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Summary
This review concerns how Escherichia coli detects environmental inorganic orthophosphate (Pi) to
regulate genes of the phosphate (Pho) regulon by the PhoR/PhoB two-component system (TCS).
Pi control by the PhoR/PhoB TCS is a paradigm of a bacterial signal transduction pathway in which
occupancy of a cell surface receptor(s) controls gene expression in the cytoplasm. The Pi signaling
pathway requires seven proteins, all of which probably interact in a membrane-associated signaling
complex. Our latest studies show that Pi signaling involves three distinct processes, which appear to
correspond to different states of the sensory histidine kinase PhoR: an inhibition state, an activation
state, and a deactivation state. We describe a revised model for Pi signal transduction of the E. coli
Pho regulon.

Introduction
How cells respond to environmental (extracellular) signals is of fundamental importance in
biology. The control of the Escherichia coli phosphate (Pho) regulon by extracellular inorganic
orthophosphate (Pi) is of special interest for it serves as a paradigm for a two-component system
(TCS) in which signaling is mediated by an ABC (ATP-binding cassette) transporter, the Pst
(phosphate-specific transport) system, in the absence of transport.

The E. coli Pho regulon is comprised of a large number of genes that are co-regulated by
environmental Pi, the preferred P source, and that are required for assimilation of a variety of
phosphorus (P) sources for growth. Signal transduction by environmental Pi requires seven
proteins, which are thought to interact in a membrane-associated signaling complex. These
Pi signaling proteins include: (i) two that are members of the large family of TCSs, namely the
sensory histidine kinase (HK) PhoR (an integral membrane protein) and its partner DNA-
binding response regulator (RR) PhoB (a transcription factor); (ii) four components of the ABC
transporter Pst; and (iii) the chaperone-like PhoR/PhoB inhibitory protein called PhoU.

The PhoR HK is required for activation (phosphorylation) of the PhoB RR under conditions
of Pi limitation. Other (non-partner) HKs, e. g., the CreC HK of the CreC/CreB TCS, can also
activate (phosphorylate) PhoB, both in vivo and in vitro. The finding of such interactions has
lead to the suggestion that “cross regulation” can occur between different TCSs, which may
play a role in the integration of multiple signals. For example, cross regulation of the PhoR/
PhoB TCS may be important for connecting different steps of Pi metabolism [1]. Similar
interactions have been seen among non-partner proteins of other TCSs (e. g., the NarX/NarL
and NarQ/NarP TCSs [2]). DNA microarray studies have provided further evidence for cross
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regulation among the BaeS/BaeR, PhoR/PhoB, and CreC/CreB TCSs [3]. Other data suggest
that cross regulation of the PhoR/PhoB TCS is likely to be even more extensive [4]. Thus,
further studies of the Pho regulon can serve as a model for cross regulation among different
TCSs.

This review covers the period from when inorganic orthophosphate (Pi) control of the
Escherichia coli phosphate (Pho) regulon was last reviewed in 1996 [1] through 2009. It
includes new information on genes controlled by the PhoR/PhoB TCS, cross regulation and
stochasticity in the control of Pi-regulated genes, and our current understanding of how
environmental Pi regulates the E. coli Pho regulon.

The PhoR/PhoB TCS controls genes for phosphorus assimilation
Estimates for the number of Pi-regulated genes vary widely. Proteome profiles of cells grown
under Pi excess and limited conditions revealed nearly 400 proteins (almost 10% of the E.
coli proteome) whose amounts varied in response to the environmental P source [5]. Results
from DNA microarray experiments have also shown the number of PhoR/PhoB-regulated
genes to be large (Y. Jiang, Y. H., and B. L. W., unpublished data). These data are consistent
with computational predictions of a large number of PhoB-binding sites on the genome [6].
However, in the absence of direct evidence, it is difficult to provide a complete catalog of Pho
regulon genes. To date, only 31 genes (9 transcriptional units: eda, phnCDEFGHIJKLMNOP,
phoA, phoBR, phoE, phoH, psiE, pstSCAB-phoU, and ugpBAECQ) have been shown to be
directly controlled by the PhoR/PhoB TCS (Table 1). Although strong evidence exists for
several others (such as amn, psiF, yidD, and yibD), direct evidence for their control by PhoB
is lacking. In this regard, expression of the acid-inducible asr, which had been previously
reported to be transcriptionally controlled by the PhoR/PhoB TCS [17], is now known to be
instead regulated by the stationary phase sigma factor RpoS [18]. Earlier interpretations from
the same investigators were based on indirect effects of the PhoR/PhoB TCS under conditions
of Pi limitation.

The Pst system is the predominant system for Pi uptake
Nearly all genes directly controlled by the PhoR/PhoB TCS have a role in assimilation of Pi
or an alternative P source for growth (Table 1). The most strongly activated promoter pstSp
(for the pstSCAB-phoU operon) governs expression of the ABC transporter Pst and PhoU [1].
It had until recently been thought that the Pst system has a role in Pi uptake only under
conditions of Pi limitation. A variety of data now show that the Pst system, not the low affinity
“phosphate inorganic transporter” PitA, serves as the primary Pi transporter when Pi is in
excess. PitA is unlikely to act primarily as a Pi transporter, but rather as a transporter of divalent
metal cations (Zn2+) that are transported in complex with Pi [19]. A primary role for PitA as
a Zn2+, and not a Pi, transporter is supported by the finding that pitA expression is activated
by Zn2+, and not by Pi limitation [20;21]. Likewise, pitB [22;23] probably has no role in Pi
uptake in normal cells, as it is not expressed under normal growth conditions.

The PhoB RR acts as a transcription factor for Pho regulon promoters
PhoB belongs to the OmpR/PhoB subfamily, the largest group of RRs. PhoB is comprised of
an N-terminal receiver domain and a C-terminal DNA-binding domain. Its activity as
transcription factor depends upon its state of phosphorylation (D53) of the PhoB receiver
domain. Several structures of PhoB have been determined of both its receiver and DNA-binding
domain (without and with Mg++ and DNA; www.prfect.org/EcoliProteins), including those of
two “constitutively active” mutants [24-27]. NMR studies have also examined the activation
mechanism for receiver domain ([28]; see also [29] in this volume) and the mechanism of DNA
binding [30].
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The PhoR HK lacks a Pi sensory domain
PhoR acts as the Pi sensory HK and is essential for three distinct processes that control PhoB
activity as a transcription factor: inhibition (prevention of PhoB phosphorylation), activation
(phosphorylation of PhoB), and deactivation (dephosphorylation of phospho-PhoB). As shown
in Fig. 1, PhoR is comprised of five domains (or regions). Its N-terminal transmembrane (TM)
domain is required solely for association of PhoR to the membrane. Presumably, membrane
localization of PhoR is necessary for interaction with the Pst transporter. PhoR acts as a sensory
protein via an interaction between a cytosolic domain of PhoR (possibly its PAS domain; Y.H.
and B.L.W., manuscript in preparation) and the Pst transporter (possibly the ABC component
PstB; Fig. 2) and/or PhoU.

Cross regulation of Pho regulon by non-partner HKs
PhoB can also be activated in the absence of PhoR. Activation of PhoB in the absence of PhoR
is due to cross regulation (PhoB phosphorylation; [1]) by non-partner HKs such as CreC [31]
or small molecule phosphoryl donor(s) such as acetyl phosphate [32]. When PhoR is absent,
the non-partner HKs ArcB, CreC, KdpD, and QseC can lead to moderate activation of PhoB
in response to different growth conditions, while the non-partner HKs BaeS and EnvZ can lead
to low level activation [4;33]. It should be noted that these studies were carried out by
examining gene expression in cultures, in which gene expression levels reflect only population
averages and not the dynamics of gene expression in single cells.

Stochastic expression of the Pho regulon
Single-cell profiling by using flow cytometry to monitor gene expression in single cells has
revealed an unforeseen stochastic, “all-or-none,” character for activation of PhoB by non-
partner HKs [4]. Modeling has shown that stochastic behavior can result not only from TCSs
that have a positive feedback loop (i. e., phospho-PhoB leads to autoamplification of PhoB
synthesis) but also from systems in which the rate of HK translation initiation is limited (as
appears to be the case for PhoR [34]). Accordingly, the low amounts of PhoR resulting from
low rates of PhoR translation are expected to lead to the formation of occasional cells in a
population having no PhoR protein. Activation of PhoB by non-partner HKs in these cells
would lead to stochastic activation of PhoB and to the emergence of multiple stable phenotypes
within a population of genetically identical cells. Such behavior at the cellular level is likely
to be of fundamental importance not only in the recovery of cells from periods of stress but
also in persistence, host-phage interactions and pathogenesis [35-38]. While other TCSs have
not been similarly tested for stochasticity, it is reasonable to propose that several are likely to
exhibit similar bimodal expression patterns. Two characteristics that appear to be important
for stochastic behavior are: (i) the presence of an autoregulatory loop controlling expression
of the TCS; and (ii) low translation rates for the HK mRNA [34].

The Pst transporter is required for Pi signal transduction
Early studies showed that the Pst transporter is essential for detecting environmental Pi. Also,
recent data show that PhoR detects Pi only indirectly (Y.H. and B.L.W., manuscript in
preparation). Further, the Pst system but not Pi uptake per se is essential for Pi signaling by the
Pst system [1]. By analogy to the ABC (MalEFGK) transporter for maltose [39], we propose
that the Pst transporter exists in two distinct states: in one state, the Pst transporter is both
transport and signaling active; and in the other, the Pst transporter is both transport and
signaling inactive. These states would correspond to closed (transport active) conformation
when Pi is bound and an open (resting state) conformation in the absence of bound Pi. Thus,
mutations of the Pst system that abolish Pi uptake without affecting Pi signaling block uptake
but yet allow formation of the closed and open conformations [1].
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A model for Pi signaling
Mechanistically, Pi signaling is a negative process. Excess Pi is required for turning the system
off. Activation is the default state and results under conditions of Pi limitation. The Pst
transporter is essential for inhibition, as well as deactivation [1]. Deactivation resets the PhoR/
PhoB system to its inhibition state (Fig. 2). That activation (phosphorylation) of PhoB leads
to a conformational change in PhoB has been shown by examination of the structural changes
brought about by phosphoryl group analog BeF3- [28] and the structure of constitutively active
PhoB proteins [27].

Like the Pst transporter, PhoU also has an obligatory role in both inhibition and deactivation
of PhoB. The finding that PhoU-like proteins from Aquifex aeolicus and Thermotoga
maritima share structural similarity with proteins belonging to the eukaryotic chaperone Hsp70
family [13;14] support a chaperone-like role for PhoU. The action of PhoU as an accessory
protein is fully compatible with PhoU being a chaperone. Accordingly, PhoU probably acts
together with PhoR to promote autodephosphorylation of PhoB-P [40].

A caveat of Pi signaling by the proposed PhoR/PhoB/PstSCAB/PhoU complex is that
individual complexes can exist in different states within a cell. Accordingly, when Pi is in
excess, all complexes probably exist in the transport and signaling active state, in which PhoR
would be in the inhibition state. Under conditions of Pi limitation, these complexes probably
exist in different states within the same cell. That is, under these conditions, some complexes
would be in the transport and signaling inactive (PhoR activation) state. Other complexes would
be in the transport and signaling active (PhoR inhibition) state. The existence of complexes in
both states within the same cell would be necessary to permit simultaneous activation of PhoR/
PhoB-regulated genes and growth on limiting amounts of Pi.

Conclusions
Much new information has been learned about the molecular control of the Pho regulon over
the past decade, especially with respect to signaling by environmental Pi. Three areas are likely
to contribute substantial new information about the Pho regulon and its control in the future
(Box 1).

Key problems for future studies of the PhoR/PhoB TCS

• The advent of genome-wide mRNA analysis by deep sequencing (RNA-seq)
coupled with chromatin immunoprecipitation (ChIP-seq) can provide
unprecedented sensitivity and specificity for protein-DNA interactions on a
genome-wide scale [41]. Application of such technology to Pi signal transduction
should provide comprehensive identification of genes controlled by the PhoR/
PhoB TCS.

• Studying single-cell gene expression by the PhoR/PhoB TCS under diverse
environmental conditions is likely to provide definitive results regarding the role
of cross regulation among different TCSs.

• Studying the different states of the proposed seven-component Pi signaling
complex is likely to require development of new technologies that enable
examination of single protein complexes inside living cells that are similar to ones
now being used to study activities of other machines at the single molecule level
[42].
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Fig. 1.
Domain organization of PhoR. TM, transmembrane-anchoring domain; CR, positively charged
linker region; PAS, Per-Arnt-Sim domain; DHp, dimerization and histidine phosphoacceptor
domain; CA, a catalytic domain.
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Fig. 2.
Model for transmembrane signal transduction by environmental Pi. The signaling processes of
inhibition, activation, and deactivation are proposed to correspond to different states of PhoR:
an inhibition state (PhoRI), an activation state (PhoRA), and a deactivation state (PhoRD). The
Pi binding protein PstS is fully saturated when Pi is in excess. Under these conditions, a signal
is propagated to PhoR leading to formation of PhoRI, which interferes with phosphorylation
of PhoB. No such signal exists under conditions of Pi limitation (or absence of a Pst
component), leading to formation of the default state PhoRA which acts as a phospho-donor
for autophosphorylation of PhoB. Following a period of Pi limitation, PhoRD promotes
dephosphorylation of phospho-PhoB. Formation of PhoRD requires an increased amount of
PhoU or PstB in addition to excess Pi.
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Table 1

Genes of the E. coli K-12 phosphate regulon

Gene ECK numbera Product descriptionb References

amn ECK1977 AMP nucleosidase [7]

eda ECK1851 aldolase [8]

phnC ECK4099 phosphonate transporter subunit, predicted ATP-binding component [1]

phnD ECK4098 phosphonate transporter subunit, periplasmic-binding component [1]

phnE ECK4096 phosphonate transporter subunit, membrane component [1]

phnF ECK4095 predicted transcription regulator, GntR/HutC family [1;9]

phnG ECK4094 carbon-phosphorus lyase complex subunit [1]

phnH ECK4093 carbon-phosphorus lyase complex subunit [1;10]

phnI ECK4092 carbon-phosphorus lyase complex subunit [1]

phnJ ECK4091 carbon-phosphorus lyase complex subunit [1]

phnK ECK4090 carbon-phosphorus lyase complex subunit, predicted ATP-binding
component

[1]

phnL ECK4089 carbon-phosphorus lyase complex subunit, predicted ATP-binding
component

[1]

phnM ECK4088 carbon-phosphorus lyase complex subunit, membrane component [1]

phnN ECK4087 carbon-phosphorus lyase complex subunit, predicted ATP-binding
component, ribose 1,5-bisphosphokinase activity protein

[1;11]

phnO ECK4086 carbon-phosphorus lyase complex subunit, predicted acyltransferase
with acyl-CoA N-acyltransferase domain

[1]

phnP ECK4085 carbon-phosphorous lyase complex accessory protein, phosphodiesterase
activity protein

[1;12]

phoA ECK0378 bacterial alkaline phosphatase [1]

phoB ECK0393 DNA-binding response regulator [1]

phoE ECK0242 outer membrane phosphoporin protein E [1]

phoH ECK1010 conserved protein with nucleoside triphosphate hydrolase domain [1]

phoR ECK0394 sensory histidine kinase [1]

phoU ECK3717 chaperone-like PhoR/PhoB inhibitory protein [1;13;14]

psiE ECK4022 predicted phosphate starvation-inducible protein E [1]

psiF ECK0379 predicted phosphate starvation-inducible protein F [1]

pstA ECK3719 phosphate transporter subunit, membrane component [1]

pstB ECK3718 phosphate transporter subunit, ATP-binding component [1]

pstC ECK3720 phosphate transporter subunit, membrane component [1]

pstS ECK3721 phosphate transporter subunit, periplasmic-binding component [1]

ugpA ECK3436 glycerol-3-phosphate transporter subunit [1]

ugpB ECK3437 glycerol-3-phosphate transporter subunit, periplasmic-binding
component

[1]

ugpC ECK3434 glycerol-3-phosphate transporter subunit, ATP-binding component [1]

ugpE ECK3435 glycerol-3-phosphate transporter subunit, membrane component [1]

ugpQ ECK3433 glycerol-3-phosphate transporter subunit, membrane component [1]

yibD ECK3605 predicted glycosyl transferase [7]

ytfK ECK4213 conserved protein [7]

a
ECK numbers are in accordance with Riley et al. [15]
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b
Product descriptions are in accordance with Riley et al. [15], the latest GenBank record for E. coli K-12 MG1655 (U00096 dated July 2009), and

the EcoGene (www.ecogene.org) and PEC (Profiling of E. coli Chromosome [16]; http:www.shigen.nig.ac.jp/ecoli/pec/) databases (December 2009
version).
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