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SUMMARY
Protein Histidine Kinases (PHKs) function in Two Component Signaling pathways utilized
extensively by bacteria and archaea. Many PHKs participate in three distinct, but interrelated
signaling reactions: autophoshorylation, phosphotransfer (to a partner Response Regulator (RR)
protein), and dephosphorylation of this RR. Detailed biochemical and structural characterization of
several PHKs have revealed how the domains of these proteins can interact to assemble the three
active sites that promote the necessary chemistry and how these domain interactions might be
regulated in response to sensory input: the relative orientation of helices in the PHK dimerization
domain can reorient, via cogwheeling (rotation) and kinking (bending), to effect changes in PHK
activities that likely involve sequestration/release of the PHK catalytic domain by the dimerization
domain.

INTRODUCTION
Scope and Perspective of this Review

Protein histidine kinases (PHKs) that function in Two Component Signaling pathways (TCSs)
are ubiquitous in the prokaryotic world. These systems allow bacterial and archaeal cells to
sense and respond to a wide variety of stimuli ranging from physical conditions (temperature,
osmolarity, light) to concentrations of specific chemicals (nutrients, chemical signals for
quorum sensing) [1]. In many TCSs, PHKs serve as receptors for stimuli and as regulators that
control the activity of downstream signaling components (Response Regulators) via
phosphorylation. In each such system, the PHK autophosphorylates on a specific histidine side
chain (hereafter referred to as the phospho-accepting His), and then this phosphoryl group is
passed to a cognate Response Regulator (RR), a modification that alters the activity of the RR.
Most RRs are DNA-binding proteins that function as activators or inhibitors of transcription
in a phosphorylation-dependent manner [2]. In addition to >10,000 cataloged examples of
PHKs in prokaryotes [3•], there are some that have been found in eukaryotes: mostly fungi ,
amoebae, and land plants, but not metazoans [4]. Defining how these enzymes function is
important for understanding the machinery utilized by many organisms to perceive and respond
to their worlds. Further interest in PHKs stems from observations that some regulate expression
of cell components vital for survival and/or virulence in pathogenic microbes, and so they
might be exploited as targets for new antimicrobial drugs [5–8]. Such efforts would benefit
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from a detailed understanding of PHK biochemistry and their structural/functional
organization.

TCSs and PHKs have been the subject of many insightful reviews that have summarized
various aspects of their common activities and sequences [9,10], their structures [3•], and their
evolution [11–13]. This review adopts a different perspective, focusing on just two of the many
interesting aspects of PHKs: their active site structures and the possible mechanisms underlying
regulation of the activities of these active sites.

PHK activities
From an enzymology perspective, PHKs are interesting because many participate in three
distinct, but related, phosphotransfer reactions: autophosphorylation (phosphotransfer from
ATP to a histidine side chain), phosphorylation of a cognate response regulator (RR) protein
(phosphotransfer from P~His to an aspartate side chain), and dephosphorylation of the P~RR
(phosphotransfer from P~Asp to water). This review will consider the first two of these
activities in some detail, but the third is the subject of a separate review in this issue [14], and
so it will be described only briefly here. In all three of these reactions, the phospho-accepting
His of the PHK is a central player. One can envision these enzymes functioning by toggling
this His among three alternative positions, as depicted in Fig. 1A. This toggling would assemble
three distinct active sites by: (i) positioning the His (or P~His) in close proximity to a
phosphodonor or phosphoacceptor, and (ii) placing the His (P~His) in a mileau of functional
groups that tune its reactivity in appropriate ways. What does this His encounter at each active
site? How does it get from one site to another? Below, I will address these questions by first
summarizing current understanding of the autokinase active site and the phosphotransfer active
site, and then I will consider how toggling of the phospho-accepting His from one site to the
other might be accomplished by PHKs and regulated in response to stimuli. To follow this
discussion it is important to have a basic understanding of the structural organization of PHKs.

PHK Domain Architecture
PHKs have a modular architecture with distinct structural domains playing different functional
roles (Fig. 1B) [3•,9,15]. Most have an amino-terminal sensor domain (stimulus-specific, not
conserved) that spans the membrane [16,17]. This domain connects to a conserved cytoplasmic
domain called the DHp (dimerization and histidine phosphotransfer) domain which, in turn,
is connected to the CA domain (catalytic and ATP-binding), another conserved component of
all PHKs . The phospho-accepting His resides in the DHp domain. Several aspects of the
structures of the DHp and CA domains are summarized in Fig. 2. At present, there are no
available structures for full-length PHKs, so the exact relative orientations of the sensor, DHp,
and CA domains aren’t known. However, clearly the DHp and CA domains need to associate,
at least transiently, to allow transfer of the phosphoryl group from ATP to the phospho-
accepting His, and the sensor domain must have some mechanism to manipulate DHp-CA
interaction to achieve regulation of PHK activity. To generate versions of PHKs that are
amenable to analysis by high resolution methods (xray crystallography and NMR methods),
researchers have removed the sensory domains, generating structures that I will refer to as DHp
+CA proteins, and there are also high resolution structures available for isolated DHp [18,19]
and CA domains [20–25].

For some well characterized PHKs, autophosphorylation occurs in trans within the PHK dimer
(the phospho-accepting His in one protomer receives is phosphoryl group from the ATP
molecule bound to the CA domain of the partner protomer) [26,27], but recent results
demonstrate that at least some PHKs utilize a cis mechanism within the PHK dimer [28••]. At
present, it isn’t clear whether there are any inherent advantages or consequences resulting from
a PHK utilizing the cis versus the trans mechanism.
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There are some ‘nonconventional PHKs’ that have a more elaborate domain organization than
that presented above. For example, CheA, one of the most extensively studied PHKs, mediates
chemotaxis signaling events in many prokaryotes. In CheA, a cytoplasmic protein, there is no
membrane-spanning sensory input domain, and the phospho-accepting His is located in an HPt
domain rather than in its dimerization domain [22,29]. Considerable progress has been made
toward understanding the structure and biochemical mechanism of the CheA HPt domain
[30–32•] and several other HPt-utilizing proteins [33,34], including yeast Ypd1 [35,36•]. There
are other PHKs (‘hybrid PHKs’) that have an even more elaborate nonconventional domain
organization than CheA, for example by including a receiver domain. Although this group
constitutes ~25% of known PHKs [3•] they are beyond the scope of this review.

A GLIMPSE OF THE AUTOKINASE ACTIVE SITE
Visualizing a PHK active site with all of the expected components poised for catalysis is a goal
that has eluded the PHK field, to date. The main obstacle here is the flexibility of the
interdomain hinge connecting the DHp and CA domains. This flexibility appears to make it
difficult to crystallize DHp+CA inclusive proteins, although the individual domains do readily
crystallize. Recently, however, several groups have succeeded in crystallizing and
characterizing nucleotide-bound DHp+CA versions of PHKs: HK853 (from Thermotoga
maritima) [28••,37•]; DesK (a thermosensing PHK from Bacillus subtilis) [38••]; KinB (part
of the sporulation activating pathway in Geobacillus stearothermophilus)[54]; and ThkA (from
T. maritima) [39]. The HK853 and DesK DHp+CA proteins crystallize with their DHp and
CA domains in different orientations that may provide key insights into how PHKs function.
In some DHp+CA structures there is a clear and extensive binding interface between the two
domains. However, these appear to represent kinase-incompetent conformations: the phospho-
accepting His and the bound nucleotide are clearly not oriented in a manner appropriate for
the autophosphorylation reaction. By contrast, in some of the DesK structures (e.g., Fig. 2A)
there is no visible interaction between the DHp and CA domains. Using one of these structures
as a starting point, Albanesi et al. [38••] found that by simply pivoting the CA domain (as a
rigid body) on a Gly residue in the interdomain hinge region, they could bring the phospho-
accepting His of the DesK DHp into close alignment with the γ-phosphate of ATP bound at
the CA domain (Fig. 3A). This pivoting also aligned potential complementary binding surfaces
located on DHp and the CA domains, and so it seems likely that this domain-pivoted structure
provides an exciting first glimpse of an assembled PHK autokinase active site. The segments
of the DHp and CA that mediate the interdomain contacts include the ATP lid of the CA and
several clustered basic residues of the DHp, as well as salt bridges between DHp α1 side chains
and residues in the N box of the CA domain (green arrows in Fig. 3A).

A VIEW OF THE PHOSPHOTRANSFER ACTIVE SITE
Once a PHK has accomplished autophosphorylation, it needs to allow a cognate RR protein to
grab its high-energy phosphoryl group. A structure that likely provides a representative view
of the PHK phosphotransferase active site that mediates this exchange is shown in Fig. 3B.
This view was generated using the first high resolution structure of a PHK:RR complex (T.
maritima HK853DHp+CA in complex with RR468) recently reported by Casino et al. [28••].
Some aspects of this structure confirm expectations based on a low resolution PHK:RR
structure(ThkA:TrrA) [25,39] and on high resolution structures of RRs with (nonkinase)
phosphotransfer proteins [36•,40], but other aspects of the new structure have provided some
surprises. For example, the RR interacts not only with the DHp domain (an expected interaction
that buries 885 Å2 of surface area), but also with the CA domain (an unanticipated interaction
that buries 150 Å2), as well as with the DHp-CA linker (140 Å2) [28••]. Although the RR-CA
domain interaction is relatively small, it includes two contacts involving an interesting region
of the CA, the ‘lid’ of the ATP-binding pocket. This interaction creates an intriguing situation:
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the nucleotide binding site of the CA domain is occupied by an ADP molecule that is trapped
in position because the RR is effectively holding down the lid. In this conformation HK853
would not be able to able to catalyze autophosphorylation. This raises the possibility that RR-
CA binding might provide a mechanism for shutting off PHK autokinase active site under
certain circumstances, such as when the PHK is operating as a phosphotransferase or as a
phosphatase [28••]. Previous work has emphasized the potential of the ATP-lid for
promoting PHK autophosphorylation [29,41]; the idea that lid-closure could serve as a negative
regulator of this activity provides an interesting new perspective.

SIGNALING EVENTS: HOW ARE PHK ACTIVITIES REGULATED BY SENSORY
INPUT?

To be useful parts of sensory response systems, PHKs need to respond to specific input signals
by modulating one or more of their three activities such that phosphorylation level of their
cognate response regulators are dialed up or down in an appropriate manner. For some PHKs,
signaling events control only the autokinase activity [42–45] or exclusively the phosphatase
activity [46,47], while some PHKs modulate both autokinase and phosphatase activities in
response to sensory input [48,49]. The discussion in the preceding paragraph suggests that
simultaneous, reciprocal regulation of autokinase and phosphatase activities could result from
the structure of PHK:RR complexes via mechanisms such as closing the ATP-lid. To date,
there is no system in which PHK-RR phosphotransfer activity is known to serves as the primary
control point, although not many systems have been analyzed from this perspective.

One long-standing and popular model for regulation of PHK autokinase activity involves
control of DHp↔CA interaction: in short, PHKs would respond to sensory input by controlling
access of their phospho-accepting His to the ATP bound to the CA domain [3•,37•,43,50,51].
How might this regulation be achieved? Here again, the recently reported structures of DesK
and HK853 could provide some key insights [28••,38••]. In each of these proteins, the DHp
domain is part of a coiled-coil structure that is attached to a membrane-spanning helix that is
part of the sensory input domain of the PHK. It is easy to envision these PHKs using this helical
connection to adjust the conformation of the DHp domain in response to stimulus-responsive
conformational changes in the sensory domains. Although they lack the sensory input domains,
the DHp+CA versions of DesK and HK853 are capable of adopting different conformations
that could represent the signaling states that the full-length proteins adopt in response to stimuli.
Switching from one conformation to another involves changing the orientations of the helices
of the DHp domain via mechanisms that can be described as “cogwheeling” and “bending”.

Cogwheeling
Comparisons of alternative conformations of DesK and HK853 indicate that the helices of the
dimeric DHp four-helix bundle are rotated relative to one another as depicted schematically in
Fig. 4. This shift has a significant effect on the accessibility of DHp surfaces for interactions
with the CA domain of the PHK and for the ability of the PHK to interact with the RR. Thus,
cogwheel rotation of DHp helices would affect autokinase activity as well as phosphotransfer
and phosphatase activities. A similar cogwheel mechanism has been proposed as a mechanism
underlying signaling events mediated by HAMP domains [52•] and by a distinct domain
referred to as ‘the signaling helix’ [53]. These domains are frequently observed in signal
transduction proteins (not only in PHKs), and so cogwheeling could be a general mechanism
exploited by many signaling pathways, not just TCSs.

Bending
In addition to cogwheeling, the DHp domain of DesK appears to undergo a distinct kind of
conformational shift (kinking or bending) when the phospho-accepting His becomes

Stewart Page 4

Curr Opin Microbiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



phosphorylated [38••]. The possible functional consequences of bending α1 of the DHp are
qualitatively similar to those described above for cogwheeling (and indeed may be
interrelated): different segments of the DHp would be exposed or sequestered depending on
whether the helix is less bent (unphosphorylated) or more bent (phosphorylated), and this would
have consequences for interaction of the DHp domain with the CA domain and also for RR
binding.

Sequestering CA
With DesK and HK853, and perhaps with other PHKs, one important consequence of DHp
conformational shifts appears to be influencing the ability of DHp to sequester the CA domain
in a kinase-inactive conformation as depicted in Fig. 4 [28••,38••]. Basically, this involves the
DHp domain having the ability to lock the CA domain into a position where its ATP binding
site is well separated from the phospho-accepting His [37•]. Moreover, in its sequestered
location, the CA cannot impede DHp↔RR interactions necessary for phosphotransfer or
phosphatase activities and may even promote RR binding by providing an extra binding surface
that the RR can use in addition to its contacts with the DHp itself [28••].

Antikinase Blockades
Another type of PHK regulation has also been revealed as a result of recently published crystal
structures of two PHKs (KinA and KinB) that participate in the signaling cascade regulating
sporulation in Bacillus and Geobacillus [54•,55•]. These structures highlight the ability of
regulatory proteins to affect PHK activity by binding to strategic locations of the DHp domain.
For example, the ‘antikinase’ protein Sda (a KinB inhibitor) binds to the base of the KinB DHp
domain, and in this position Sda prevents or hinders DHp↔CA intraprotein, interdomain
interactions within KinB as well as interprotein interactions between KinA and the RR protein
Spo0F, effectively blocking KinB autophosphorylation and slowing KinB→Spo0F
phosphotransfer [54•]. A distinct antikinase, KipI, can bind to the PHK KinA, and this involves
a region of the DHp similar to (but more extensive than) that utilized by Sda [55•]. Interestingly,
KipI appears to recognize a segment of the KinA DHp that includes a proline residue that is
conserved in numerous other PHKs (families 1, 2, 3, and 4 in the Grebe-Stock scheme [9]).
This proline introduces a bend into α1 of the DHp , and this bend affects how tightly the helices
of the dimeric DHp four helix bundle can wind around one another [38••]. Jacques et al.
[55•] have proposed the interesting idea that KipI and related proteins might promote cis-
trans isomerization at this conserved proline, a change that would alter the conformation of
the DHp domain in a manner that would affect PHK activities. Perhaps other PHKs also utilize
regulatory mechanisms that exploit the conformation of this proline.

CONCLUSIONS
Structural information generated over the past decade has dramatically improved our
understanding of how PHKs function as enzymes, as receptors, and as signaling components.
In particular, in the past few months new structures of DHp+CA proteins have revealed specific
conformational changes that may underlie regulation of PHK activities in response to stimuli.
Box 1 summarizes some important specific questions that are likely to be addressed over the
next five to ten years to follow up on and extend recent advances. Answers to some of these
questions will help us to answer an important overarching question: is there a universal
mechanism for PHK regulation or are there several (or even many) mechanisms that have
evolved to meet the demands of specific signaling pathways? In this regard, it is interesting to
note the success of domain-swap experiments in which heterologous sensory input domains
were fused to DHp+CA domains [56,57] and the ingenious rewiring of PHK-RR specificity
by Skerker et al. [58]. The abilities of such ‘synthetic proteins’ to signal properly suggest that
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there are indeed shared regulatory mechanisms controlling PHK activities and that this
knowledge can be exploited to create novel signaling circuits [59,60].

Box 1. Key Questions for Future Work

Do DesK and HK853 crystal structures tell us how other conventional PHKs work?

PHK regulation models discussed here are based on the assumption that the alternative
conformations observed for DesK and HK853 DHp+CA fragments represent conformations
that ‘normal versions’ of PHKs would adopt. Testing these models will require analysis of
domain-domain orientations of full-length PHKs in solution, perhaps using cross-linking
methods developed in the Falke [65•] and Inouye [66•] labs or the EPR methods developed
by the Crane group [67].

How do nonconventional PHKs (like CheA and NtrB) achieve regulation?

Two of the most intensively studied PHKs, CheA and NtrB modulate their activities over
impressive ranges in response to stimuli (>100-fold ). Is this achieved using the same types
of conformational changes utilized by conventional PHKs even though CheA and NtrB
don’t have the traditional architecture?

Is there another level of PHK regulation?

PHK regulation involves some relatively large-scale changes in domain orientations, and
these control whether active sites can assemble. However, after assembly, these sites might
be further regulated by tweaking the orientation of key functional groups, as suggested by
the interacting network of active site groups identified in the CheA P1 domain[32•] and in
the Ypd1:Sln1(RR) complex[36•].

How are transmembrane signaling events linked to changes in DHp conformation?

In some PHKs (including DesK and HK853), helical signaling domains (e.g., HAMP)
provide a communication link between the sensory input domain and the cytoplasmic DHp
and CA domains, but in many PHKs this job is carried out by some other kind of signaling
domain (e.g., PAS, GAF, Cache, CHASE, etc.) [16,17]. Can they also drive cogwheeling
and bending within the DHp domain, or do they trigger distinct conformational changes?

Does clustering affect the conformations and activities of PHKs?

In the chemotaxis system and some other TCSs, the signaling proteins can cluster[68] in
arrays that may include numerous copies of the PHK (e.g., anywhere from from ~10 to
~1,500 CheA molecules[69••]). Modelers have heralded this clustering as a key design
feature for enhancing sensitivity and signal amplification[70,71], but we don’t really have
any idea how PHK conformations might be influenced by clustering or how this might affect
interactions with RRs.

What can we learn from PHK imposters?

There are some proteins (e.g., NifL [72] and ETR1 [73]) that, based on sequence
comparisons, look like PHKs, but when examined in closer detail, don’t function as kinases
in TCSs. Defining how these proteins do function may generate new insights into the
abilities of real PHKs as well as provide further examples of how the Bergerat fold of the
CA domain has been adapted to accomplish different specific functions in different enzyme
families [41,74].
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Figure 1.
Schematic diagram of the role played by PHKs in two-component signal transduction systems
(TCSs). (A) Many PHKs have three distinct but interrelated enzymatic activities that involve
positioning the phospho-accepting His in three active sites. The active sites for
phosphotransferase (PTRase) and phosphatase(Pase) activities are likely to be very similar but
are portrayed as being physically distinct for the purpose of illustration. Although the diagram
depicts the phospho-accepting His rotating from site to site, this reorientation might also
involve movement of the active sites relative to an essentially stationary phospho-accepting
His. (B) PHKs function as homodimers that autophosphorylate then pass their phosphoryl
group to an aspartate side chain located in the receiver domain of a cognate response regulator
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protein. Each PHK monomer has three distinct structural/functional domains: a transmembrane
sensor, a DHp domain, and a CA domain. Sequence comparisons have defined a homology
box within DHp (H box) that spans the phospho-accepting histidine. In addition, there are
homology boxes (5–10 amino acids) located within the CA domain at/near the ATP binding
pocket: N, G1 (sometimes called the D box), and G2 (sometimes called the G box) are
conserved in all PHKs, while the F box is present in some, but not all, PHKs (note that DesK
portrayed in Fig. 2 and Fig. 3 lacks the lacks an F box) [9,61,62]. The diagram depicts
autophosphorylation via an intradimer cis mechanism; some PHKs utilize a trans mechanism.
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Figure 2.
Summary of key features of PHK structure as illustrated with B. subtilis DesK. (A) The crystal
structure of the butterfly-shaped dimer formed by a DesK fragment that includes the CA and
DHp domains as well as a helical extension of α1 of the DHp. The protomer in back is colored
grey. Color coding for the front protomer: CA domain (blue), DHp helices (pink), extension
of DHp helix (green). This panel was modeled after Fig. 1 of Jacques et al. [55•] (B) The CA
domain of DesK with nonhydrolyzable ATP analog ADPCP bound. The location of the
conserved homology box residues are shown in different colors as well as the ‘ATP-
lid’ (magenta loop that folds over the polyphosphate groups of ATP). Note that DesK does not
have an F box [9]. (C) A top-down view of the four-helix bundle formed by the dimerized DHp
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domain (with CA domain and helical extensions removed for purposes of illustration). α1 and
α2 of one protomer are purple; helices of the second protomer are grey. The short connector
linking α1 to α2 is at the bottom of the helices from this perspective, and the membrane/sensor
input side would be the top. This figure was created using coordinates from PDB ID 3GIE
(DesKDHp+CA H188E mutant) manipulated in PyMol to replace the mutant side chain with the
phospho-accepting His (H188).

Stewart Page 15

Curr Opin Microbiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Views of the PHK autokinase and phosphotransferase active sites. (A) A PHK poised for
autophosphorylation: DesKDHp+CA with ATP bound. This figure was generated by manually
docking the one DesK CA domain onto the four-helix bundle of a DHp dimer (as described by
Albanesi et al. [38••] (docking by rigid body rotation about a pivot point in the hinge linking
DHp to CA). Coordinates for this structure were kindly provided by Dr. Alejandro Buschiazzo
and correspond to Fig. S4 in reference [38••]. This docking orients the phospho-accepting His
near the γ –phosphoryl of bound ATP and allows some complementary interdomain
electrostatic interactions (green arrows), for example between acidic side chains of the ATP-
lid (red oval) and basic side chains of the DHp (blue oval). Color coding of homology boxes

Stewart Page 16

Curr Opin Microbiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of the CA domain (N, G1, G2, and ATP-lid) is the same as in Fig. 2. (B) A PHK poised for
phosphotransfer: HK853DHp+CA bound to RR468 (generated using PDB 3DGE). Two
molecules of R468 bind to the dimeric HK853, but in this diagram only one molecule of each
protein is shown to improve clarity (i.e., only two helices of the four-helix bundle are shown).
The PHK:RR complex brings the phospho-accepting His (H260) of HK853 close to D53 of
RR468 (the phosphorylation site of RR468) and close to RR side chains that catalyze
phosphotransfer (e.g., D9, D10, M55, T83, and K105); a sulfate ion occupies a position that
may mimic that of phosphate during phosphotransfer reactions. Two key RR side chains (M55
and K105) interact with the PHK (M55 with E348 in the CA domain; and K105 with R263
and T267 in the DHp domain); their abilities to contribute to catalysis of the phosphotransfer
reaction might be influenced by these associations. However, RR468, like all response
regulators, can catalyze its own phosphorylation using small molecule phosphodonors (such
as acetyl phosphate) in the absence of any PHK [63], and so it is likely that, like other RRs,
RR468 does the ‘heavy lifting’ in catalyzing the PHK→RR phosphotransfer reaction [64],
while the PHK might make a comparatively small contribution by altering the positions or
efficacy of the catalytic scaffold provided by the RR. The PHK might, in addition, contribute
to the general hydrophobic environment in which this catalytic scaffold operates, an
environment expected to enhance the strength of charge-charge and H-bonding interactions
[36•,40].
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Figure 4.
Schematic diagram depicting how rearrangement of the helices within the DHp domain could
alter PHK activities. The DHp helices of the four-helix bundle formed in the PHK dimer are
depicted (top-down view) as cogwheels. In the starting structure (left), a surface (red cog) of
the DHp is not buried within the bundle and is available to sequester the CA domain: CA cannot
access the phospho-accepting His. In this conformation, the PHK is not active as an autokinase,
but the DHp does have interaction surfaces for RR binding, so it can function as
phosphotransferase (if it has been phosphorylated) or as a phosphatase (if it has not). Signaling
events can cause cogwheel rotation of the helices (by 60° in this diagram to match that reported
by Albanesi et al. [38••]). In this new orientation (right), the red cog of the DHp is no longer
accessible, and the CA domain has been released: now it can access the DHp surface (yellow
cog) to complete assembly of the kinase active site, including the phospho-accepting His: now
the PHK is active as an autokinase. This reorientation also inhibits phosphotransferase and/or
phosphatase activities of the PHK, either because it hides DHp surfaces important for RR
binding or because the CA now competes effectively with the RR for binding surface on the
DHp.
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