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Information about the binding preferences of many transcription factors is known and characterized by a sequence
binding motif. However, determining regions of the genome in which a transcription factor binds based on its motif is
a challenging problem, particularly in species with large genomes, since there are often many sequences containing
matches to the motif but are not bound. Several rules based on sequence conservation or location, relative to a tran-
scription start site, have been proposed to help differentiate true binding sites from random ones. Other evidence sources
may also be informative for this task. We developed a method for integrating multiple evidence sources using logistic
regression classifiers. Our method works in two steps. First, we infer a score quantifying the general binding preferences of
transcription factor binding at all locations based on a large set of evidence features, without using any motif specific
information. Then, we combined this general binding preference score with motif information for specific transcription
factors to improve prediction of regions bound by the factor. Using cross-validation and new experimental data we show
that, surprisingly, the general binding preference can be highly predictive of true locations of transcription factor binding
even when no binding motif is used. When combined with motif information our method outperforms previous methods
for predicting locations of true binding.

[Supplemental material is available online at http://www.genome.org.]

A central challenge in regulatory genomics is inferring genome-

wide the location of transcription factor binding. Knowledge of the

regions of the genome in which each transcription factor binds

leads to improved inference of the genes each transcription factor

regulates. These inferred regulatory targets of transcription factors

can then be combined with other data types, such as gene expres-

sion data to gain further insights into gene regulation and its dy-

namics at a systems level (Bar-Joseph et al. 2003; Ernst et al. 2007).

One successful approach to determining the genome-wide

binding location of transcription factors is through experimental

techniques based on chromatin immunoprecipitation (ChIP) fol-

lowed by sequencing, either by massively parallel sequencing

(ChIP-seq) or paired-end diTag sequencing (ChIP-PET), or followed

by microarray hybridization (ChIP-chip) (Carroll et al. 2006; Wei

et al. 2006; Yang et al. 2006; Zeller et al. 2006; Johnson et al. 2007;

Lim et al. 2007; Lin et al. 2007; Robertson et al. 2007; Lupien et al.

2008; Rada-Iglesias et al. 2008). However, these experiments only

provide information about the specific tissue types and conditions

that are being used. In addition, for essentially all species, in-

cluding human, the vast majority of transcription factors have not

been profiled experimentally genome-wide. The reason for this is

both due to the expense of the experiments and the requirement of

an available antibody for the transcription factor. A complemen-

tary and alternative computational approach to predicting tran-

scription factor binding is based on finding sequences in the DNA

that match a characterized binding site motif for the transcription

factor. Between the versions of the JASPAR and TRANSFAC data-

bases (Matys et al. 2003; Vlieghe et al. 2006) used in this paper

there are around 500 known positional weight matrices for hu-

man transcription factors curated from the literature. Additionally

new high-throughput experimental techniques developed to de-

termine sequence preferences of transcription factors, such as the

protein binding microarray array (Berger et al. 2008) and a bacterial

one-hybrid system (Noyes et al. 2008), are leading to the avail-

ability of sequence binding specificities for hundreds of additional

transcription factors.

Despite the availability of binding specificity for transcription

factors, the large size of mammalian genomes including human

makes detecting regulatory sites a particular challenge as there can

be many sequences in the genome, which by chance, match well

with the motif that the transcription factor recognizes, but are not

actually bound. Researchers have attempted to address this issue

by filtering sites that did not meet certain restrictive requirements.

For instance in searching for motif hits for a transcription factor,

the work of Xie et al. (2005) only considered those sites within

2000 base pairs (bp) of a transcription start site and for which the

site was conserved in mouse, rat, and dog. In contrast, Sinha et al.

(2008) did not require evidence of conservation, but used a more

restrictive requirement on the location of motif matches by only

considering regions within 500 bp upstream of the transcription

start site or 200 bp downstream. Both of these methods would give

equal weight to any position within the region of consideration,

but no weight to a site a single base out of the region. The UCSC

Genome Browser provides predictions of binding sites across the

entire genome requiring evidence of conservation in mouse and

rat (Karolchik et al. 2008). In addition to conservation data, other

high-resolution genome-wide data sets, such as DNase I hyper-

sensitivity (Boyle et al. 2008) and histone modifications (Barski

et al. 2007), have become available and can also be informative of
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transcription factor binding (Whitington et al. 2009). A combi-

nation of a small number of these information sources was also

studied (Lahdesmaki et al. 2008). Larger sets of features were con-

sidered in the specific context of predicting additional gene targets

of a transcription factor of interest when a substantial number of

its gene targets are already known (Beyer et al. 2006; Chen et al.

2007), which we do not assume here. Many other methods have

attempted to predict gene targets using gene expression data, ei-

ther with or without sequence information (Faith et al. 2007;

Ramsey et al. 2008). Our data integration method can be used

by expression-based methods to further improve their prediction

power. Note that unlike our method, expression based methods

rely on levels that differ between tissues and conditions, and may

miss genes that are bound by the TF in other conditions. Methods

that rely on expression data are prone to incorrectly attribute in-

direct regulation as direct regulation. In addition, these methods

can only predict binding regions that are in close proximity to

genes, whereas our method is applied genome-wide. In the com-

plementary problem of motif discovery, positional priors on the

location of binding sites based on single sources have also been

demonstrated to be effective in improving discovery (Narlikar et al.

2006; Narlikar et al. 2007).

With the growing number of evidence sources for transcrip-

tion factor binding, methods for integrating these diverse data

sources can further improve the prediction of transcription factor

binding. In this paper, we present a method that first constructs

a score on transcription factor binding at each base in the human

genome based on general properties of the location (e.g., distance

to nearest transcription start site, conservation, levels of histone

modifications, etc.) that are not specific to any one transcription

factor, which we term the general binding preference (GBP). As we

show, the GBP can be highly predictive of true regions of tran-

scription factor binding, compared to randomly selected regions,

even when no binding motif is used. Next, we combine the GBP

score with motif information to improve predictions of regions

bound by a specific transcription factor. We evaluated our pre-

dictions using both, cross-validation and predictions from an

independent set of new E2F ChIP-chip experiments, which we car-

ried out. Our results indicate that by combining data from a large

set of features we can improve prediction of transcription factor

binding over methods that consider a more limited set of evidence

features.

Results
We developed a computational method for combining a large

number of genome-wide data sets that may be informative of

transcription factor binding. Our method works in two steps. First,

we compute the GBP, which represents a probability for the bind-

ing of any transcription factor (TF) at each base. Next, for a specific

TF, we combine the GBP with the position weight matrix (PWM)

for the TF and use the combined score to identify genomic regions

that are likely to be bound by that TF and genes near these regions.

Our GBP score was derived based on the values of a set of 29 fea-

tures (Table 1) and reported binding sites from 14 publicly available

full human genome-wide ChIP-chip, ChIP-seq, or ChIP-PET data

sets (Table 2). For each genome-wide binding set we train a logistic

regression classifier, using all the listed features, to distinguish

between the nucleotide base in the center of the reported bound

region and a randomly selected base. We then combine the results

from the multiple training data sets and use the average probability

as the GBP for that base (see Methods). The GBP is not specific to

any one transcription factor. To score a site for a particular TF we

combine the PWM score and the GBP. To score a region we eval-

uated two strategies. In one strategy we use the maximum site score

in the region (maxMOTIF3GBP), while the other uses the average site

score across the region (avgMOTIF3GBP) (see Methods).

The GBP for transcription factor binding

We first provide an illustrative example of the GBP computed by

our method visualized in the UCSC Genome Browser (Kent et al.

2002) as a custom track. Figure 1 presents an example of the GBP

across a 250,000 base region along chromosome 20 of the human

genome. Below the plot of the GBP we plot the location of RefSeq

genes. In Figure 1, five of the six tallest peaks are concentrated

around RefSeq transcription start sites, for the genes: TGIF2, SLA2,

NDRG3, DSN1, and C20orf24. There is a smaller peak around the

transcription start site for the only other RefSeq gene in the region,

MYL9. In Figure 1 (bottom) we show a zoomed-in view of a 6000-

bp region around the gene C20orf24, circled with the label 1 in

Figure 1 (top). For C20orf24 we note that the GBP drops at the

two exons of the gene as compared to the immediate surrounding

bases. While promoter regions are often identified as likely loca-

tions to contain binding, other locations can also score high. As

can be seen in Figure 1 (top), there is a peak, circled with the label 2,

that does not correspond to the transcription start site of a RefSeq

gene; however, there is other evidence supporting this location as

containing a potential transcription factor binding site, such as

being a DNase I hypersensitive region in the experiments of Boyle

et al. (2008).

In Table 3, we report a genome-wide analysis detailing where,

relative to annotated RefSeq transcription start sites, bases that are

given a high GBP score fall. As can be seen, the GBP score increases

as we get closer to a transcription site (see also Supplemental Fig. 1,

top). However, there are still a substantial proportion of relatively

high scoring bases (e.g., 14.7% at a 0.20 threshold) that are not

within 10 kb of any annotated transcription start sites. Many of

these could potentially be enhancers or novel promoters. In the

last column in Table 3 we report the percentage of bases above each

threshold that fell in a DNase I hypersensitive site (also see Sup-

plemental Fig. 1, bottom). Thus, by integrating evidence sources

the method identifies locations that are away from known tran-

scription start sites.

Cross-validation analysis demonstrates advantage
of integrating evidence sources

Before combining the GBP with the PWM score, we tested how

well it could differentiate between a base in a center of a region

reported to be bound by a transcription factor and, as a negative

data set, randomly selected bases. We evaluated our method on the

14 data sets listed in Table 2. When evaluating a data set we would

hold out that data set from training, along with any data set for the

same transcription factor or data sets that were published in the

same paper as the data set being evaluated. We note that this cross-

validation procedure is measuring a method’s ability to generalize

to an unseen transcription factor, as opposed to simply unseen

data for the same transcription factor.

In Figure 2, we plot the receiver operator characteristic (ROC)

curves in dashed lines for each of the 14 test cases of the GBP. Sites

with the same feature value were randomly ordered on the curve.

An ROC curve shows the false-positive rate, number of false-positive

predictions over total number of negatives along the x-axis and the
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true-positive rate, number of correctly predicted positives over

total number of positives along the y-axis, as the threshold varies

for declaring a prediction to be a real site. A perfect ROC curve

would be a horizontal line at y = 1. The ROC curve expected from

random guessing is the diagonal y = x line shown with a solid line.

For comparison we also show the ROC curve for one of the histone

modification features, and plot the false- and true-positive rate

of the 39 untranslated region (UTR) feature. We selected these two

individual features to plot since globally they were among the

most and least informative individual features, respectfully. In

Supplemental Figure 2, we show ROC plots including all features.

A common metric to summarize an ROC curve is the area

under the curve (AUC) value. A perfect AUC value is 1, while an

AUC value of 0.5 is expected from random guessing. In general the

AUC value on a random sample of a full data set is an unbiased

estimate of its value on the full data set. In Supplemental Table 1,

we show the AUC for predicting the targets in each data set using

our method, and the AUC values that could be obtained by each

feature individually. For 13 of the 14 data sets, the AUC value for

our method was the highest (the exception being for TP53; see

Discussion) demonstrating the benefit of integrating the various

features we considered.

Figure 3 presents the average AUC value across all 14 data sets,

for each feature and for our method (using the cross-validation

score). Our method had the highest average AUC value of 0.78,

with the next highest average AUC values for the two features

containing information on histone modifications (0.71). The dif-

ference in AUC values between our method and the histone

modification features was statistically significant (P-value < 0.001

based on a Wilcoxon signed-rank test).

The above analysis focused on how informative a single fea-

ture could be relative to integrating them all. We also conducted an

analysis where we divided the features into five groups: Conser-

vation, CG content related features, repeat element, RefSeq based

annotations, and experimental features (Supplemental Table 2).

We repeated the same cross-validation training and evaluation

procedure as when considering all the features. For all five sets the

average AUC value ranged between 0.75 and 0.77, with the low of

0.75 occurring for the experimental set of features, though this was

still higher than that achieved based on any single feature. We also

compared with replacing the experimental features that were based

on CD4+T cells with features defined based on a separate set of three

histone modifications in human embryonic stem (ES) cells (Ku et al.

2008). This led to a lower AUC value of 0.76 (Supplemental Table 2).

Table 1. The 29 features that were used to compute a GBP probability of transcription factor binding at specific locations

Feature
no. Feature description Reference

1 PhastCons score for 28-way vertebrate alignment; 0 if not available Siepel et al. 2005; Miller et al. 2007
2 PhastCons score for placental mammal subset (18 species); 0 if not available Siepel et al. 2005; Miller et al. 2007
3 1 if PhastCons vertebrate score is available and the score is 0; 0 otherwise Siepel et al. 2005; Miller et al. 2007
4 1 if PhastCons placental mammal score is available and the score is 0; 0 otherwise Siepel et al. 2005; Miller et al. 2007
5 1 if PhastCons score is not available; 0 otherwise Siepel et al. 2005; Miller et al. 2007
6 1 if part of PhastCons highly conserved vertebrate element; 0 otherwise Siepel et al. 2005; Miller et al. 2007
7 1 if part of PhastCons highly conserved placental mammal element; 0 otherwise Siepel et al. 2005; Miller et al. 2007
8 1 if part of a conserved indel region; 0 otherwise Lunter et al. 2006
9 ln(x + 5) where x is distance in base pairs to nearest base of a vertebrate

PhastCons element (x is 0 if base is in a highly conserved element)
Siepel et al. 2005; Miller et al. 2007

10 ln(x + 5) where x is distance in base pairs to nearest base of a placental mammal
PhastCons element (x is 0 if base is in a highly conserved element)

Siepel et al. 2005; Miller et al. 2007

11 ln(x + 5) where x is distance in base pairs to nearest of a conserved indel region
(x is 0 if base is in a highly conserved element)

Lunter et al. 2006

12 The estimated melting temperature at the base Liu et al. 2007
13 Percentage of G or C base pairs of all bases within 50 bases in either direction Karolchik et al. 2008
14 1 if base is in a UCSC Genome Browser table of CpG islands; 0 otherwise Karolchik et al. 2008
15 1 if base is part of a repeat element based on RepeatMasker and Tandem Repeats

Finder as provided by UCSC Genome Browser
http://www.repeatmasker.org;

Benson 1999; Kent et al. 2002
16 1 if base is part of a transcribed region of a RefSeq gene; 0 otherwise Pruitt et al. 2007; Karolchik et al. 2008
17 1 if base is between the start and end of the coding region

of a RefSeq gene; 0 otherwise
Pruitt et al. 2007; Karolchik et al. 2008

18 1 if base is part of a RefSeq exon; 0 otherwise Pruitt et al. 2007; Karolchik et al. 2008
19 1 if base is part of a RefSeq exon and within the coding region

of the gene; 0 otherwise
Pruitt et al. 2007; Karolchik et al. 2008

20 1 if base is part of a RefSeq intron; 0 otherwise Pruitt et al. 2007; Karolchik et al. 2008
21 1 if in a RefSeq 39 UTR; 0 otherwise Karolchik et al. 2008; Pruitt et al. 2007
22 1 if in a RefSeq 59 UTR; 0 otherwise Pruitt et al. 2007; Karolchik et al. 2008
23 ln(x + 5), where x is the absolute number of base pairs to nearest

RefSeq transcription start site
Pruitt et al. 2007; Karolchik et al. 2008

24 1 if base is in a reported DNase I hypersensitive region in; 0 otherwise Boyle et al. 2008
25 ln(x + 1), where x is the number of sequence reads for the interval of the base

in the summary file for CTCF
Barski et al. 2007

26 ln(x + 1), where x is the number of sequence reads for the interval of the base
in the summary file for histone variant H2A.Z

Barski et al. 2007

27 ln(x + 1), where x is the sum of the number of sequence reads for the interval
of the base in the summary files for the 20 histone methylation modifications.

Barski et al. 2007

28 The sum over ln(xi + 1) for i = 1,. . .,20, where the xi’s are the number of sequence
reads for the interval of the base for the 20 histone methylation modifications.

Barski et al. 2007

29 ln(x + 1), where x is the number of sequence reads in the interval of the base
in the summary file for RNA polymerase II

Barski et al. 2007

Ernst et al.
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Combining the GBP with motif information improves
the prediction of bound regions

Cross-validation analysis indicates combining motif scores with the GBP
score improves predictions of bound regions

Next, we used our combined GBP and motif scores to predict

binding events for a specific TF (see Methods). Our first analysis

focused on evaluating whether the method could predict which

RefSeq transcription start sites (TSSs) would have the center of

a reported bound interval within 10 kb. We evaluated, using cross-

validation with the data sets listed in Table 2, using the same

procedure as above, where we would hold out the entire TF binding

set and any data set for the same TF or data set published in the

same paper. We excluded the TRIM28 data set from our evaluation

since it is a corepressor and does not have a motif itself. Supple-

mental Table 3 lists the motifs from the TRANSFAC databases we

used to compute the PWM score.

We compared the maxMOTIF3GBP

and avgMOTIF3GBP methods to methods

that just used the maximum motif score

(maxMOTIF), the average motif score

(avgMOTIF), and the maximum and aver-

age GBP score (maxGBP and avgGBP).

Methods that score promoter regions for

a motif based on the maximum or aver-

age motif score have been suggested

previously (Frith et al. 2004; Hertzberg

et al. 2005), and here we extend them

to include the GBP score. We compare

methods based on ROC curves (Supple-

mental Fig. 3) and AUC values (Fig. 4;

Supplemental Table 4).

As can be seen, on average, the

AUC with either the maxMOTIF3GBP or

avgMOTIF3GBP method is greater than the

maxMOTIF, avgMOTIF, avgGBP, and maxGBP

methods. The difference between the

avgMOTIF3GBP and avgMOTIF method is sig-

nificant (P < 0.002, based on a Wilcoxon

sign-ranked test). The maxMOTIF3GBP and

avgMOTIF3GBP gave very similar results.

We repeated the analysis for win-

dows of 2 kb and 5 kb and for first-, sec-

ond-, and third-order global background

models and a zero-order local background

model estimated based on the interval

scanned and in all cases found on average

maxMOTIFxGBP and avgMOTIF3GBP had the

Table 2. Table of full genome location data sets

Regulator Cell type
No. of sites

in hg18 Technology Source

MYC Human B cell 4296 ChIP-PET Zeller et al. 2006
ESR1 MCF7 breast cancer 5782 ChIP-chip Lupien et al. 2008; reanalysis

of Carroll et al. 2006
ESR1 MCF7 breast cancer 1231 ChIP-PET Lin et al. 2007
FOXA1 MCF7 breast cancer 12,904 ChIP-chip Lupien et al. 2008
TRIM28 Ntera2 testicular carcinoma 6887 ChIP-chip O’Geen et al. 2007
RELA LPS-stimulated THP-1 5856 Chip-PET Lim et al. 2007
REST Jurkat T 1932 ChIP-seq Johnson et al. 2007
TP53 HCT 116 colon cancer 542 Chip-PET Wei et al. 2006
TP63 ME180 cervical carcinoma Act D(+) 3677 ChIP-chip Yang et al. 2006
TP63 ME180 cervical carcinoma Act D(�) 5794 ChIP-chip Yang et al. 2006
USF1 Liver cell 2518 ChIP-chip Rada-Iglesias et al. 2008
USF2 Liver cell 1350 ChIP-chip Rada-Iglesias et al. 2008
STAT1 HeLa S3 IFNG stimulated 41582 ChIP-seq Robertson et al. 2007
STAT1 HeLa S3 IFNG unstimulated 11004 ChIP-seq Robertson et al. 2007

Full genome-wide binding data sets were used. We excluded sites that did not map successfully to hg18, as well as the three mitochondria sites in Lin et al.
(2007), and 43 sites on chr*\_random (meaning the site is known to be on a certain chromosome, but the location within the chromosome is not known)
in O’Geen et al. (2007).

Figure 1. Illustrative examples of the GBP of transcription factor binding. The GBP viewed using
a custom track of the UCSC Genome Browser (Kent et al. 2002). (Top) A 250,000-bp region of chro-
mosome 20 shows the GBP for transcription factor binding. Gene locations are displayed below the plot
of the GBP. Most of the peaks in this image correspond to a RefSeq transcription start site. The peak in
the oval labeled with a 2 does not, but is a DNase I hypersensitive region (Boyle et al. 2008). (Bottom) A
zoomed in view of the peak in the oval labeled with a 1 from the top panel that is near the transcription
start site of C20orf24. The exons of C20orf24 have lower probability than its immediate surrounding
bases.
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best AUC values (Supplemental Table 5). This conclusion also held

when computing the AUC under the ROC curve limiting it to

a false-positive rate of, at most, 10% (Supplemental Table 6). We

also conducted evaluations where we binned the non-gapped

portion of the genome into 1-kb bins and evaluated the method’s

ability to predict which bins contain the center of a reported

bound region and again had the highest average AUC values when

combining the motif and GBP scores (Supplemental Table 7). We

repeated the analysis excluding bins within 2 kb, 5 kb, and 10 kb of

an annotated RefSeq TSS bin and saw similar results (Supplemental

Table 8).

For the evaluation on predicting binding within 10-kb in-

tervals around the TSS, we also, in Supplemental Figure 3, compare

with ranking each region based on the highest scoring site on the

UCSC TFBS conserved track for each of the transcription factors we

looked at (Karolchik et al. 2008). The UCSC TFBS conserved track

identifies motifs that are conserved across human, mouse, and rat

and scores these sites based on the motif match. In all cases the

ROC curves obtained by the maxMOTIF3GBP or avgMOTIF3GBP scores

improved upon the UCSC track. In some cases including MYC,

REST, and TP53 the predictions based on the UCSC TFBS conserved

track were substantially below those of our method. This suggests

that some bound sites for these factors in human can be predicted

relatively accurately, despite not showing a conserved motif in-

stance based on mouse and rat. We also tried an evaluation where

instead of the GBP we used the probability a base is predicted to

not be occupied by a nucleosome (Kaplan et al. 2009), but this

did not improve over just using motif information (Supplemental

Tables 4, 5).

Evaluation on independent E2F promoter ChIP-chip data

To test our method on a new data set we carried out new ChIP-chip

experiments for E2F factors. These included 13 E2F experiments,

seven for E2F4 and six for E2F2, using a primarily core promoter

array. We have also evaluated our method on another set of 30

experiments previously published for E2F1, E2F4, and E2F6 (Xu

et al. 2007). The task was to predict those spots on the array that

would be declared bound (see Methods). For both these sets, we

computed the AUC values for the methods we compared above.

Figure 5 and Supplemental Table 9 present the results of this

comparison for our new E2F data set. Supplemental Figure 4 and

Supplemental Table 10 present the results for the experiments of

Xu et al. (2007). Both sets of experiments clearly demonstrate that

combining our GBP score with a motif score improves predictions

when compared to other methods. A GO analysis of our top 1000

predicted targets revealed a significant enrichment for cell cycle

genes (P-value < 4 3 10�12; 2.3-fold) and related GO categories.

Cell cycle genes were also significantly enriched across all E2F

factors profiled both in this study and in Xu et al. (2007) (see

Supplemental Table 11).

Over the 13 new experiments we conducted, there was a set of

169 genes that were bound in at least nine of them. We have also

observed that our method correlated well with the number of ex-

periments in which a gene was identified as an E2F target. Specif-

ically, as Supplemental Table 12 shows, the performance of our

method improved for sets of genes bound in multiple experiments.

In the set of 169 genes bound in nine or more experiments, 72 of

them were predicted in the top 10% of predictions based on the

maxMOTIF3GBP method. This set of genes, which is consistently

bound in different cell cycle phases and by different E2F members,

represents the core of the E2F target genes. As expected, this core

set of E2F targets was highly enriched for cell cycle related cate-

gories (e.g., cell cycle P-value = 0.014) even when compared to the

;1500 genes bound by E2F in any of the experiments we per-

formed. The list of genes in the overlap of nine or more experi-

ments and in the top 10% of our predictions includes many of the

key genes involved in the cellular processes occurring during the

transition from G1 to S. For example, the core E2F targets include

10 genes encoding histones, 12 genes involved in DNA replication

Figure 2. The ability of the GBP to differentiate between reported
bound sites and random sites. ROC curves for a number of different
methods for predicting bound locations. (X-axis) False-positive rate;
(y-axis) true-positive rate. Results of predictions made by our method us-
ing cross-validation analysis for this factor (dashed line); expected perfor-
mance of a random guess (solid line). Also plotted are the ROC curve for
a feature based on histone modifications (dotted line) and a point for the
39 UTR feature. These were selected since they achieved the highest and
lowest average AUC values, respectively. An extended version of this plot
with additional features can be found in Supplemental Figure 2.

Table 3. Genomic distribution of GBP sites above certain thresholds

GBP score
threshold Genomea

0.5 kb
TSSb

1 kb
TSSb

2 kb
TSSb

5 kb
TSSb

10 kb
TSSb

DNase I
hypersensitivityc

0.00 100% 0.6% 1.2% 2.4% 5.8% 10.9% 2.0%
0.05 4.4% 10.7% 18.4% 26.5% 37.7% 48.3% 33.2%
0.10 1.2% 28.4% 44.8% 55.4% 64.4% 71.4% 76.5%
0.20 0.4% 47.4% 67.6% 76.0% 81.5% 85.3% 96.3%

aThe percentage of the genome that is occupied with bases reaching this GBP score.
bThe percentage of bases that are within 0.5, 1, 2, 5, and 10 kb from a RefSeq transcription start site (TSS) among those that are at or above the GBP
threshold score of the row.
cThe percentage of bases in a reported DNase I hypersensitive region (Boyle et al. 2008) among those that are at or above the GBP threshold of the row.
The GBP was set so that a location on average would be expected to have a value of 0.02.
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and repair (CDC6, EXO1, CLSPN, POLA1, PCNA, MLH1, MCM3,

ORC3L, TIMELESS, MSH2, BLM, and FANCD2), and two genes in-

volved in the control of G1/S transition (CDC25A and RBL1). We

also found three genes involved in the G2/M stage of the cell cycle

(SMC3, NDC80, and CDC23), supporting a previous observation

that the E2F proteins are involved in the regulation of this cell

cycle stage as well (Ren et al. 2002).

Discussion
We developed a two-step approach for

predicting targets of TFs on a genome-

wide scale. Our method leverages recent

genome-wide data sets to learn a general

binding preference on transcription fac-

tor binding and then combines this GBP

with PWMs to predict targets of specific

TFs. We showed that by integrating a va-

riety of data sources our method could

more accurately identify locations in the

genome bound by a transcription factor

than any one data source we consider or

by only using the PWM score. Predictions

from our method, both the GBP of each

base in the genome for transcription fac-

tor binding, and gene target predictions

of TFs are available on our website, http://

www.sb.cs.cmu.edu/humanTF.

Using a GBP for TF binding prediction

A surprising result was how effective the

GBP alone, without any motif informa-

tion, could be at predicting which pro-

moter regions would be bound by the

transcription factors we looked at. In other

words, genes that were ranked higher

using our GBP score were more likely to

be bound by any of the TFs we looked at,

including the targets of our new E2F ex-

periments. One possible explanation for

this is that values for some of the features

may indicate that a nearby gene is likely

to be transcriptionally active (e.g., hy-

persensitivity and histone modification

features), and that transcriptionally ac-

tive genes are more likely to have tran-

scription factors binding in their pro-

moter region. Another intriguing related

possibility is that some genes can be ac-

tivated by a very large number of factors.

Looking at the genes that scored highly

when using only our GBP among all

RefSeq genes, the most enriched molec-

ular functions were transcription regula-

tor activity (P-value = 3 3 10�28), and the

most enriched biological processes were

transcription from RNA polymerase II

promoter (P-value = 2 3 10�18) and reg-

ulation of metabolic process (P-value =

2 3 10�16). Thus, these may represent

a subset of genes required under a wide

range of conditions and in many different tissue types (also known

as ‘‘housekeeping genes’’). A possible way to explain the fact that

these genes are always ‘‘on’’ is that many different factors can ac-

tivate them, and so, for any specific condition or tissue, there are

factors that are expressed in that condition and activate this set of

genes. Consistent with this we see that intervals around the TSS

that were bound in more of the genome-wide experiments had

a higher average GBP score (Supplemental Fig. 5).

The TP53 data set was an outlier in that no feature could

achieve an AUC value above 0.61, and the GBP score achieved an

Figure 4. Comparison of AUC values for predicting if a transcription factor binding site lies within
10,000 bases of a RefSeq transcription start site. Shown are the AUC values for the ROC curves in
Supplemental Figure 3. The leftmost bars plot the average over all data sets. As can be seen, by com-
bining the GBP with the motif scanning score, we improve the prediction of regions bound by specific
transcription factors.

Figure 3. Comparison of average AUC values for our GBP and individual features. This graph com-
pares the average AUC value obtained across all 14 data sets and to the cross-validation AUC value
when combining the features together using our method. The graph shows the highest average AUC
value obtained when combining all features using our method. The individual values that were used to
compute these averages can be found in Supplemental Table 1.
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AUC of only 0.56. The TP53 data set had the smallest number of

detected bound regions from any of the 14 experiments, so it is

possible that there still are many TP53 binding sites receiving high

GBP scores that were either not detected as bound or not bound in

the condition considered. A previous analysis of the bound TP53

binding sites detected in this experiment found an enrichment for

TP53 sites in endogenous retrovirus (ERV) retroelements, and sug-

gested using these elements as a mechanism by which TP53 was

able to propagate its binding sites (Wang et al. 2007). As ERVs are

specific to the primate lineage and selected against being near

genes (Wang et al. 2007), this could also explain why some of the

features we consider are less predictive of TP53 binding sites than

for other transcription factors we consider.

Of the features we considered, the most informative single

feature based on the AUC was the total histone modification levels

(Barski et al. 2007). Specific histone modifications are known to be

correlated with promoters and enhancers (Barski et al. 2007) and,

thus, regions of likely transcription factor binding. Despite being

determined in one specific cell type for which none of the tran-

scription factor binding data were measured, CD4+T, the analysis

in this paper shows that at least the feature based on an aggrega-

tion of histone modification levels is still highly informative across

cell types. Another informative feature was DNase I hypersensitive

locations. Supplemental Figure 1 shows that at the lowest false-

positive rates, the DNase I hypersensitive locations in a number of

cases had a true-positive rate that was better than the histone

modification features. This supports the observation that experi-

mentally derived data in one cell type can be used to predict

transcription factor binding in another cell type. As DNase I hy-

persensitivity and histone modification data are collected in more

cell types it will be interesting to see to what extent predictions can

be improved even further with this additional data. It will also be

interesting to see to what extent predictions can be improved even

further by bringing in additional data sets, such as a recent ex-

perimental genome-wide data set on nucleosome positioning

(Schones et al. 2008).

Combining the GBP with a PWM to predict targets of
a specific TF

We evaluated the combined PWM and GBP score using cross-val-

idation and also using new ChIP-chip experiments focusing on E2F

factors. We showed that by combining the motif score with the

GBP score we could outperform just using the PWM score or just

using the GBP score. This method also outperformed the pre-

dictions available from the conserved TFBS track of the UCSC

Genome Browser (Karolchik et al. 2008), which, similar to the

approach of Xie et al. (2005), required conservation of the motif

instance. We have also compared our method with predictions in

the PREM database based on the method of (Blanchette et al.

2006). As can be seen in Supplemental Tables 13 and 14, for almost

all factors our method outperformed these predictions, and in

some case the improvement was over 50%. We also directly com-

pared multiplying the PWM score with the histone feature value,

which on average gave lower scores (Supplemental Table 15), but we

note that for the TFs that have highly informative motifs, such as

TP53 and REST, the PWM scores dominate leading to similar pre-

dictions for both methods.

While our method achieved high AUC values indicating the

significance of the results, there are still many sites identified in

high throughput experiments that are missed by our method

(Supplemental Table 16). We believe that our results are most

useful for identifying core targets of TFs and for methods, such as

DREM, that integrate protein–DNA interaction data with other

high throughput data sets (Ernst et al. 2007).

The lowest AUC values we reported in Figure 4 were for the

two TP63 data sets. As the motif found using the de novo motif

discovery method for targets identified in the TP63 genome-wide

ChIP-chip data (Yang et al. 2006) only weakly resembles the

TRANSFAC motif, these results are not too surprising. Other papers

have also reported improvements over the canonical motif for

various transcription factors using de-novo motif discovery on the

bound locations (Wei et al. 2006; Johnson et al. 2007; Xu et al.

2007). It will be interesting to see if the performance improves

when using new experimentally determined motifs (Berger et al.

2008; Noyes et al. 2008) as opposed to the curated TRANSFAC

and JASPAR motifs. We note however there are motifs, such as

for STAT1, that enrich directly under the peaks of binding sites

(Robertson et al. 2007), but still may not be informative enough to

significantly improve predictions of binding in wider regions as

compared to the GBP alone.

The focus of our evaluation in this paper was on the rankings

produced by the various methods considering each transcription

factor separately. It will also be interesting to explore the extent to

which we can predict how many sites a transcription factor binds.

For instance one approach would be to look for sites that have

significantly higher scores than would be expected to be observed

when randomizing columns of the PWM. However, to effectively

evaluate these types of approaches we will need data for more

transcription factors collected under more consistent procedures.

This paper presents a method to improve the inference of

transcription factor binding across the human genome and for

associating transcription factors with genes based on genomic

Figure 5. Results at predicting targets for E2F2 and E2F4 using new
ChIP-chip experiments. The chart shows a comparison of five methods for
the task of predicting gene targets of the E2F family of transcription fac-
tors based on 13 different ChIP-chip experiments. For each method, an
AUC value was computed for each of the 13 experiments. The experi-
ments were ordered in descending order of the average AUC value across
the five methods considered. The x-axis shows the position in this or-
dering, and the y-axis shows the AUC value corresponding to the position.
The plot shows that the methods that jointly use the GBP and motif have
a higher AUC value at each rank position, when compared to methods
that use only the GBP or only the motif information. The experiments
these correspond to can be found in Supplemental Table 9.
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properties. Our complete ranked predictions for 512 human PWMs

are available on the supporting website and can be used, as dis-

cussed in the introduction, for generating new hypotheses re-

garding regulatory networks. As more data becomes available, the

predictions the method makes should be expected to improve

further. Such predictions, when combined with other data sources

such as time series gene expression data, have the potential to lead

to important insights into transcription factors controlling specific

regulatory responses in human cells.

Methods

Training data sets
We collected the genome coordinates of regions containing
binding sites for transcription factors for 14 publicly available
human genome-wide ChIP-chip, ChIP-seq, or ChIP-PET data sets
(Table 2). One of the data sets is for TRIM28, which is a corepressor
(O’Geen et al. 2007) that itself does not bind DNA, but instead
binds to transcription factors that bind the DNA. However, the
location of TRIM28 binding is still informative of the location of
transcription factor binding. Table 2 reports the number of target
sites identified in each data set based on what the authors of the
paper reported. If sites were given in hg17 coordinates they were
first mapped to hg18 using the default settings of the UCSC Ge-
nome Browser lift over tool (Kent et al. 2002).

As can be seen in Table 2 the number of declared target sites of
a transcription factor can vary considerably. This can both be due
to the different binding activity of the transcription factor, but also
because of differences in the sensitivity of different technologies,
or differences in the use of the same technology.

Genomic features for prediction

In Table 1 we list the 29 features we used to learn a GBP on tran-
scription factor binding. Before using the feature values with the
logistic regression classifier the feature values were standardized.
Standardization of feature values was done by subtracting the
mean of the feature and then dividing by its standard deviation.

The first 11 features are all related to conservation and com-
puted based on data obtained from the UCSC Genome Browser site
(Karolchik et al. 2008). Features 1 and 2 are the PhastCons con-
servation (Siepel et al. 2005) score based on alignment of 28 ver-
tebrate species and an 18 species placental mammal subset, re-
spectively (Miller et al. 2007). The PhastCons method is based on
a two-state Phloygenetic-HMM (Siepel et al. 2005), and the score
represents the posterior probability that the hidden state is the
conserved state at that base. For about 2% of bases no PhastCons
score was available, and in these cases we set the probability to 0.
We note that about 40% of bases have a PhastCons score of 0 in the
provided files, with the next largest value 0.001. Since there might
be a significant difference between PhastCons values of 0 and
those slightly greater than 0, we added three features related to
PhastCons scores of 0. Features 3 and 4 are binary features indi-
cating if the PhastCons score was available and 0, for the vertebrate
and placental mammal alignments, respectively. Feature 5 was
a binary feature indicating if the PhastCons score was not available
and thus set to 0, which was always the same for both the verte-
brate and the placental mammal subsets. The UCSC Genome
Browser site also provides continuous stretches of bases that are
highly conserved based on the PhastCons score (Karolchik et al.
2008). Features 6 and 7 are binary features indicating if the base fell
within one of these PhastCons highly conserved elements for the
vertebrate and the placental mammal subsets, respectively. Feature
8 indicates if a base is in a region identified as conserved based on

a lack of indels, that is insertions or deletions of bases in sequence
alignments with mouse and dog (Lunter et al. 2006). This measure
does not take into account nucleotide substitutions, which drive
the PhastCons scores. Features 9, 10, and 11 are the natural log of
the number of bases to the nearest base that is within a PhastCons
highly conserved vertebrate element, PhastCons conserved pla-
cental mammal, or indel conserved region after adding a pseudo-
count of 5.

Feature 12 is the estimate melting temperature to separate
the two strands of DNA as computed in Liu et al. (2007). Higher
melting temperatures means the DNA strands will be more stable,
which is hypothesized to facilitate transcription factor binding.
Feature 13 measures GC content as the percentage of bases that are
a ‘‘G’’ or ‘‘C’’ among those bases that are within 50 bp of the base
being considered. The melting temperature is strongly, though not
perfectly, correlated with the local GC content of the region (Liu
et al. 2007). Feature 14 is a binary feature indicating whether the
base lies in a CpG island, as provided by the UCSC Genome
Browser (Karolchik et al. 2008). CpG islands are regions of the ge-
nome that are GC rich and significantly over-represented with the
dinucleotide of C followed immediately by G, and are believed to
play a role in gene regulation (Gardiner-Garden and Frommer 1987).

Feature 15 indicates if the base is part of a repeat element, as
provided by the UCSC Genome Browser using RepeatMasker (AFA
Smith, R Hubley, and P Green, http://www.repeatmasker.org/) and
Tandem Repeats Finder (Benson 1999).

Features 16–23 are based on the RefSeq (Pruitt et al. 2007)
gene annotations as of June 8, 2008 downloaded from the UCSC
Genome Browser site (Karolchik et al. 2008). Features 16–22 are all
binary features. Features 16 and 17 indicate if a base is between
a RefSeq gene start site and end site for transcription and coding,
respectively. Feature 18 indicates if the base lies in a RefSeq exon.
Feature 19 indicates that in addition to being in an exon the site is
also in the coding region, thus excluding the portions of exons at
the ends of the transcribed region that are not translated into
proteins. Feature 20 indicates if the base is between the start and
end of the coding sequence and not in an exon. Features 21 and 22
specify if the base lies in the transcribed regions of the DNA that are
downstream and upstream of the coding sequence, respectively.
Feature 23 is the natural log of the number of bases to the nearest
RefSeq transcription start site after adding a pseudocount of five
bases.

Feature 24 is a binary feature indicating if the base was in
an experimentally determined DNase I hypersensitive region in
CD4+T cells (Boyle et al. 2008). DNase I hypersensitive regions
correlate with nucleosome depleted regions, which are believed to
be more likely to contain transcription factor binding sites.

Features 25–29 are all based on ChIP-seq data in CD4+T cells
from Barski et al. (2007). In this case, the ChIP-seq data were not
determining the location of transcription factors, but were used to
determine the locations of 20 different histone modifications,
histone variant H2A.Z, the RNA polymerase II, and the insulator
binding protein CTCF. The histone modifications in these data
were all methylations and differ as to which histone of the nu-
cleosome is targeted, which amino acid of the histone is modified,
and in the quantity of methylations. We used the summary data
files from the supporting website of Barski et al. (2007), which
provided the number of tags within a 200-bp window for all fea-
tures, except for the RNA polymerase and CTCF for which the
number of bases was 400. For the RNA polymerase, CTCF, and
H2A.Z we have a feature that is the natural log of the number of
tags plus one. The histone modification features, 27 and 28,
combine data from all 20 of the histone modifications types. Fea-
ture 27 is the natural log of the sum of the number of tags across all
20 histone modification types. Feature 28 is the sum of the natural
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log of the number of tags for each histone modification. We note
for the same total number of histone tags, Feature 28 will be larger
if the tags are distributed uniformly across all the different histone
modification types, while for Feature 27 only the total number of
tags matters and not how they are distributed. We chose to com-
bine the 20 histone modification values into these two features,
instead of keeping each as separate features, to prevent over fit-
ting the condition-specific values of individual histone modifica-
tions.

Method to learn the GBP

Our method learns a function that maps a set of features measured
for a location in the human genome to a GBP score that a tran-
scription factor binds that location. In order to learn this func-
tion, the method uses as training data C data sets, each reporting
regions of the genome (of size 1000 bp) within which a transcrip-
tion factor is determined to bind, based on a genome-wide exper-
iment (either ChIP-chip, ChIP-PET, or ChIP-seq).

Our method first learns independently for each of the C data
sets a probabilistic classifier (see below for a discussion of training
data sets). To obtain our GBP score for a specific base location, the
method takes the mean of the probability obtained from each of
the C classifiers. As described below, each classifier was calibrated
to give the same total weight regardless of the number of binding
events, thus, taking the average will preserve this weighting. We
chose to use the mean, as opposed to the median, to better use
information in data sets for which there might be a set of features
that are strongly predictive of transcription factor binding, but for
which this is the case for only a few data sets.

For each classifier we used as positive training examples a base
location in the center of each genomic region reported to be bound
by the transcription factor. By using the base in the center of the
region we are selecting a base for which it is reasonable to expect
the transcription factor will most likely bind. This expectation is
reasonable as many of the regions have peaks in the experimental
data in the center, which in some cases have been shown to have
strong enrichment for having a motif for the transcription factor
on or near the base (Johnson et al. 2007). Additionally, selecting
the base in the center minimizes the maximum distance to the
actually bound bases in the region. Since many of the features we
use are heavily correlated among neighboring bases, for example,
the distance to a transcription start site or a conserved element, the
actual base selected for this function should have a limited impact
on the GBP probabilities.

As a negative set we randomly sampled 49 base locations for
every one positive location. The randomly selected locations were
restricted to come from the nongapped regions of the human ge-
nome sequence. In each case we did a stratified random sampling
so that for every one real location on a chromosome we would
have 49 randomly selected locations from the same chromosome.
We are thus setting a prior expectation that, on average, 2% of
locations are bound by a transcription factor. As rough justification
why a 2% estimate is reasonable at an approximation level we note
that at least 3.5% of the human genome is believed to be under
purifying selection and thus functional, but is not protein coding
(Siepel et al. 2005). The 3.5% figure likely includes a substantial
portion of regions of the genome that are functional for reasons
other than being transcription factor binding sites. However, there
are also demonstrated functional transcription factor binding sites
that do not show evidence of conservation (McGaughey et al.
2008). By having all training data sets have the same proportion of
positive and negative sites, the method will also be robust against
a situation in which a transcription factor from one data set has
a disproportionate number of called targets.

Formally, the GBP score the method gave to a single base lo-
cation in the human genome, b, being bound by a transcription
factor is

Pðb f b

�
� Þ =

1

C
3 +

C

c = 1

Pcðb f b

�
� Þ;

where fb is a vector of feature values specific to genome location
b (see above for a discussion of the set of features used), and P(b|fb)
is the probability a logistic regression classifier gives that a location
with a set of features fb is bound by a transcription factor. Using
a logistic regression classifier gives the advantage of having a well-
defined probabilistic output. We used the logistic regression im-
plementation LR-TRIRLS (Komarek and Moore 2005) that could
effectively scale to some of our larger training sets containing over
a million data points. We used the default settings of the software,
which sets the ridge parameter to 10. If a base is in a gap portion of
the genome sequence we automatically set its GBP to 0.

Method for combining the GBP with motif evidence

Given a transcription factor and its corresponding PWM we would
like to identify the locations to which it would most likely bind. We
define a region as a sequence containing L continuous base loca-
tions, ba,. . .,ba+L-1. Associated with each location is the GBP dis-
cussed in the previous section. For base bi, we also have a motif
score for the site on the positive strand that begins at position bi,
which we will denote m+(bi), and a motif score for the site on the
negative strand that ends at base bi, which we will denote m�(bi).

For the results in this section, we represented the motif with
a positional weight matrix (PWM), and the score was computed
using a zero-order background model (Stormo 2000). The back-
ground nucleotide probabilities were set to their genome-wide
proportion.

A pseudocount of twice its genome-wide proportion was
added to each entry in the PWM. In our results the scores for m+(bi)
and m_(bi) were defined as

m+ ðbÞ =
QW�1

j = 0 uPWMj + 1
½g+ðbi + jÞ�

QW�1
j = 0 ubackground½g+ðbi + jÞ�

m�ðbÞ =
QW�1

j = 0 uPWMj + 1
½g�ðbi + W�j�1Þ�

QW�1
j = 0 ubackground½g�ðbi + W�j�1Þ�

;

where g+(x) and g�(x) represent the nucleotides on the positive and
negative strands at location x, respectively; ubackground(y) is the
background probability of nucleotide y; and uPWMj

ðyÞis the proba-
bility the PWM model gives at position j of observing nucleotide y,
where the PWM is indexed starting at position 1.

The motif score we associate with base bi is

mðbiÞ = max½m+ ðbiÞ;m�ðbiÞ�:

For a motif of length W we defined a combined GBP and motif
score at each location s(bi) as

sðbiÞ = mðbiÞ 3
1

W
+
W

j = 1

pðbj + 1Þ:

Here, we are averaging the GBP score over each base position of the
potential binding site.

We considered two methods for scoring entire regions of
length L (for example, upstream regions of specific genes). One
method uses the maximum value of s(bi) in the region, while the
other uses its average value. Formally, the two methods are
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maxMOTIF 3 GBP = max½sðbiÞ; . . . ; sðbLÞ�

avgMOTIF 3 GBP =
1

L
+
L

i = 1

sðbiÞ:

For comparison purposes, we also define the following strategies:
maxMOTIF is the maximum motif score at any site in the region;
avgMOTIF is the average motif score in the region, which has been
suggested previously (Frith et al. 2004); and avgGBP and maxGBP

are the average and maximum GBP scores in the region, respec-
tively. Formally, these are written as

maxMOTIF = max½mðbiÞ; . . . ;mðbLÞ�

avgMOTIF 3 GBP =
1

L
+
L

i = 1

mðbiÞ

maxGBP = max½pðbiÞ; . . . ; pðbLÞ�

avgGBP =
1

L
+
L

i = 1

pðbiÞ:

E2F ChIP-chip validation

In total, we conducted 13 ChIP-on-chip experiments on BJ-T cells
(primary foreskin fibroblast immortalized with the TERT gene)
using antibodies against E2F2 (six experiments—two in asyn-
chronous culture, two on cells arrested at late G1, and two on cells
in the S phase) and against E2F4 (seven experiments, all on asyn-
chronous cells) meeting our quality control standards. The data are
available in the ArrayExpress database under accession number
E-MEXP-2169.

The immunoprecipitated DNA, along with similar amounts of
input DNA, were amplified using ligation mediated PCR, labeled
with Cy5 and Cy3 dyes and hybridized to an human promoter
array (Hu19k) as described (Odom et al. 2004). To declare bound
targets, we used a P-value threshold of 0.01, where P-values were
computed based on a normalization procedure described in Ren
et al. (2000). As a means of quality control, we required that a data
set have at least 300 significant targets at this threshold. When
scoring promoter regions for potential E2F binding, we defined the
promoter region based on exactly the portion of the sequence
present on array. We used the unique E2F motif in the JASPAR
database that has the ID MA0024.

The previously published ChIP-chip experiments were con-
ducted on promoter arrays with ;1500 bases for a promoter (Xu
et al. 2007). In total, the data set of Xu et al. (2007) contained 30
ChIP-chip experiments for the transcription factors E2F1, E2F4,
and E2F6 in five cell types—MCF10A, HelaS3, GM06990, Ntera2,
and MCF7—with two replicates for each of the 15 combinations of
transcription factor and cell type. For each of the 30 ChIP-chip
experiments we declared the bound targets of the transcription
factor to be those with an enrichment score >1 as defined and
suggested in Xu et al. (2007). For each method considered we ap-
plied it to only the portion of the genome that the probes on the
microarray cover, after converting the annotated hg17 coordinates
to hg18 coordinates.

UCSC Genome Browser comparison

When comparing our predictions with those of the UCSC Genome
Browser TFBS conserved track, the score for the transcription factor
was used as provided by the UCSC Genome Browser, so in some
cases it used slightly different motifs for the transcription factor

than we used. No predictions for FOXA1 and TP63 were available
from the UCSC TFBS conserved track. Also some regions did not
have any site reported, either because it did not meet their mini-
mum score threshold or was not conserved, which is why its ROC
curve does not reach a true-positive rate of 1. This is also why we
did not include this method in the comparison in Supplemental
Tables 4–8.

Acknowledgments
We thank the Broad Institute, the Human Genome Sequencing
Center at the Baylor College of Medicine, the Genome Sequencing
Center at Washington University, the Sanger Center, the Depart-
ment of Energy’s Joint Genome Institute, and the National In-
stitute of Genetics in Japan for making the PhastCons data on the
vertebrate and mammalian alignments available prepublication.
We thank Peter Pong for assistance in implementing a prior version
to the described method. This work was supported in part by NIH
grant 1RO1 GM085022 and NSF CAREER award 0448453 (Z.B.J.)
and a Siebel Scholar Fellowship (J.E.).

References

Bar-Joseph Z, Gerber G, Lee T, Rinaldi N, Yoo J, Robert F, Gordon B, Fraenkel
E, Jaakkola T, Young R, et al. 2003. Computational discovery of gene
modules and regulatory networks. Nat Biotechnol 21: 1337–1342.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev
I, Zhao K. 2007. High-resolution profiling of histone methylations in
the human genome. Cell 129: 823–837.

Benson G. 1999. Tandem repeats finder: A program to analyze DNA
sequences. Nucleic Acids Res 27: 573–580.

Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pea-Castillo L,
Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, et al. 2008. Variation
in homeodomain DNA binding revealed by high-resolution analysis
of sequence preferences. Cell 133: 1266–1276.

Beyer A, Workman C, Hollunder J, Radke D, Möller U, Wilhelm T, Ideker T.
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