the SRS case, we sampled fetal weight from 90% of fetuses (p1
=0.9, p2 =0.9). For the oversampling case, we sampled fetal weight from 90% affected offspring
while only 60% of healthy fetuses were sampled (p1=0.9, p2 = 0.6). These sampling rates were
exchanged (p1 =0.6, p2 =0.9) for the undersampling case. To demonstrate the robustness of
PLE's over a range of subsampling rates, we also sampled fetal weight at rates with greater
discrepancy as we expected bias to occur only when subsampling rates were different, and that
the size of the bias would increase as the difference in sampling rates increased. We fixed the
sampling rate at 0.90 for one stratum (e.g., affected offspring) and sampled at lower rates in
the other (p=0.30, 0.40, 0.50). While our intent was to confirm the PL method for bias
correction, we also calculated robust SE's for comparison with simulation-based estimates.

To evaluate the PL approach, we compared the PLE's to the true parameter values under
oversampling and undersampling. To understand the potential bias in the over- and
undersampling cases, in addition to PLE's, we also calculated uncorrected estimates for the
oversampling and undersampling cases, which were obtained by maximizing the PL without
adjustment by sampling weights. Finally, for comparison purposes, we calculated MLE's when
there were complete data or the subset was a SRS. For each case, 100 experiments were
simulated.

Parameter estimates are summarized in Tables 3, 5 and 6. Simulations confirmed MLE's when
fetal malformation and weight were available for all fetuses. When fetal weight was available
in an SRS, evidence of bias was not observed. However, as expected for the unweighted PL,
dose response was overestimated when malformations were oversampled (see uncorrected
estimates, Table 3). Similarly, with the unweighted estimates, the dose effect was
underestimated when malformations were undersampled, demonstrating the importance of
including sampling weights. The magnitude of bias in the unweighted estimates increased as
the discrepancy between the sampling rates increased and was greatest when the sampling rate
was 0.30 (Tables 5 and 6). Agreement between PLE's and the true parameter values was very
good. Model-based SE's agreed well with empirical estimates when there were complete data
or the subsample was a SRS (Table 4). Robust SE's were similar to empirical estimates and
robust SE's increased as the discrepancy in sampling rates increased (see Tables 7 and 8).

We elected not to sample at rates lower than 0.30 for practical reasons. First, it was thought to
be unlikely that experimenters would choose rates lower than 0.30 as there might be interest
in evaluating the continuous outcome alone and a small subsample might be viewed as having
limited utility on its own. Second, while the simulations were designed to estimate the dose
effect assuming all data pairs were available, subsampling at lower rates was thought to impact
sample size sufficiently to reduce power. Hence subsampling at rates lower than 0.30 was not
thought to be of practical interest. Third, simulation runs became impractical at rates lower
than 0.30 because convergence was substantially slower so fitting the data required many more
iterations than when p2=0.50 or 0.60. Although infrequent, when fitting the simulated data, we
observed sensitivity to the starting value when the sampling rate was 0.30. While we
hypothesize this sensitivity to become more frequent with subsampling rates lower than 0.30,
futher study would be needed to determine whether our results are unique to the experiment
we have simulated.
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6. Discussion and Future Work
Accounting for multiple endpoints may be appropriate for characterizing overall toxicity
compared with approaches that focus on the most sensitive outcome thus motivating a joint
modelling approach. In this paper, we have presented a joint model for binary and continuous
outcomes that are clustered within litter and, using a PL, an approach when the continuous
outcome is missing by design. To account for the non-representative subsample, the approach
weights fetus-level terms by the inverse of subsampling probabilities. As methods that specify
the joint distribution directly are limited by the lack of a natural joint distribution for a mix of
discrete and continuous outcomes, a latent variable framework provides a convenient means
with which to model this mix of outcomes, as others have done (Catalano & Ryan, 1992; Regan
& Catalano, 1999; Gueorguieva & Agresti, 2001; Faes et al., 2004; Dunson, 2000). In contrast
to approaches in which estimates depend on a litter-level statistic (Ochi & Prentice, 1984;
Regan & Catalano, 1999), the mixed model formulation naturally lends itself to incorporating
fetus-specific sampling weights because estimators can be expressed in terms of fetus-level
responses. For segment II studies, prior approaches have incorporated non-live outcomes such
as prenatal loss in evaluating dose response (Catalano & Ryan, 1992; Ryan, 1992; Dunson,
2000; Gueorguieva, 2005; Faes et al., 2006). While others have incorporated non-live
outcomes, we were interested in modeling the live outcomes because we were interested in
evaluating the PL approach, an approach intended for live outcomes. Although our method
does not handle non-live outcomes, adjustments described by Regan & Catalano (2000) are
possible. The PL approach is easily paired with a model for prenatal loss because our approach
conditions on the number of live offspring. This can be accomplished by fitting a separate
model for non-live outcomes followed by the PL approach for live outcomes.

In our model, outcomes within offspring are linked through a one-dimensional random effect
corresponding to a random intercept model. We chose to analyze the 2,4,5-T data assuming a
random intercepts model as a prior analysis found this assumption to be appropriate because
with C57BL/6 mice, doses in this range had only a small negative effect on net maternal weight
gain that was not statistically significant and decrement in maternal weight gain had a relatively
small effect on fetal weight (Holson et al., 1992). In other experiments, a toxin could adversely
impact dams and therefore, the maternal environment. In this case, it would be reasonable to
include a multivariate random effect in order to account for a random intercept and random
slope. One way to link outcomes with a multivariate random effect is to include a linear
combination of random effects for each outcome, where the random effect components are
related through a joint normal distribution, as suggested by Gueorguieva & Agresti (2001). In
our approach, because the estimation requires integrating over the random effect, there would
be practical limits as approximating the integral by numerical quadrature can become
computationally challenging as the dimension of the random vector increases.

While we apply the PL approach to data from a segment II study, the method can be used in
other settings as well. The PL approach might aid researchers who wish to conduct experiments
in order to understand the complex processes involved in fetal development and the role that
toxins play in disrupting normal development during organogenesis. If the continuous outcome
is important for understanding the processes that lead to affected offspring, such as
malformations, and affected offspring are relatively less common, then oversampling the
affected pups may confer cost savings compared with approaches that assess all pups or a fixed
proportion of pups. For example, if 10% of pups are affected, sampling 90% of affected pups
and 30% of unaffected pups would lead to evaluating slightly more than one-third of all
offspring, compared with approaches that sample one-half of all fetuses, for example. Greater
savings are achievable by reducing the fraction of unaffected pups that are sampled. Our
approach might also be of interest in the context of epidemiologic investigations. For example,
in studies of respiratory health in children, the impact of indoor environmental exposures on
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childhood asthma may be of interest. Measures of respiratory health in children who share the
same household environment may be correlated so that accounting for clustering within
household when exposure occurs at the household level may be important. While self-reported
information on physician-diagnosed asthma may be easily obtained for all subjects, it may not
be feasible to do detailed assessment for every participant if the assessments involve the use
of tissue or serum.

In the PL approach, essential parameters are the subsampling probabilities which are specified
at the time of study design. Future work with this approach would include a method for choosing
the probabilities in order to achieve a desired precision for a parameter of interest or an overall
cost requirement. While we have presented simulation results for one experiment with several
choices of p1 and p2, further study is needed to understand more generally how to choose
sampling rates during the planning phase of a study.

Appendix A Estimability of parameters in the joint model
As the mean parameters and the variance for fetal weight are estimable, it remains to show that
the remaining parameters, σb1, σb2, and ρ are uniquely identifiable. Estimability of these
parameters can be seen by rewriting the expressions relating the marginal correlations to the
model parameters as follows:

(14)

(15)

(16)

The marginal correlation ρY can be estimated from the data by fitting the binary outcome alone.
The estimate for σb1 is obtained by substituting the estimate for ρY in (14). Similarly, the
estimate for σb2 is obtained by substituting estimates for ρS and σ2 in the expression for σb2 in
(15). Finally, as the marginal correlation σY S is also estimable from the data, estimates of
parameters on the right-hand side of (16) can be substituted to estimate ρ.

Appendix B BRM partial likelihood robust standard error estimates

Let  be the scaled modified PL score function. The derivative of the
estimating function is given by
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Writing the derivative  and recalling

, the second derivative is obtained by direct differentiation

where

(17)

Expressions for derivatives of Φ(uik), Φ(vik) and log P (sik∣ θi) are provided in Appendix C.

Appendix C Derivatives useful for robust standard error estimates
The derivatives in (17) take the form

because the second derivatives of uik are zero. In addition, with

we have

The non-zero first derivatives are
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In addition, non-zero second derivatives of vik are

The non-zero second derivatives of  are

References
Aerts, M.; Geys, H.; Molenberghs, G.; Ryan, L. Topics in Modelling of Clustered Data. Chapman &

Hall; 2002.
Catalano P, Ryan L. Bivariate latent variable models for clustered discrete and continuous outcomes.

JASA 1992;87:651–658.
Catalano P, Scharfstein D, Ryan L, Kimmel C, Kimmel G. Statistical model for fetal death, fetal weight,

and malformation in developmental toxicity studies. Teratology 1993;47:281–290. [PubMed:
8322222]

Chen J. A malformation incidence dose-response model incorporating fetal weight and/or litter size as
covariates. Risk Analysis 1993;13:559–564. [PubMed: 8259446]

Deming W. An essay on screening, or on two-phase sampling, applied to surveys of a community.
International Statistical Review 1977;45:29–37.

Dunson D. Bayesian latent variable models for clustered mixed outcomes. J R Statist Soc B 2000;62:355–
366.

Dunson D, Chen Z, Harry J. A bayesian approach for joint modeling of cluster size and subunit-specific
outcomes. Biometrics 2003;59:521–530. [PubMed: 14601753]

Faes C, Geys H, Aerts M, Molenberghs G. A hierarchical modeling approach for risk assessment in
developmental toxicity studies. Computational Statistics and Data Analysis 2006;51:1848–1861.

Najita et al. Page 15

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2010 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Faes C, Geys H, Aerts M, Molenberghs G, Catalano P. Modeling combined continuous and ordinal
outcomes in a clustered setting. Journal of Agricultural, Biological, and Environmental Statistics
2004;9:515–530.

Grasty R, Bjork J, Wallace K, Lau C, Rogers J. Effects of prenatal perfluorooctane sulfonate (PFOS)
exposure on lung maturation in the perinatal rat. Birth Defects Research (Part B) 2005;74:405–416.

Gueorguieva R. Comments about joint modeling of cluster size and binary and continuous subunit-
specific outcomes. Biometrics 2005;61:862–867. [PubMed: 16135040]

Gueorguieva R, Agresti A. A correlated probit model for joint modeling of clustered binary and
continuous responses. Journal of the American Statistical Association 2001;96:1102–1112.

Hedeker D, Gibbons R. A random-effects ordinal regression model for multilevel analysis. Biometrics
1994;50:933–944. [PubMed: 7787006]

Holson J, Gaines T, Nelson C, LaBorde J, Gaylor D, Sheehan D, Young J. Developmental toxicity of
2,4,5-trichlorophenoxyacetic acid (2,4,5-T). I. Multireplicated dose-response studies in four inbred
strains and one outbred stock of mice. Toxicological Sciences 1992;19:286–297.

Huber P. The behavior of maximum likelihood estimates under non-standard conditions. Procedings of
the Fifth Berkeley Symposium on Mathematics, Statistics, and Probability 1967;I:221–233.

Inagaki S, Kotani T. Lens formation in the absence of optic cup in rat embryos irradiated with soft x-ray.
Veterinary Ophthalmology 2003;6:61–66. [PubMed: 12641845]

Kennedy L, Elliott M. Ocular changes in the mouse embryo following acute maternal ethanol intoxication.
International Journal of Developmental Neuroscience 1986;4:311–317. [PubMed: 3455592]

Manson, J. Developmental Toxicology. In: Kimmel, C.; Buelke-Sam, J., editors. Testing of
Pharmaceutical Agents for Reproductive Toxicity. 2nd. Vol. chapter 15. Raven Press; 1994. p.
379-402.

Martins A, Azoubel R, Lopes R, di Matteo MS, de Arruda JF. Effect of sodium cyclamate on the rat fetal
liver: a karyometric and stereological study. International Journal of Morphology 2005;23:221–226.

Najita, J. Technical Report 1155Z. Department of Biostatistics and Computational Biology, Dana Farber
Cancer Institute; 2006. Technical report for ”A new class of bivariate regression models for mixed
binary and continuous outcomes: an application in developmental toxicology”.

Ochi Y, Prentice R. Likelihood inference in a correlated probit regression model. Biometrika
1984;71:531–543.

Regan M, Catalano P. Likelihood models for clustered binary and continuous outcomes: application to
developmental toxicology. Biometrics 1999;55:760–768. [PubMed: 11315004]

Regan M, Catalano P. Regression models and risk estimation for mixed discrete and continuous outcomes
in developmental toxicology. Risk Analysis 2000;20:363–376. [PubMed: 10949415]

Rogers J, Hurley L. Effects of zinc deficiency on morphogenesis of the fetal rat eye. Development
1987;99:231–238. [PubMed: 3652998]

Romero A, Villamayor F, Grau M, Sacristan A, Ortiz J. Relationship between fetal weight and litter size
in rats: application to reproductive toxicology studies. Reproductive Toxicology 1992;6:453–456.
[PubMed: 1463926]

Ryan L. Quantitative risk assessment for developmental toxicity. Biometrics 1992;48:163–174.
[PubMed: 1581483]

Shrout P, Newman S. Design of two-phase prevalence surveys of rare disorders. Biometrics 1989;45:549–
555. [PubMed: 2765638]

Weller E, Long N, Smith A, Williams P, Ravi S, Gill J, Henessey R, Skornik W, Brain J, Kimmel C,
Kimmel G, Holmes L, Ryan L. Dose-rate effects of ethylene oxide exposure on developmental
toxicity. Toxicological Sciences 1999;50:259–270. [PubMed: 10478863]

Najita et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2010 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Marginal correlation structure of the bivariate model.
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Fig. 2.
Selection model in the subsampling setting.
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Fig. 3.
Estimated dose response for fetal malformation and mean fetal weight based on fitting the joint
model to the complete data set and the sampled data set. Left panel: litter-specific proportion
of fetal malformation plotted by dose. Right panel: litter-specific mean fetal weight in grams
plotted by dose. Estimate based on the complete data set (MLE) is indicated by the solid line.
Estimate based on the sampled data set (PLE) is indicated by the dashed line.
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