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Abstract
Atypical meningiomas exhibit heterogeneous clinical outcomes. It is unclear which atypical
meningiomas require aggressive multimodality treatment with surgery and radiation therapy versus
surgery alone to prevent recurrence. Detailed molecular-genetic characterization of these neoplasms
is necessary to better understand their pathogenesis and to identify genetic markers. Oligonucleotide
array comparative genomic hybridization was used to identify frequent genetic alterations in 47
primary atypical meningiomas resected at Massachusetts General Hospital between August 1987
and September 2006. Eighty five percent of samples exhibited loss of 22q, including the NF2 gene.
The second most frequent regions of loss were confined to the short arm of chromosome 1,
particularly 1p33-p36.2 (70%) and 1p13.2 (64%). Other frequent regions of loss, detected in more
than 50% of samples, included 14q, 10q, 8q, 7p, 21q, 19, 9q34, and 4p16. Frequent regions of gain
were detected along 1q (59%), 17q (44%), 9q34 (30%) and 7q36 (26%). Univariate marker-by-
marker analysis of all frequently identified copy number alterations showed potential correlation
between gain of 1q and shorter progression free survival. Given the heterogeneous treatment
outcomes of atypical meningioma, investigation of large-scale and focal genomic alterations in multi-
institutional efforts may help clarify molecular-genetic signatures of clinical utility.
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Introduction
Meningiomas comprise up to 30% of intracranial neoplasms (1–3). Approximately 10–40%
of meningiomas correspond to atypical (WHO grade II) and anaplastic (grade III) subtypes,
which are associated with less favorable clinical outcomes (4–6). These non-benign subtypes
have been associated with two-fold increased relative risk of local failure and four-fold relative
excess risk of death (7,8). Among them, the atypical subtype (grade II) comprises up to 35%
of meningiomas (3,4,9,10). By the World Health Organization (WHO) criteria, grade II
atypical meningiomas exhibit four or more mitotic figures per ten high-power fields or have
at least three other histologic features associated with higher grade (architectural sheeting,
necrosis, prominent nucleoli, hypercellularity and high nuclear:cytoplasmic ratio). WHO grade
III malignant meningiomas exhibit frank histological malignancy or twenty mitotic figures per
10 high-power fields. According to the 2000 and 2007 WHO classifications, brain invasion
does not necessarily imply WHO grade III meningioma; in the absence of frank anaplasia,
meningiomas exhibiting brain invasion behave most like atypical meningiomas (11) and
correspond to WHO grade II (3). These changes in the WHO grading systems have resulted in
increased diagnosis of atypical meningioma (4,9,11,12). For example, upon re-assigning grade
based on WHO 2000 criteria versus WHO 1993 criteria, 35% of previously diagnosed grade
III meningiomas were re-assigned to grade II whereas few original grade II meningiomas were
re-assigned (13). Hence, understanding the clinical significance of the diagnosis of atypical
meningioma is assuming increasing importance.

Primary treatment for meningiomas consists of maximal safe surgical resection. Although
outcomes for benign meningiomas after surgery are favorable and those for the rarer anaplastic
(malignant; grade III) subtype are uniformly poor, outcomes for atypical meningiomas are
variable (1,2,10). Progression-free survival (PFS) at 5 years after definitive treatment has been
reported to be 20%–50% when atypical and anaplastic meningiomas are combined and 38%–
62% when atypical meningioma is evaluated alone (1,2,14). In addition, atypical meningioma
is associated with 57% cause-specific survival at 15 years, compared to 86% for benign
meningioma (15). But, in many cases, the significant individual variability in clinical behavior
of atypical meningiomas cannot be accounted for by known clinical or pathological variables.
Given the broad range of reported outcomes after radical surgery (1,16) it remains unclear
which atypical meningiomas will recur and which patients will benefit from additional
treatment options such as adjuvant postoperative radiation therapy. We reasoned that detailed
molecular-genetic characterization of these neoplasms could provide a better understanding of
their pathogenesis and potentially reveal prognostic and therapeutic markers. In turn, such
knowledge could further help guide clinical management and decrease inappropriate treatment,
thereby minimizing treatment failure and reducing treatment-related toxicity. We therefore
undertook a comprehensive genomic analysis of a series of atypical meningiomas.

Meningiomas are among the most studied human solid tumors by karyotype analysis. Among
characterized genetic alterations, loss of an entire chromosome 22 is commonly reported in
meningiomas and was among the first recurring cytogenetic alterations ever described in
human solid tumors (17). Alteration of the neurofibromatosis type 2 gene (NF2) on 22q12 is
associated with 30–60% of all sporadic meningiomas (18). Notably, however, relatively few
studies have focused specifically on the genetic characteristics of atypical meningiomas. In
addition to loss on 22q, loss of 1p is a second common chromosomal abnormality in atypical
meningioma (19–22). Two main target regions on 1p36 and 1p32-p34 have been identified
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based on high resolution microsatellite markers (23). The putative 8.2 megabase minimal
region of deletion on 1p36 includes TP73, CDKN2C, RAD54L and ALPL as potential
candidate genes (24–28). The region of deletion on 1p33-34 has been further narrowed to 2.8
megabases using in silico sequence analysis and deletion mapping with microsatellite markers
(29,30). Other regions of chromosomal alteration reported in atypical meningioma include
losses of 6q, 10, 14q, 18q and gains of 1q, 9q, 12q, 15q, 17q and 20q (19,22,31,32).

Array-based comparative genomic hybridization (aCGH) detects DNA copy number changes
and provides a global assessment of molecular events in the genome (33). Multiple studies
using chromosomal CGH have been reported in the meningioma literature (19,22,32,34).
However, these studies used fewer samples, lack the improved resolution of aCGH, have not
elucidated specific genes or loci associated with chromosomal changes and have not
specifically studied large, carefully annotated series of atypical meningioma. Array CGH data
can be integrated with underlying genome annotations, allowing identification of associations
between clinical parameters, such as progression and death, and candidate tumor suppressor
or oncogene loci. The potential clinical utility of aCGH-based studies is maximized with
inclusion of tumor samples from patients with substantial clinical follow-up. To improve our
understanding of meningioma genetics and to identify potentially useful prognostic markers
for use in the setting of atypical meningioma, we studied a large series of atypical meningiomas
using a comprehensive aCGH approach.

Materials and Methods
Tumor Samples and Clinical Data

The inclusion criteria for the study were: 1) diagnosis of atypical meningioma on primary
resection; 2) frozen tissue in the brain tumor repository, and 3) at least 6 months of clinical
follow-up. Exclusion criteria included history of prior brain irradiation and age < 18 years. The
Massachusetts General Hospital Brain Tumor Repository contained fresh frozen tumor
specimens from 85 cases of atypical meningioma treated surgically between August 1987 and
September 2006. Histopathologic diagnosis of atypical meningioma was made by
neuropathologists on original paraffin-embedded surgical specimens using WHO criteria: four
or more mitotic figures per ten high-power fields; or at least three of five other histologic
features (architectural sheeting, necrosis, prominent nucleoli, hypercellularity and high
nuclear:cytoplasmic ratio) (35). Presence of atypical meningioma within the banked tissue was
confirmed by an independent pathologist using hematoxylin-and-eosin stains of the frozen
material. Informed consent for use of tissue was obtained from each patient at the time of
resection. Medical records of each patient were reviewed for demographic information, tumor
characteristics, treatment details, tumor progression and death under a protocol approved by
the Institutional Review Board. Thirty-eight cases were excluded for the following reasons:
recurrent tumor (23 cases), history of prior brain irradiation (8 cases), lack of follow-up (6
cases), age < 18 years (1 case). The study included the remaining 47 cases of primary atypical
meningioma from the tumor bank (with at least 6 months clinical follow-up). Of the 47 cases,
25 (53%) were men and 22 (47%) were women with a median age at diagnosis of 59 years
(range 31–90). The diagnosis of atypical meningioma was confirmed by review of hematoxylin
and eosin-stained sections from formalin-fixed, paraffin-embedded tissue sections from each
case. Only samples with 80–90% tumor cells were used for DNA extraction. All samples were
anonymized and a database with detailed clinical follow-up information was created using File
Maker Pro. Radiographic PFS was measured from the date of primary surgery until the date
of first documented radiographic recurrence of tumor after gross total resection or growth of
residual disease after subtotal resection or death, whichever occurred first. The median
radiographic follow-up was 29 months (95% CI 24–55 months). Radiographic progression was
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seen in 13 patients. The estimated median PFS period for all patients was 56 months (95% CI
35 months-not estimable).

aCGH
Genomic DNA was isolated from 47 primary atypical meningioma samples and from normal
whole blood from 10 anonymous donors using routine protocol. Array CGH was performed
to determine DNA copy number changes using Agilent Human 105K oligonucleotide
microarrays following the manufacturer’s instructions
(http://www.home.agilent.com/agilent/home.jspx). Genomic coordinates for this array are
based on the NCBI build 36, March 2006 freeze of the assembled human genome (UCSC
hg18), available through the UCSC Genome Browser. This array includes a comprehensive
probe coverage spanning both coding and non-coding regions, with emphasis on well known
genes, promoters, micro RNAs, and telomeric regions and provides an average spatial
resolution of 21.7 kb. For array hybridizations, 5 μg each of tumor and normal DNA were
digested with Dpn II for 3 hours at 37°C and purified with PureLink PCR purification columns
(Invitrogen). Purified tumor and normal DNA, 1 μg each, were labeled with Cy3-dCTP and
Cy5-dCTP, respectively, using bioprime labeling kit (Invitrogen) following the manufacturer’s
instructions. Unincorporated nucleotides were removed using Sephadex G-50 columns.
Labeled tumor and reference samples were precipitated with 100 μg of human Cot-1 DNA and
resuspended in 250 μl of hybridization buffer provided in the Agilent oligonucleotide array
CGH kit. Prior to hybridization the probe mixtures were denatured for 5 minutes at 95°C and
incubated at 37°C for 30 minutes. The samples were then hybridized onto the oligonucleotide
array in the Agilent SureHyb microarray hybridization chamber and the hybridization was
carried out for 42 hours at 65°C. Arrays were then disassembled and washed as recommended
by the manufacturer. Array slides were scanned in Axon 4000B microarray scanner using
GenePix Pro 4.0 software. Microarray images were analyzed and data points were generated
using the Feature Extraction software (version 9.1, Agilent Technologies) with linear
normalization (protocol-v4_91). Data were subsequently imported into CGH Analytics
software (version 3.4.40, Agilent Technologies) for visualization.

aCGH data analysis methods
DNA copy number alteration (CNA) was identified through dynamic thresholding of
segmented aCGH data. First, circular binary segmentation (CBS) (36) was used to segment
each hybridization into regions of common mean. Second, for each hybridization, the scaled
median absolute deviation (MAD) across all segments was obtained. A default scaling factor
of 1.48 was utilized. Finally, probes assigned to segments with mean value greater than 0.75
MADs were identified as gain. Likewise, probes corresponding to segments with mean value
less than 0.75 MADs were identified as loss. Segment classification and choice of thresholds
was based on the approach of Korkola et al. (2008) (37).

Statistical analysis
To identify minimal regions of common alteration across all hybridizations, the Genomic
Identification of Significant Targets in Cancer (GISTIC) approach was utilized (38). Under
this approach, regions from among the CBS identified segments that are aberrant more often
than would be expected by chance are identified, with greater weight given to high amplitude
events. GISTIC assigns each region of the genome two G-scores (Figure 2), each representing
the combined frequency and amplitude of either losses or gains. It then compares these scores
with similar scores generated from random permutations of the data to determine false
discovery rate q-values (39), representing the likelihood of obtaining the observed G-scores
from chance events alone. This approach has been shown to be more likely to identify regions
highly associated with cancer pathogenesis (38). Threshold selection for the GISTIC procedure
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was based, conservatively, on the maximum threshold for alteration (across all hybridizations)
identified under the MAD approach described above; 0.4 was selected as the gain and loss
threshold and 0.25 was selected as the significance threshold. Each analyzed CBS segment
consisted of at least four markers. Segments that contained fewer than four markers were
combined with the adjacent segment closest in segment value. A q-value was then obtained
for each region. Each peak (i.e., region associated with a low q-value) was tested to determine
whether the signal was primarily due to broad events, focal events or overlapping events of
both types.

In an additional attempt to assess common patterns across hybridizations, unsupervised
hierarchical clustering of samples was also conducted. Following segmentation and
classification, data were further reduced, with out compromising the continuity and
breakpoints, to facilitate downstream analyses (40). The log2 ratios from this reduced dataset
were then clustered using the Cluster and Treeview program (41). The distance matrix was
computed using the Pearson distance and clustered using gplots module within Bioconductor
(http://www.r-project.org/).

To assess association of DNA copy number alteration with radiographic progression free
survival in primary tumors, univariate marker-by-marker analyses were conducted under the
Cox proportional hazards model. The effects of gain and loss were assessed separately. That
is, for the analysis evaluating the effect of gains (losses), each marker was classified as either
gain or no-gain (loss or no-loss). Assignment of each marker was made according to the CBS-
MAD classification (described above) of the CBS segment to which the given marker belonged.
Only markers identified as potentially informative were utilized in each analysis. Potentially
informative markers were defined as those with some variation in gain or loss across all
hybridizations; it was assumed that markers with nearly uniform gain or loss (or absence
thereof) across all hybridizations were not potentially informative with regard to progression.
Hence, markers whose percentage of gain/loss across all hybridizations exceeded 90% or was
less than 10% were omitted from the analysis. To adjust for multiple testing via the false
discovery rate, the q-value (distinct from the q-value obtained under the GISTIC analysis
described above) for each test was obtained (42).

Results
Patient and tumor characteristics

Between 1987 and 2006, atypical meningiomas comprised 20.9% (171/817) of all surgically
resected meningiomas collected in the MGH brain tumor repository. The percentage of atypical
meningiomas increased over time, corresponding with refinements in meningioma grading,
including WHO classifications in 1993 and 2000: 1987–1993: 17.6% (56/318), 1994–2000:
22.1% (64/290), 2001–2006: 24.4% (51/209). Fifty percent of the atypical meningiomas
collected between 1987–2006 had frozen tissue available for evaluation (n=85). The 47 atypical
meningioma cases included in this study consisted of 25 males (53%) and 22 females (47%)
(Table 1). Ninety percent of patients (42/47) were Caucasian. Median age at diagnosis was 59
years (range, 31–90 years). Seventy-four percent (34/46) of patients had no or only minor
comorbidities (comorbidity score 0, 1). Twenty-six percent (12/46) of patients had multiple/
major comorbidities (comorbidity scores >1). Information about tumor size was available in
the neuroradiology or operative reports for 41/47 cases. Median tumor diameter was 5.5 cm
(range, 2–11.6 cm) based on these reports. The majority of tumors were located in the convexity
(28%) and parasagittal (28%) regions. Other regions of involvement included the falx (17%),
sphenoid (15%), skull base (6%), olfactory groove (2%), orbit (2%) and cerebellopontine angle
(CPA; 2%). Gross total resection (GTR) was achieved in 74% of cases (35/47), compared with
26% (12/47) subtotal resection (STR). Bone involvement was documented in 32% of cases
(15/47). Radiographic evidence of bone involvement included hyperostosis, bone sclerosis

Gabeau-Lacet et al. Page 5

J Neuropathol Exp Neurol. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.r-project.org/


and/or osteolytic lesions. Intraoperative evidence of bone involvement included hyperostosis,
extension of tumor mass into bone, and/or bony destruction. Bone samples were sent for
histopathologic evaluation in 8/15 cases of bone involvement, with 100% concordance. Brain
invasion was noted in only 4% (2/47).

Global DNA copy number alterations
Genomic copy number for each of over 99,000 probes was determined by calculating the log2
ratio of median signal intensities of the tumor and normal reference DNAs. A genome-wide
view of the DNA copy-number alterations (CNAs) in 47 primary atypical meningiomas is
shown in Figure 1. Most chromosomal arms undergo either loss or gain across a large
proportion of the samples, suggesting high degree aneuploidy in the atypical meningioma
genomes (Figure 1). Extensive erosion of telomeric regions was frequently observed for many
chromosomes. There were no high level amplification or homozygous deletion events detected
in this set of tumors. In order to identify consistent regions of copy-number alterations
associated with gains and losses, and to identify minimal regions of loss and gain, we applied
the statistical method GISTIC to the data set (figure 2). GISTIC identified 65 regions of losses
along 35 chromosome arms (Figure 2a) and 5 regions of gains along 4 chromosome arms
(Figure 2b) distributed throughout the genome. Several chromosome arms had more than one
minimal region of loss or gain. For each alteration we selected the peak region (ie, the highest
frequency and amplitude of events) as the region most likely to contain a cancer gene. Several
tumor suppressor genes previously shown to have copy number changes in meningiomas, such
as TP73, NDRG2, and NF2, were readily identified by GISTIC. Chromosomal locations,
frequencies, genomic intervals, gene contents and candidate cancer genes of these changes are
listed in Table 2. The size of deletions ranged from 400kb to 3 Mb and the number of genes
mapping to these regions ranged from 1–137 respectively. There were only 5 regions of gains
identified with the number of genes ranging from 2–42. Genes with known or possible function
in cancer are listed in Table 2.

The most common genomic alteration was loss of 22q including the NF2 gene (85% of
samples). The second most frequent regions of loss were confined to the short arm of
chromosome 1. Most cases displayed copy number alteration patterns consistent with complex
structural rearrangements involving both arms. Two distinct regions of loss along 1p included
1p33-p36.2 (70%) and 1p13.2 (64%). Both regions spanned several megabases of DNA
sequences and included 134 genes (Table 2). Other frequent regions of loss, detected in more
than 50% of samples, included 14q (68%), 10q (55%), 8q (55%), 7p (54%), 21q (51%), 19
(51%), 9q34 (51%), and 4p16 (51%). Frequent gains were detected along 1q (59%), 17q (44%),
9q34 (30%) and 7q36 (26%).

Cluster analysis
Figure 3a illustrates the two groups that resulted from the unsupervised hierarchical clustering
of unfiltered aCGH data described above. Results of the hierarchical clustering are presented
in Figures 3a and 3b. In Figure 3a, rows correspond to probes and columns correspond to
subjects. Gain of 1q was much more common in cluster 2, shown on the right in Figure 3a (25
of 30 cases), than in cluster 1 (3 of 17 cases). Loss of 18q12.3-q21.31 in 7 of 17 in cluster 1,
compared with 3 of 30 cases in cluster 2. The known tumor suppressor gene DCC (deleted in
colorectal carcinoma) maps to the minimal region of 18q deletion. This distinction between
cluster 1 and cluster 2 is further displayed in Figure 3b which consists of a heatmap based on
the distance matrix underlying the hierarchical clustering. Along the left vertical axis, red
indicates 18q loss. Along the upper horizontal axis, red indicates 1q gain. The heatmap shows
two large clusters associated with gain of 1q and loss of 18q (Fig 3b). This finding confirms
the mutual exclusivity of these two alterations in atypical meningiomas.
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Correlation with clinical outcome
To evaluate relationships between DNA copy number alterations and clinical end points, such
as PFS, we chose to perform univariate marker-by-marker analysis for all probes showing gain
or loss throughout the genome. On univariate marker-by-marker analysis, multiple markers
with DNA copy number gains on 1q were found to be significantly associated with shorter PFS
(p < 0.05). Figure 3c shows marker-by-marker p-value (red) and q-value (blue) results for copy
number gains across all chromosome arms for potentially informative markers. Correlation
between loss on 18q and longer PFS was also investigated. However, due to the small number
of observed PFS events, no statistically significant association was identified for 18q loss.

Minimal region of 1q gain
GISTIC approach identified two regions of frequent CNAs along 1q. The first one maps to
1q25.1 and the peak region (chr1:172161698–172889501) spans 727 kilobases of DNA
sequence, includes 30 probes and 2 genes (Table 2). The second peak region
(chr1:182,779,475–197,636,068) of gain along 1q25.3-q32.1 spans 1.48 megabases of DNA
sequence, includes 75 markers and 42 genes (Table 2).

Discussion
In this study, we profiled a cohort of 47 clinically annotated primary atypical meningiomas
using high resolution oligonucleotide aCGH. The goals of this study were to generate a high
resolution genomic map that would allow identification of genes targeted by frequent loss and
gain of DNA sequences, and to develop prognostic markers for atypical meningioma risk
stratification. We analyzed data obtained by aCGH to explore the relationship between CNAs
and PFS. As a result of this analysis, we found a significant correlation between the gain of 1q
and PFS.

Eighty-five percent of atypical meningiomas exhibited loss of 22q, including the NF2 gene.
The second most frequent regions of loss were confined to the short arm of chromosome 1,
particularly 1p33-p36.2 (70%) and 1p13.2 (64%). Other common regions of loss, detected in
more than 50% of samples, included 14q, 10q, 8q, 7p, 21q, 19, 9q34, and 4p16. Frequent
regions of gain were detected along 1q, 17q, 9q34 and 7q36. Unsupervised clustering of aCGH
data revealed two groups of atypical meningioma: one group was composed of the majority of
cases with 1q gain and the other group was composed of the majority of the cases with 18q
loss (Fig 3a, b). Loss of genetic information from 1p may represent early progression-
associated changes in the transition from benign to atypical meningioma (39). Analysis of the
data in the current study revealed focal regions of frequent loss on 1p36.32 (70%) and 1p13.2
(64%). The TP73 gene, encoding a p53-related protein, is located at 1p36.2 and may represent
a candidate gene warranting further investigation for its potential role in atypical meningioma
tumorigenesis. Other studies of atypical meningioma using loss of heterozygosity and/or
comparative genomic hybridization analysis have reported loss on 1p in 40%–86% (21, 22,
32, 43) of cases.

Evaluation of chromosome 1 copy number imbalances using a genomic tiling path method of
aCGH on 82 meningiomas revealed frequent, aberrations of chromosome 1 of varying type
(deletions and amplifications), size (monosomy and homozygous deletion) and distribution
(44). Deletion on 1p was the most frequent alteration, ranging from whole p-arm deletion (120
MB) to homozygous loss (3.5 Mb). Three distinct candidate loci on 1p and one locus on 1q
exhibited tumor-specific aberrations of potential importance for tumorigenesis. Aberrations of
1q were less common and were always accompanied by full or partial loss of 1p. Elsewhere
in the literature, gains on 1q have been shown to occur in 30%–50% of meningioma cases
(19,22). Our data revealed chromosomal gains on 1q in 59% of atypical meningioma cases.
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The 1q gain centered on two regions: 1q25.1 (chr1:172,161,698-172,889,501) and 1q25.3-
q32.1 (chr1:182,779,475-197,636,068). The 1q25.1 interval includes two genes: RC3H1
(roquin) encodes a highly conserved member of the RING type ubiquitin ligase protein family
and RABGAP1L (RAB GTPase activating protein 1-like isoform A) encodes a 298-amino acid
GTPase-activating protein, containing a putative phosphotyrosine binding domain (45). The
1q25.3-q32.1 interval includes 42 genes, some of which may have relevance to tumorigenesis:
EDEM3 (ER degradation enhancer, mannosidase alpha like), which ensures that only properly
folded proteins are retained in the cell; RNF2 (ring finger protein 2), a polycomb protein, part
of the multiprotein complexes involved in transcriptional control; PRG4 (proteoglycan 4), a
large proteoglycan synthesized by chondrocytes; TPR (nuclear pore complex associated
protein), which encodes a large coiled-coil protein that is required for the nuclear export of
mRNAs and some proteins, with oncogenic fusions of the 5′ end of this gene with several
different kinase genes occuring in some tumors; PTGS2 (prostaglandin endoperoxidase
synthase 2 precursor), a key enzyme in prostaglandin biosynthesis, the expression of which is
deregulated in epithelial tumors; CDC73 (parafibromin), a member of the PAF protein
complex, which associates with the RNA polymerase II subunit POLR2A and with a histone
methyltransferase complex (46); ASPM (abnormal spindle)-like, microcephaly), a human
ortholog of the Drosophila ‘abnormal spindle’ gene, which is essential for normal mitotic
spindle function in embryonic neuroblasts (47); LHX9 (Homo sapiens LIM homeobox 9),
which encodes a member of the LIM homeobox gene family of developmentally expressed
transcription factors; NEK7 (Homo sapiens NIMA (never in mitosis gene a)-related kinase 7),
which shares high amino acid sequence identity with the gene product of the Aspergillus
nidulans ‘never in mitosis A’ gene and which controls initiation of mitosis. The potential
functional relevance of these genes in the progression of atypical meningioma is not known
and will require further investigation.

There is a paucity of data evaluating the clinical significance of genomic abnormalities in
atypical meningioma. To our knowledge, this is the first comprehensive genomic analysis of
a large clinically-annotated cohort of atypical meningiomas. Previous studies have focused on
genetic progression of meningiomas and relatively small numbers of atypical meningiomas
have been included (22,32). The overall pattern of losses and gains detected in our study is
consistent with what has been reported in the general meningioma literature. However, the
increased resolution and the relatively large sample of atypical meningiomas allowed us to
identify novel large-scale and focal chromosomal alterations. Most importantly, each case
evaluated in the current study was fully annotated in a clinical database with information
regarding treatment course and clinical endpoints. This provided the opportunity to evaluate
for potential clinically relevant genomic markers.

Analysis of all frequently identified CNAs showed a significant correlation between gain of
1q and shorter PFS (p<0.05). Gain of 1q has previously been associated with increased
recurrence in neuroblastoma, Wilms’ tumor and ependymoma (48–50) and reduced overall
survival in multiple myeloma, medulloblastoma and Ewing sarcoma (51–53). To our
knowledge this is the first study to correlate chromosome 1q gain with clinical endpoints in
atypical meningioma.

Although an association of 1q gain with shorter PFS was evident in our series of tumors and
although the sample size was large relative to other atypical meningioma investigations, the
study remained under-powered to reveal other clinical associations of identified CNAs.
Clarification of molecular-genetic signatures useful in atypical meningioma diagnosis and
treatment will therefore require investigational efforts on even larger clinically annotated
series. Given the increasing diagnosis and heterogeneous treatment outcomes of atypical
meningioma, such efforts are warranted and should become a priority to guide clinical
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management, decrease inappropriate treatment, minimize treatment failure and reduce undue
treatment-related toxicity in this disease.
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Figure 1.
Genomic profiles of 47 primary atypical meningiomas generated by oligonucleotide array
CGH. Each column in the left panel represents a tumor sample and rows represent losses and
gains of DNA sequences along the length of chromosomes 1 through X as determined by the
segmentation analysis of normalized log2 ratios. The color scale ranges from blue (loss)
through white (two copies) to red (gain). The right panel indicates the frequencies of gain and
loss of oligonucleotide probes on a probe-by-probe basis for all autosomes and the X
chromosome. The color scale ranges from white (no changes) to blue (frequent changes). Loss
of 22q12.2 including the NF2 gene was the most frequent alteration observed in 85% of the
atypical meningiomas.
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Figure 2.
GISTIC analysis of copy number alterations in atypical meningiomas. The statistical
significance of the aberrations identified by GISTIC are displayed as false discovery rate q
values to account for multiple hypothesis testing (q values; green line is 0.25 cut-off for
significance). Scores for each alteration are plotted along x axis and the genomic positions are
plotted along y axis; dotted lines indicate the centromeres. a) Loss of both broad and focal
regions are identified by GISTIC (copy number threshold = log2 ratio ≤ 0.4 for broad and ≤
0.1 for focal events). Sixty five broad regions of losses were identified. Three focal events
indicated by the gene names were identified in the background of broad regions. b) GISTIC
reveals five broad regions of gain (copy number threshold = log2 ratio ≥ 0.4). Green stars
indicate known or presumed copy number polymorphisms.
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Figure 3.
Cluster analysis of copy number alterations in atypical meningiomas. a) Unsupervised
hierarchical clustering of CGHsmooth transformed dataset derived from 47 primary atypical
meningiomas. Copy number values are color coded as follows: green (loss), black (normal)
and red (gain). The pattern of dendrogram suggests two major genomic subgroups of atypical
meningiomas. b) The distance matrix of all copy number alterations included in the heatmap
(Pearson distance). Majority of the samples with 1q gain (indicated in Red on the horizontal
side bar) and 18q loss (indicated in Red on the vertical side bar) cluster together. c) Marker-
by-marker assessment of DNA copy number gains reveals association between 1q gain and
shorter progression-free survival. P-values (Cox model) are denoted in red. Q-values are
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denoted in blue. The horizontal black line at 0.05 denotes the chosen significance level. Long
tick marks along the bottom axis denote chromosome ends whereas short tick marks denote
the centromere.
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Table 1

Patient and tumor characteristics.

Characteristic Number of patients

All 47

Gender

 Male 25 (53%)

 Female 22 (47%)

Race

 Caucasion 42 (90%)

 African American 1 (2%)

 Asian 2 (4%)

 Hispanic 2 (4%)

Median age 59 yrs (range, 31–90)

Comorbidity Score

 0, 1 34 (74%)

 > 1 12 (26%)

Median tumor size 5.5 cm (range, 2 cm – 11.6 cm)

Tumor location

 Convexity 13 (28%)

 Falx 8 (17%)

 Sphenoid 7 (15%)

 Skull base 3 (6%)

 Parasagittal 13 (28%)

 Olfactory groove 1 (2%)

 Orbit 1 (2%)

 CPA 1 (2%)

Resection

 GTR 35 (74%)

 STR 12 (26%)

Brain invasion

 Yes 2 (4%)

 No 45 (96%)

Bone involvement

 Yes 15 (32%)

 No 32 (68%)

GTR = Simpson grade I-III. STR = Simpson grade IV.
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