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Abstract

Neuronal populations in sensory cortex represent the time-changing sensory input through a 

spatiotemporal code. What are the rules that govern this code? We measured membrane potentials 

and spikes from neuronal populations in cat visual cortex (V1), through voltage-sensitive dyes and 

electrode arrays. We first characterized the population response to a single orientation. As 

response amplitude grew, population tuning width remained constant for membrane potential 

responses and became progressively sharper for spike responses. We then asked how these single-

orientation responses combine to code for successive orientations. We found that they combine 

through simple linear summation. Linearity, however, is violated after stimulus offset, when 

responses exhibit an unexplained persistence. Thanks to linearity, the interactions between 

responses to successive stimuli are minimal. We demonstrate that higher cortical areas may 

reconstruct the stimulus sequence from V1 population responses through a simple instantaneous 

decoder. In area V1, therefore, spatial and temporal coding operate largely independently.

The computations performed by sensory cortex involve large neuronal populations whose 

activity evolves over time to code an ever changing sensory input1, 2. We wish to 

understand the rules that govern this dynamical code. Such rules would describe the 

computations performed by the underlying circuits. We also wish to understand the 

strategies required to decode these responses, as these strategies must be followed by 

downstream neurons that interpret V1 population activity.

In some neural systems, the spatial and temporal aspects of the neural code are inextricably 

linked3. For example, in the insect olfactory system the population activity that codes for a 

sequence of two odors differs not only from the representation of either odor alone but also 

from a mixture of the two4. Similarly, in the mammalian motor cortex, the temporal 
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evolution of the population activity that codes for a movement describes a complex 

trajectory in state space5. An analogous situation may occur in rodent somato-sensory 

cortex, where responses to sequences of whiskers differ substantially from responses to 

individual whiskers6.

We asked if such a linkage of spatial and temporal coding is present also in visual cortex, 

and specifically in the representation of stimulus orientation by the primary visual area (V1). 

Orientation selectivity in V1 is a paradigmatic example of cortical elaboration of thalamic 

sensory afferents, providing a testbed for theories of cortical function7, 8.

Studies of the dynamics of V1 population activity concentrated on membrane potential 

responses to individual stimuli, and found a dissociation of spatial and temporal coding. 

Using voltage-sensitive dye imaging, these studies found that the orientation selectivity of 

the population remained constant over the course of the response9, 10. This invariance is 

consistent with tuning width measurements made from the membrane potential of single 

neurons: this tuning width typically remains constant during the course of a response11.

Do the spike responses to individual stimuli show a similar dissociation of spatial and 

temporal coding? The dynamics of V1 spike responses to oriented stimuli have been studied 

extensively in single neurons. Over the course of the response, the orientation bandwidth of 

neurons has been found to sharpen12–16, to broaden17 or to remain largely constant8, 18. 

This variety may stem in part from differences in experimental procedures or in data 

analysis. Given the variety of results observed even within individual studies, however, it 

remains unknown whether the spike response to a single orientation of V1 populations 

shows any dynamics such as sharpening of selectivity over time.

More generally, it is not known if the population response to individual orientations can 

predict population responses to stimulus sequences. The interactions between responses to 

subsequent orientations could be complex. Indeed, the spike responses of individual V1 

neurons to pairs of orientations display effects ranging from suppression to a repulsion of 

tuning curves19–22. We don’t know to what degree these interactions may affect the overall 

population responses.

Similarly, it is not known how population activity evolves once the stimulus drive has been 

removed. Some V1 neurons give prolonged responses at stimulus offset23, perhaps 

providing support to perceptual phenomena of visual persistence24. These offset responses 

may reflect intracortical interactions that reverberate activity, possibly causing attractors in 

the dynamics of cortical activation25, 26. Attractors would explain why spontaneous activity 

in V1 favors patterns that resemble those elicited by oriented stimuli25, 27. Perhaps, once 

the responses attain one of these patterns, they linger there even after the initial drive is 

removed.

Finally, we don't know how stimulus sequences coded into population responses should be 

decoded by later stages of the visual system. Simple rules have been proposed for the 

decoding of stimulus orientation from V1 populations1, 2, 28–31. These rules, however, 

have been rarely tested on actual population responses, and in particular they have never 
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been applied to dynamically changing population responses. Can the time-evolving 

population activity of area V1 be decoded using simple rules?

Results

We monitored the dynamics of population activity in visual cortex, measuring both spikes 

and membrane potentials in identical stimulus conditions. To measure a population’s spikes 

we recorded from 10×10 electrode arrays32. To measure a population’s membrane 

potentials we used voltage-sensitive dye (VSD) imaging33. VSD imaging reveals the 

membrane potential responses in superficial layers34 with <10 ms temporal resolution9, 10, 

33. In V1, its signals reflect largely the responses of complex cells10.

Seeking to activate multiple subpopulations of neurons in rapid sequence, we used an 

“orientation noise” stimulus. In this stimulus, gratings of random orientation (each flashed 

for 32 ms in random phase) are presented in sequence14,8. To study how cortical responses 

transition between resting and stimulated states and vice versa, we interleaved at random 

times a fraction (~30%) of blank frames, uniform gray screens that had the same mean 

luminance as the gratings. This orientation noise stimulus elicited lively spike responses35 

and strong VSD signals (Supplementary Fig. 1).

Population responses to an oriented stimulus

The orientation noise stimuli yielded detailed maps of orientation preference (Fig. 1a,b). We 

measured the average activation profile of the membrane potentials following a given 

orientation (Fig. 1a). Activation generally emerged ~45 ms after stimulus onset and assumed 

the characteristic patchy structure of orientation maps36. As expected37, stimuli with lower 

contrast elicited slower responses (Supplementary Fig. 2). Responses to orthogonal stimuli 

tended to be complementary, so the single-orientation maps could be combined in a map of 

orientation preference36, where hue labels the preferred orientation and intensity reflects the 

selectivity of the response (Fig. 1b).

To investigate the selectivity of these responses we expressed them as a function of 

preferred orientation (Fig. 1c,d). Having assigned to each pixel a preferred orientation (Fig. 

1b), we summarized the activity of the population (Fig. 1a) by averaging together the 

responses of pixels with similar orientation preference9 (Fig. 1c). For this analysis, further, 

we averaged responses to stimuli of different orientations, expressed relative to the 

difference between stimulus orientation and preferred orientation. The shape of these 

responses remained constant: once responses at different times are normalized by their 

amplitude, their profiles become very similar (Fig. 1d).

We applied a similar analysis to the spike responses and obtained fairly different results 

(Fig. 1e,f). We identified the preferred orientation of each site in the electrode array, and 

averaged together responses of sites with similar preference (Fig. 1e). Unlike the membrane 

potential responses, the spike responses did show a dependence of tuning width on time, 

with population activity being more narrowly distributed at the peak of the response than at 

earlier or later times (Fig. 1f).
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To compare the population responses measured from spikes and membrane potentials, we 

fitted them with circular Gaussian functions38 (Fig. 2a–b). These provided excellent fits 

(Fig. 1c,e) and yield two parameters: amplitude and tuning width. For membrane potential 

the amplitude peaked 74±2 ms (n=8) after stimulus onset (Fig. 2a, blue). For spikes the 

amplitude peaked earlier, at 50±2 ms (n=6) (Fig. 2a, red). Tuning width (half-width at half-

height) for membrane potential remained fairly constant during the course of the responses, 

and averaged 31.2°±0.3° (Fig. 2b, blue). For spikes, instead, tuning width decreased by 

27%, from close to 30° to almost 20°, before broadening again (Fig. 2b, red).

The sharpening observed in population responses measured from spikes is seen also in 

individual neurons (Fig. 2c–d). We studied the spike responses of 32 well-isolated single 

units within the population. Similar to the multiunit spike activity, these single-unit 

responses peaked 50±2 ms after stimulus onset (Fig. 2c) and decreased in tuning width from 

close to 30° to almost 20° before broadening again (Fig. 2d). This clear sequence of 

sharpening and broadening during the course of the response was seen in all neurons, with 

no exceptions.

The difference in tuning width between membrane potential and spikes agrees with 

intracellular measures in single neurons, and is largely due to the spike threshold38. The 

difference in timing is less expected. It is likely due to two factors. First, neurons tend to fire 

during the rising phase of the underlying membrane potential39. Second, an early untuned 

depolarization8, 9, 11 may help the potential reach spike threshold in the initial portion of 

the responses. The properties of this depolarization are described below.

The population response to a single oriented stimulus could be decomposed into the sum 

two components, one untuned and one tuned8, 9, 11 (Fig. 2e,f). The untuned component is 

the mean activity across preferred orientations; it varies only in time (Fig. 2e,f, curves). The 

residual tuned component varies both in time and in preferred orientation (Fig. 2e,f colored 

panels). Consistent with earlier reports8, 9, 11, the untuned component led in time the tuned 

component.

Responses to a sequence of orientations

Having characterized the population response to single oriented stimuli, we asked whether a 

sequential application of this elemental population response can predict the responses to the 

full stimulus sequence.

We first considered the membrane potential responses, and found that we could predict them 

based on simple summation (Fig. 3). We expressed the stimulus as a function of orientation 

and time (Fig. 3a), and predicted responses by repeatedly summing the elemental population 

response (Fig. 3b) appropriately shifted in time and orientation (a two-dimensional 

convolution). The result is a linear prediction of the responses (Fig. 3c). Aside from 

occasional discrepancies, seen especially in overall amplitude, the predicted responses 

resembled the actual responses (Fig. 3d). Both predicted and actual responses showed peaks 

of activity that shifted to coincide with the appropriate stimulus orientation. Distributions of 

predicted vs. actual responses cluster along a curve that deviates from linearity only for large 

responses (Fig. 3e). We could indeed improve on the predictions of the model by fitting a 
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mildly compressive nonlinear function to these distributions and applying it after the 

summation40. The resulting model explained 98±1% of the variance of the responses (s.d., 

n=8). The correlation between predicted and actual responses was high, at 0.69±0.06 (s.d., 

p<0.005., n=8).

We obtained similar results for the spike responses (Fig. 4). The summation model (Fig. 

4a,b) captured the transient nature of these responses and the sequence of peak activations 

(Fig. 4c,d). Just as for membrane potential, the major deviations occurred for high and low 

values of the response (Fig. 4e). Thus, the model performance was improved by including a 

compressive nonlinearity, yielding a correlation between predicted and actual responses of 

0.58±0.06 (s.d., p<0.005., n = 6, Fig. 4e).

These results indicate that population responses to the stimulus sequence are simply the sum 

of consecutive responses to the individual elements in the sequence. On the other hand, there 

is a noticeable scatter in the relation between predicted and actual population responses, 

both for membrane potential (Fig. 3e) and for spikes (Fig. 4e). Are the deviations 

systematic? To address this question we focused on two key stimulus conditions: the 

transitions from orientation to orientation and the transitions from stimulus to blank.

Effect of recent history of stimulation

We asked if the summation model could explain how the population’s activity depends on 

the orientations seen in the immediate past (Fig. 5). We focused on four “orientation jumps”, 

in which consecutive gratings differed in orientation by: 0° (the same orientation), 90°, 

+45°, and −45°.

The membrane potential responses of the population represented faithfully the end points of 

the orientation jumps, but tended to interpolate through neurons with intermediate 

orientation preferences during the transitions (Fig. 5a, e). For 0° changes, the membrane 

potential response showed a single prolonged activation (Fig. 5a, row 1): there was no clear 

demarcation between the responses to the two stimuli even though in 75% of the cases the 

transition between stimuli involved a change in spatial phase. For a 90° jump, conversely, 

the population response showed a distinct transition (Fig. 5a, row 2), involving in sequence 

two separate subpopulations with orthogonal orientation preferences. The responses to ±45° 

jumps, finally, showed a mixture of these behaviors (Fig. 5a, rows 3,4); responses show two 

distinct peaks, but these peaks are joined by a response passing through the intermediate 

orientations. The profiles of the membrane potential responses during the transition showed 

a marked attraction between response to first and second stimulus: the peak of the 

population response shows an average shift of 20.7±2.6° (s.e., n=6) toward the preceding 

stimulus orientation (Fig. 5e). Similar results were obtained when examining smaller 

orientation jumps (23° or 30°, not shown).

Similar though less marked effects were seen in the spike responses of the population (Fig. 

5c, f), which followed more faithfully the transitions between orientations. Though the 

responses to 0° changes showed a single prolonged activation similar to that seen in 

membrane potential (Fig. 5c, row 1), responses to jumps by 90°, 45° and −45° showed 

clearly distinct peaks, with little response in neurons with intermediate orientation 
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preferences (Fig. 5c, rows 2–4). Just as for membrane potential, however, the population 

responses exhibited a marked attraction towards the orientation of the previous stimulus, 

with a shift of 6.3±2.8° (s.e., n=5) toward the preceding stimulus orientation (Fig. 5f).

All these effects were explained accurately by the simple summation model. From the 

population responses predicted by the model we computed average responses to orientation 

jumps (Fig. 5b,d). They closely resemble the data, explaining 91±3% (s.d., n = 8) of the 

variance for membrane potential (Fig. 5b), and 94.3±2% (s.d., n = 6) of the variance for 

spikes (Fig. 5d). Specifically, the model accurately predicts the attraction in population 

responses that follows a ±45° jump, both in membrane potentials and in spikes (Fig. 5e,f, 
dotted lines). Therefore, even when the population responses appear to be traveling waves 

that involve neurons with orientation preference intermediate between two successive 

orientations, these responses are more usefully described as the sum of two elemental waves 

– the successive responses to the individual orientations.

Persistence of population responses

We then asked how the population response evolves once the stimulus drive has been 

removed. We measured the population activity that follows stimulus offset and tried to 

explain it with the simple summation model (Fig. 6).

The membrane potential responses showed a persistence that could not be explained by the 

summation model. We averaged all cases when a stimulus was followed by a blank (Fig. 

6a), and compared them to the model prediction (Fig. 6c). The measured responses clearly 

outlasted the prediction (Fig. 6g, red vs. black). The population responses persisted 48±3 ms 

(n=8) longer than the predicted responses, with the peak difference occurring 72±24 ms after 

stimulus offset (Fig. 6i). Membrane potential responses, therefore, persisted well beyond 

what would be expected from the elemental response to a given orientation.

The inadequacy of the model in predicting the offset responses is not due to erroneous 

choice of model parameters. The model involves convolution with a filter, the average 

population response to a single orientation. This filter is biased toward stimulus-to-stimulus 

transitions (70% of the data). To assess the impact of this bias we computed the filter using 

only stimulus-to-blank transitions. By definition, the resulting model did a perfect job at 

predicting the offset responses. However, it did significantly worse in describing the average 

orientation-to-orientation transitions: explained variance dropped from 91% to 75%. 

Therefore, the summation model could not explain population responses to both kinds of 

transition: from stimulus to stimulus, and from stimulus to blank.

We observed a similar persistence in the population responses measured from spikes. The 

spike responses to a stimulus followed by a blank (Fig. 6b) had a longer tail than the 

prediction of the summation model (Fig. 6d). The responses during the blank stimulus 

persisted 30±4 ms (n=6) longer than predicted (Fig. 6h, red vs. black), and the peak 

difference occurred 64±31 ms after stimulus offset (Fig. 6j).

The failure of the summation model in predicting persistence is not simply due to an 

inadequacy in dealing with blank stimuli: the model encountered no difficulties in predicting 
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the responses to stimuli following a blank. We saw no consistent difference between model 

predictions and actual responses in onset latency, peak amplitude, and width of the response. 

Thus, cortical patterns of activity produced by a stimulus are similar whether they follow 

another response or a period of spontaneous activity.

Two observations suggest that the origin of response persistence is cortical. First, the 

persistence is tuned for orientation: it involves the same subpopulation of neurons that were 

initially activated by the stimulus (Fig. 6e,f). Indeed, the averaged response to a stimulus 

followed by a blank was separable, both for membrane potential responses (Fig. 6, compare 

e to a) and for spike responses (Fig. 6, compare f to b). Second, the persistence is most 

pronounced in the superficial layers of cortex. In a control experiment using multiprobe 

electrodes spanning the depth of cortex, we computed field potentials and the associated 

profile of current source density. We compared this profile with the predictions of the 

summation model, and found persistence in the superficial layers but not in deeper layers 

(Supplementary Fig. 3). Together, these results suggest that response persistence is not 

inherited from the thalamus. Its causes may lie in the circuitry of cortex.

Decoding population responses

Finally, we asked how the spike responses of the population should be decoded to 

reconstruct the stimulus sequence. We have seen that at any instant, population responses 

depend not only on the present stimulus, but also on the recent history of stimulation. This 

dependence was explained by the linear summation of elemental responses to individual 

orientations. In principle, therefore, to estimate the present stimulus orientation, a decoder 

should know the rules of summation, the shape of the elemental response, and the recent 

history of stimulation. Could a decoder neglect these aspects and still interpret the 

population responses instantaneously and accurately?

We implemented a simple Bayesian decoder1, 28, 31 that operates on instantaneous 

population firing rates, with no knowledge of previous stimuli and responses or of the 

summation rule (Fig. 7a,b). This decoder quantizes time in 8 ms intervals. For each interval, 

it measures the likelihood that the present stimulus has orientation θ given a population 

response. This likelihood is the product of the probabilities of observing each of the 

responses in the bins of orientation preference, conditioned on θ. We obtained these 

probabilities from the averaged population response to a single orientation (Fig. 7a), by 

measuring the mean and variance across stimulus presentations (Fig. 7b).

Such a simple decoder predicted accurately the sequence of stimulus orientations (Fig. 7c–
g). To be realistic, the decoder must operate on population responses measured in single-

trials (Fig. 7d), which can be considerably noisier than responses averaged over trials (Fig. 

7c). The decoder predicts a distribution of stimulus likelihoods (Fig. 7e). The maxima of this 

distribution are the decoded orientations. They matched very closely the actual stimulus 

orientations (Fig. 7f), with a circular correlation of r = 0.68 in the example data set (Fig. 7g) 

and of r = 0.67 ± 0.03 (s.e. p < 10−6) across n = 5 experiments.

Because of response persistence, during blank intervals the decoder continued to predict the 

presence of the previous orientation (Fig. 7h). To study this “perceived persistence”, we 
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averaged all conditions when a stimulus was followed by a blank. Consistent with the 

persistence of population responses at stimulus offset (Fig. 6f), the distribution of stimulus 

likelihoods during a blank interval was not flat, but rather resembled the distribution 

obtained during the preceding stimulus (Fig. 7h). In other words, during the blank intervals, 

the decoder indicates that the stimulus has the orientation of the preceding stimulus. These 

perceived orientations simply reflect the fact that the population responses during a blank 

interval maintain a trace of the previous stimulus.

We performed this formal analysis on the spike responses as these constitute the output of 

area V1 and are read by subsequent visual areas. An informal analysis indicates that it would 

be equally easy to decode the population responses measured from membrane potential 

(Supplementary Fig. 1 and Supplementary Movie).

We conclude that it is not necessary for a decoder of population activity in area V1 to know 

the relationship between temporal and spatial encoding. We have seen that temporal and 

spatial encoding in V1 are linked to each other in two ways. First, the elemental population 

responses to a single orientation measured from spikes show sharpening over time. Second, 

the population responses retain a trace of previous stimuli, interacting with each other 

through summation. These properties of the coding mechanisms, however, can be safely 

ignored by a subsequent decoder. Indeed, a decoder with no knowledge of any linkage 

between temporal and spatial encoding could successfully predict the sequence of input 

stimuli.

Discussion

Using electrophysiology and imaging, we have studied how large populations of neurons in 

area V1 code for stimulus orientation. We described how population activity changes over 

time to reflect a rapidly changing sensory input, and we showed that the dynamics of this 

activity are summarized by a set of simple rules.

We first investigated the population responses to a single orientation. When measuring 

membrane potential, we found that the width of the population profile remained constant 

during the course of the responses. This result is consistent with earlier measurements 

obtained in populations with periodic stimuli9, 10, and in single neurons with random 

stimuli11. When measuring spike responses, however, we found that activity exhibited a 

pronounced sharpening during the course of the response. This sharpening was present not 

only in the overall population profile, but also in all individual neurons in the sample, with 

no exceptions.

The uniformity of sharpening across neurons is surprising given the variety of observations 

reported in previous single-neuron studies12–17,8, 18. This variety may be explained by 

multiple factors. First, by differences in stimulus attributes such as size: large stimuli like 

ours lead to clearer sharpening41. Second, by differences in cell sample, including layers 

and location in the orientation preference map42. Third, by differences in data analysis, e.g. 

the way responses are normalized16, and whether one’s measure of orientation selectivity 

discounts an untuned response8, 9, 11, 14.
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We then investigated the interactions between oriented stimuli presented in succession, and 

asked if they could be predicted from the elemental responses to single orientations. We 

found that simple summation was surprisingly successful.

Our data reveal that strong interactions between successive orientations are prevalent in the 

population responses, both in membrane potential and in spike activity. Population activity 

is attracted towards the orientation of the preceding stimulus, and such attraction 

corresponds to repulsion of tuning curves of individual neurons. These results agree with 

studies in single neurons, where suppression near the conditioning stimulus19 can 

accompany an enhancement at other orientations, resulting in the repulsion of tuning curves 

away from the conditioning stimulus20–22.

With the exception of one study21, previous reports of interactions between subsequent 

orientations in single neurons did not ask whether such interactions would be explained by 

simple summation. Our data support this interpretation. Specifically, summation could 

predict with high accuracy the population responses to changes in orientation. These 

responses can appear as traveling waves, peaking at a range of intermediate orientations 

between the stimulus orientations. However, the summation model reveals that they really 

are the sum of two elemental waves.

The fundamental linearity that we observed in population responses may be surprising given 

the nonlinearities seen in individual V1 neurons. The summation model is linear: population 

responses are a weighted sum of past stimulus orientations. The static nonlinearity at the 

output of the sum does not alter this fundamental linearity40. By comparison, complex cells, 

which constitute the bulk of the signal in our imaging experiments10, are markedly 

nonlinear in their integration of spatiotemporal inputs43, 44. Even simple cells, whose 

spatial summation properties are more linear43 exhibit strong temporal nonlinearities45. 

Perhaps the orientation noise stimulus places the cortex in a regime where it operates more 

linearly (possibly because contrast is mostly constant and fairly high). Indeed, as a first 

approximation the spike responses of individual neurons to this stimulus can be predicted by 

the summation model35.

Yet, linear summation cannot be a complete description of V1 population responses. For 

instance, linear summation would not explain population responses to stimuli of different 

contrast. Linearity would predict that responses scale proportionally with contrast, while V1 

responses vary nonlinearly with contrast, both in amplitude and in time course37, 43 

(Supplementary Fig. 2). Accounting for these nonlinearities would likely require extending 

the model to include gain control mechanisms present at all stages of the early visual 

system43.

Indeed, we found a novel deviation from linearity: activity persists once the stimulus drive is 

removed (Fig. 6). This prolonged activation could be seen as a prolongation of the response 

to the stimulus (“persistence”) or a response to the disappearance of the stimulus (“off-

response”). We favor the first description for two reasons. First, the lag between an off-

response and the preceding on-response would resemble the stimulus duration (32 ms), 

whereas the prolonged activation peaked at a later time. Second, an “off-response” is de 
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facto already included in the average stimulus-triggered population responses: the stimulus 

disappears (on average half of the pixels change gray level) every time there is a change in 

orientation.

We argued that this neural persistence is likely to be due to cortical mechanisms, possibly 

implicating the strong recurrent excitation that characterizes cortical circuits46. Recurrent 

circuits in area V1 may favor states that signal a single orientation7, 8, 25–27, 47. Such 

states might act as attractors25, 26. The stimulus before the blank might drive the network in 

one of these attractors; when the drive is removed, activity persists because it is transiently 

trapped in the attractor. Attractors are probably weak compared to the feedforward drive, or 

they would lead to striking hallucinations47. However, their influence might be strong at 

low contrast or during a blank stimulus, when the feedforward drive is weaker or absent.

Perceptually, the neural persistence that we have observed may be a correlate of phenomena 

of visual persistence, which is in turn related to iconic memory24. Such correlates had been 

previously found in higher visual areas48–50. Smaller but similar effects have been seen in 

area V123. The dynamics of these responses, however, had been studied only in few neurons 

and had been characterized qualitatively. Our results indicate that persistence is robustly 

present in the population responses of area V1, and indicate that this persistence is not due to 

the off-responses that are generally expected from a receptive field.

Finally, we found that the time-evolving spike responses of a V1 population can be read-out 

through a simple instantaneous decoder. Multiple methods have been proposed for decoding 

stimulus orientation from V1 populations1, 2, 28–31. These methods had been rarely tested 

on actual population responses, and in particular they had not been applied to reconstruct the 

attributes of stimulus sequences from dynamically changing population responses. We 

implemented a simple decoder that operates instantaneously, and found it to do an excellent 

job in predicting the stimulus orientation.

The good performance of the decoder is surprising for a number of reasons. First, it is 

typically assumed that a decoder needs to take into account the large amount of variability 

that is shared among neurons2; our decoder ignores this covariance and yet it performs very 

well. Second, our decoder ignores a number of factors that would appear to be crucial: the 

rules of interaction between subsequent elemental responses, the shape and duration of the 

elemental response, and the recent history of stimulation. We suggest that the linearity of 

summation that we have demonstrated reduces the importance of these factors. Indeed, these 

factors are essential to decode the population activity in systems where the spatial and 

temporal aspects of the neural code are inextricably linked3.

In conclusion, we have provided a set of rules that govern the dynamical code by which 

populations of V1 neurons represent the attributes of a rapidly changing stimulus. Such rules 

ultimately describe the computations performed by the underlying circuits. We have also 

provided a simple example of the strategy that downstream neurons could follow to decode 

the population responses. By elucidating both aspects – coding and decoding – these 

findings may ultimately help relate neural activity to perception.
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Methods

Physiology

We report results measured in 7 cats (8 hemispheres) for the VSD experiments and in 

additional 4 cats (6 hemispheres) for the electrical recordings. Young adult cats (2–4 Kg) 

were anesthetized first with Ketamine (22 mg/kg i/m) and Xylazine (1.1 mg/kg i/m) and 

then with Sodium Penthotal (0.5–2 mg/kg/hr i/v) and Fentanyl (typically 10 µg/kg/hr i/v), 

supplemented with inhalation of N2O (typically 70/30 with O2). A 1 cm craniotomy was 

performed over area V1 (usually area 18, occasionally area 17). The eyes were treated with 

topical atropine and phenylephrine, and protected with contact lenses. A neuromuscular 

blocker was given to prevent eye movements (pancuronium bromide, 0.15 mg/kg/hr, i.v.). 

The animal was artificially respirated, and received periodic doses of an antibiotic 

(Cephazolin, 20 mg/kg IM, twice daily), an anti-edematic steroid (Dexamethasone, 0.4 

mg/kg daily), and an anticholinergic agent (atropine sulfate, 0.05 mg/kg, i/m, daily). Fluid 

balance was maintained by intravenous infusion. The level of anesthesia was monitored 

through the EEG. Additional physiological parameters that were monitored include 

temperature, heart rate, end-tidal CO2, and lung pressure. Experiments typically lasted 48–

72 hours. Procedures were approved by the Institutional Animal Care and Use Committee.

Stimuli

The stimulus consisted of full-field stationary gratings flashed in random sequence for 40 ms 

each14. The gratings had one of 4 spatial phases and one of 4–8 orientations. Their contrast 

was typically 50%, and the spatial frequency was the optimal one as assessed by a 

preliminary experiment (typically, 0.2 cpd). Sequences were broken into 4–8 segments 

lasting 6 s each. Randomly interleaved with the gratings were blank frames (also lasting 40 

ms), which occurred with a probability of about 30%. An additional 6 s control segment 

consisted entirely of blanks. Segments were presented in random order and each block of 

segments was generally presented 10 times. Stimuli were viewed monocularly with the eye 

contralateral to the hemisphere being imaged.

Imaging

Methods for VSD imaging were developed by Grinvald and collaborators9, 33 and 

described in our previous work10. We stained the cortex with the VSD RH-1692 and 

imaged its fluorescence in 15–30 mm2 of V1. The dye was circulated in a chamber over the 

cortex for 3 hours, and washed out with saline. We acquired images with a CMOS digital 

camera (1M60 Dalsa, Waterloo, Ontario), as part of the Imager 3001 setup (Optical Imaging 

Inc, Rehovot, Israel). Images were acquired at a frame rate of 110 Hz, with spatial resolution 

of 0.028 mm per pixel. Additional spatial filtering was performed offline (bandpass, 0.2–2.2 

cycles/mm), except when measuring overall activation (Fig. 2a). Frame acquisition was 

synchronized with the respirator. Illumination from a 100 W halogen light was delivered 

through two optic fibers. Excitation and emission filters were bandpass, at 630±10 nm and 

665±10 nm.
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Population responses were measured by grouping pixels in 24 bins according to their 

preferred orientation and averaging their responses to obtain a single data point for each 

preferred orientation bin.

To analyze the VSD responses to orientation noise, we subtracted the response to the blank 

6-s segment from the response to each 6-s segment; this subtraction removed artifacts due to 

respiration, which was synchronized with sequence onset. The resulting responses were then 

bandpass filtered between 1 and 25 Hz.

Z-scores were computed by averaging the responses across the 10 repeats, and dividing 

responses by the s.d. computed across these repeats.

Array recordings

We implanted a 10 × 10 electrode array (0.4 mm separation and 1.5 mm electrode length) in 

the same patch of cortex. To avoid excessive cortical damage, the arrays were inserted at 

high speeds (around 8 m/s) using a pneumatic insertion device. Insertion depths were about 

0.8–1 mm. Due to the curvature of the cortex the depth of penetration varied across sites. 

The array and surrounding tissue was covered in 1.5% agar to improve stability. Signals that 

crossed a specified threshold in each electrode were saved to disk for spike sorting at a later 

stage. These threshold crossing events are defined as multi-unit activity. Well tuned multi-

unit activity was typically recorded from most of the 96 electrodes. Many electrodes also 

contributed well isolated single unit recordings. Traces were acquired at 12 kHz, and firing 

rates were obtained by low-pass filtering the spike trains with a cutoff at 25 Hz.

Untuned response component

The untuned component of the membrane potential and spike responses is the mean activity 

across preferred orientations. In VSD imaging, signals of such low spatial frequency are 

dominated by noise. We removed this component from population responses because it 

reflects the activation of the entire region regardless of preferred orientation.

Event-related analysis

To compute the average response to a generic oriented stimulus, we used event related 

analysis and averaged the responses in a 200 ms window around the time of occurrence of a 

given oriented grating. This procedure was applied each time a grating was presented and 

the data sorted and averaged according to the stimulus orientation.

Conditional average responses (second-order interactions) were computed with the same 

algorithm. Event related analysis was performed on those conditions in which a stimulus 

was preceded by (1) an identical stimulus (2) a stimulus with 45° orientation difference (3) 

90° orientation difference, or (4) −45° orientation difference.

Predicted population responses

As illustrated in Fig. 3a,b, the linear predicted responses Lθ(t) are computed by convolving 

the average response to a stimulus Fθ(t) with the sequence of stimuli S(φ,t):

Benucci et al. Page 12

Nat Neurosci. Author manuscript; available in PMC 2010 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, the stimulus S(φ,t) is 1 if the orientation of the stimulus presented at time t was equal 

to φ, and 0 otherwise, and θ indicates the preferred orientation of a subpopulation.

Finally, the predicted responses Rθ(t) are computed by passing the linear prediction through 

a static nonlinearity f to account for the discrepancy between linear model and prediction at 

high and low values of the responses: Rθ(t)=f(Lθ(t)). The static nonlinearity is fitted to the 

data so as to be optimal40.

Percentage of variance

The percentage of variance for orientation jumps was computed as

where R and P are responses and prediction for a given orientation jump. The sums, , and 

the average, 〈 〉t,θ, are computed for time t between 50 ms and 150 ms after stimulus onset, 

an interval during which the response amplitude is significantly above the baseline noise. 

The average 〈 〉s1→s2 is done over all stimulus transitions in 8 hemispheres.

Bayesian decoder

To decode population responses we computed firing rate over 8 ms time bins, and for each 

of these bins we estimated the probability that the stimulus had a certain orientation φ. 

Given a population response R = (r1,r2,…,rn), and a set of orientations {φ1,φ2,…,φn} with 

equal probability of presentation p(φ), the probability of stimulus φj is given by

Here we make the simplifying assumption that p(ri|φ) and p(rj|φ) are independent. In reality 

they are not, but in separate analyses (not shown) we have also computed the covariance 

matrix and included it in the model, and found that doing so did not improve the quality of 

the decoding.

For each response ri (i = 1,…n; n = 24) we computed the distribution p(ri|φj) as:
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where r̄(φf) is the mean across stimulus presentations of the response to the stimulus φj, and 

σ is the associated standard deviation. We obtained the n = 24 tuning curves used to derive 

the distributions p(ri|φj) (Fig. 7a,b), by doing 24 circular shifts of the average elemental 

response along the orientation axis. Only the time average of the elemental response (within 

a time interval centered on the peak time, Fig. 7a, dotted lines) is used to construct the 

tuning curves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Population responses to an oriented stimulus. (a) Average maps of VSD fluorescence 

triggered on the appearance of a 90° grating, at various delays from grating onset. Scale bar 

indicates 1 mm. (b) Combining maps obtained with multiple stimulus orientations yields a 

map of orientation preference. Hue indicates the preferred orientation and brightness 

indicates tuning strength. (c) Summary of the membrane potential responses of the 

population. Responses of pixels with similar orientation preference were averaged and the 

result plotted as a function of preferred orientation (relative to stimulus orientation). The 

mean across orientations was removed. Black curves indicate best fitting Gaussian 
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functions, error bars indicate ±1 s.e. (across 6 stimulus orientations). (d) Two superimposed 

population responses separated by 20 ms interval. (e) Summary of the spike responses of the 

population. The same methods as those in a–c were applied to the firing rate measured with 

the electrode array. (f) Two superimposed population responses separated by 20 ms interval. 

Panels a–d are from experiment 56-4-1, panels e,f from experiment 75-5-16.
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Fig. 2. 
Properties of single-orientation responses. (a) Time course of response amplitude (from 

Gaussian fits in Fig. 1c,e) for membrane potential (dark gray) and spikes (light gray). 

Shaded regions indicate ±1 s.e. (n=8 hemispheres for membrane potential, 6 hemispheres for 

spikes). Black dots indicate data points above background level. (b) Same, for the tuning 

width (half-width at half height). Only values corresponding to amplitudes above 

background level (black dots in a) are shown. (c) Time course of response amplitude for 

isolated single units (n=31). (d) Time course of tuning width for isolated single units for 

time points above background level (black dots in panel c). (e) Population responses for 

membrane potential (e) and spikes (f) were decomposed into two additive terms: a tuned 
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component (which varies both in orientation and in time, shown on the bottom) and a 

baseline component (which varies only in time, shown by the black curve on top). To 

account for variability, responses are expressed as z-scores (mean across repeats divided by 

standard deviation across repeats). (f) Tuned component of the spike responses with the 

unturned component shown on top as well. Panel e is from experiment 56-4-1, panel f is 

from experiment 75-5-16.
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Fig. 3. 
Predicting the membrane potential responses of the population to the full stimulus sequence. 

(a) The stimulus expressed as an image, with ones (dots) indicating the sequence of stimulus 

orientations as function of time, and zeros elsewhere (gray). For graphical purposes, the 

orientation axis was duplicated to cover the full 360° range. Thus each grating appears as 

two dots separated by 180°. Only 2 s of stimulation are shown here (typical stimuli lasted 30 

s). Dots have been shifted in time by 74 ms to compensate for the delay of the membrane 

potential signal. (b) Elemental population response to a single orientation (from Fig. 2e0). 

The asterisk denotes convolution. (c) Population responses predicted by convolving the 

stimulus with the elemental response. For graphical purposes we advanced these responses 

in time by 58 ms to appear roughly contemporaneous with the stimulus. (d) The measured 

population responses, similarly shifted in time. (e) Relationship between model predictions 

and measured responses. Dots are mean values taken across n=8 hemispheres. Gray regions 

indicate ±1 s.d. Panels a–d are from experiment 56-4-1.
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Fig. 4. 
Predicting the spike responses of the population to the full stimulus sequence. Format as in 

Fig. 3. Panels a–d are from experiment 75-5-16.
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Fig. 5. 
Predicting the interactions between population responses to successive orientations. (a) 

Average membrane potential responses of the population to two successive stimuli of the 

same (top panel) or different orientations. The schematic at left describes the stimulus. From 

top to bottom, successive stimuli differing in orientation by 0°, 90°, −45°, and +45°. (b) 

Predictions of the summation model for the data in a. (c–d) Same as a–b, for the spike 

responses of the population. (e) Attraction of population response profiles during ±45° 

jumps in orientation. Profiles are measured at the peak time of the second response 

(60.5±1.7 ms from the onset of the second stimulus). Curves are model predictions. Average 

of 5 hemispheres. (f) Same as in e, for the spike responses of the population. Panels a–b are 

from experiment 69-1-5, panels c–d are from experiment 75-5-16.
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Fig. 6. 
Unexplained persistence of population responses after stimulus offset. (a) When the visual 

stimulus is removed (stimulus-to-blank conditions, as shown on top by the contrast change), 

membrane potential activity in the population persists for well over 50 ms. Gray symbols 

indicate that before and after the stimulus-blank sequence, the stimulus could have any 

orientation or be blank (b) Same as in a, for spike responses. (c–d) The prediction of the 

summation model is substantially shorter for both spike responses and membrane potential. 

(e) The persistence is tuned for orientation: a separable model obtained through singular-
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value decomposition of the response shown in a yields a very similar profile. (f) Same as in 

e, for spike responses. (g–h) Temporal dynamics of responses (red) and predictions (black). 

Shaded areas indicate ±1 s.d. (n = 6 conditions). (i) Difference between the predicted and 

actual time courses averaged over hemispheres. Shaded areas indicate ±1 s.d. (n=8 

hemispheres). (j) Same, for the firing rate of the population responses (n=6 hemispheres). 

Panels a,c,e from experiment 68-3-5, panels b,d,f from experiment 75-5-16.
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Fig. 7. 
Decoding stimulus orientation from the population responses. (a) The average response to 

an individual stimulus orientation. The dotted lines indicate the interval when this response 

is significantly higher than baseline. (b) Probability that a spike response is evoked by a 

specific orientation (computed within the time interval indicated in a). (c) Firing rates of the 

population in response to a stimulus sequence, averaged over 10 trials. (d) Firing rates for an 

individual trial. (e) Stimulus likelihood estimated by the instantaneous Bayesian decoder 

from the single-trial responses. (f) The stimulus sequence (shifted by 50 ms to compensate 
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for response delay). (g) Confusion matrix comparing the estimated orientation to the actual 

stimulus orientation. (h) The average stimulus likelihood when a stimulus is followed by a 

blank. Panels a–h are from experiment 79-12-16.
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