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Global Image Dissimilarity in Macaque Inferotemporal
Cortex Predicts Human Visual Search Efficiency

Arun P. Sripati' and Carl R. Olson'2
ICenter for the Neural Basis of Cognition, Carnegie Mellon University, Mellon Institute, Pittsburgh, Pennsylvania 15213, and 2Department of Neuroscience,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Findinga targetin a visual scene can be easy or difficult depending on the nature of the distractors. Research in humans has suggested that
search is more difficult the more similar the target and distractors are to each other. However, it has not yielded an objective definition of
similarity. We hypothesized that visual search performance depends on similarity as determined by the degree to which two images elicit
overlapping patterns of neuronal activity in visual cortex. To test this idea, we recorded from neurons in monkey inferotemporal cortex
(IT) and assessed visual search performance in humans using pairs of images formed from the same local features in different global
arrangements. The ability of IT neurons to discriminate between two images was strongly predictive of the ability of humans to discrim-
inate between them during visual search, accounting overall for 90% of the variance in human performance. A simple physical measure
of global similarity—the degree of overlap between the coarse footprints of a pair of images—largely explains both the neuronal and the
behavioral results. To explain the relation between population activity and search behavior, we propose a model in which the efficiency of

global oddball search depends on contrast-enhancing lateral interactions in high-order visual cortex.

Introduction

Finding a target in a visual scene can be easy (like finding a fruitin a
tree) or difficult (like finding a face in a crowd). Classic accounts of
visual search assumed that search is efficient (occurs speedily
through parallel processing of all items in the display) only if the
target and distractors differ from each other with regard to local
features such as are represented in primary visual cortex (Treisman
and Gelade, 1980; Treisman and Gormican, 1988; Treisman and
Sato, 1990; Treisman, 2006). Subsequent accounts incorporated the
idea that search efficiency may depend in a graded manner on the
degree of difference between target and distractors as determined
not only by local features represented in primary visual cortex but
also by global attributes represented in high-order areas (Duncan
and Humphreys, 1989, 1992; Hochstein and Ahissar, 2002; Wolfe
and Horowitz, 2004 ). This idea has been difficult to assess because
little is known about the representation of global image attributes in
high-order visual cortex. To address this issue, we have performed a
study based on the use of images that contain the same local features
and differ only at the level of global organization. Such images may
be difficult (Fig. 1A,B) or easy (Fig. 1C) for humans to tell apart
during oddball search. We have asked, for such image pairs, whether
the ability of humans to tell them apart during visual search is cor-
related with the ability of neurons in macaque inferotemporal cortex
(IT) to discriminate between them.
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Neurons in IT, unlike those in low-order visual areas, possess
receptive fields large enough to encompass an entire image (Op De
Beeck and Vogels, 2000) and are sensitive to the global arrangement
of elements within the image (Tanaka et al., 1991; Kobatake and
Tanaka, 1994; Messinger et al., 2005; Yamane et al., 2006). Popula-
tion activity in IT discriminates better between some images than
others (Op de Beeck et al., 2001; Allred et al., 2005; Kayaert et al.,
2005a,b; De Baene et al., 2007; Kiani et al., 2007; Lehky and Sereno,
2007). Moreover, if a pair of images is well discriminated by popu-
lation activity in IT then humans tend to characterize them as dis-
similar (Allred et al., 2005; Kayaert et al., 2005b) and monkeys are
able to tell them apart when comparing them across a delay (Op de
Beeck et al., 2001). It might be supposed, in light of these observa-
tions, that population activity in IT should necessarily predict hu-
man search efficiency. However, this outcome is uncertain for two
reasons. First, search for an item in an array may depend on brain
mechanisms fundamentally different from those underlying inspec-
tion of a single item (Treisman and Gelade, 1980; Treisman and
Gormican, 1988; Treisman and Sato, 1990; Treisman, 2006). Previ-
ous studies comparing monkey physiology and human behavior
were based on behavioral tests involving the inspection of single
items. Second, the representation of global image attributes in high-
order visual cortex may differ between monkeys and humans. Pre-
vious studies comparing monkey physiology and human behavior
used images differing with regard to local features and so did not
touch on this issue (Allred et al., 2005; Kayaert et al., 2005b).

Materials and Methods

Neuronal experiments

Data collection

Two rhesus macaque monkeys, one male and one female (laboratory
designations Je and Ec) were used. All experimental procedures were
approved by the Carnegie Mellon University Institutional Animal Care
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In some cases, but not all, a target containing two parts is easy to detect within a field of distractors containing the same two parts in transposed arrangement. In this example, the

green-above-red target does not stand out among red-above-green distractors in A, nor does the asterisk-above rectangle target stand out among rectangle-above-asterisk distractors in B. In

contrast, the X target stands out strongly among diamond distractors in C.

and Use Committee and were in compliance with the guidelines set forth
in the United States Public Health Service Guide for the Care and Use of
Laboratory Animals. Before the recording period, each monkey was sur-
gically fitted with a cranial implant and scleral search coils. After initial
training, a 2 cm-diameter vertically oriented cylindrical recording cham-
ber was implanted over the left hemisphere in both monkeys.

At the beginning of each day’s session, a varnish-coated tungsten mi-
croelectrode with an initial impedance of ~1.0 M() at 1 kHz (FHC) was
introduced into the temporal lobe through a transdural guide tube ad-
vanced to a depth such that its tip was ~10 mm above IT. The electrode
could be advanced reproducibly along tracks forming a square grid with
1 mm spacing. The action potentials of a single neuron were isolated
from the multineuronal trace by means of a commercially available
spike-sorting system (Plexon). All waveforms were recorded during the
experiments and spike sorting was performed offline using cluster-based
methods. Eye position was monitored by means of a scleral search coil
system (Riverbend Instruments) and the x and y coordinates of eye po-
sition were stored with 1 ms resolution. All aspects of the behavioral
experiment, including stimulus presentation, eye position monitoring,
and reward delivery, were under control of a computer running Cortex
software (NIMH Cortex). Monkeys were trained to fixate for ~2 s on a
red fixation cross while a series of stimuli appeared in rapid succession
(stimulus duration = 200 ms; interstimulus interval = 200 ms) at an
eccentricity of 2° (see Fig. 3A). At the end of each trial, they were re-
warded for correctly maintaining fixation by a drop of juice. Although
the fixation window was large (4.2°), we found on post hoc analysis that
the gaze remained closely centered on the fixation cross throughout the
duration of the trial. The average across sessions of the SD of horizontal
and vertical gaze angle was 0.2°. All recording sites were in the left hemi-
sphere. At the end of the data collection period, they were established by
magnetic resonance imaging to occupy the ventral bank of the superior
temporal sulcus and the inferior temporal gyrus lateral to the rhinal
sulcus at levels 14—22 mm anterior to the interaural plane in Je and 9-18
mm anterior in Ec.

Data analysis

Database. All neuronal data analysis was based on the firing rate within a
window extending from 50 to 300 ms after stimulus onset. A neuron was
included in the database if and only if it was visually responsive as indi-
cated by a significant difference (¢ test: p < 0.05) between its firing rate in
this window and its firing rate in a 50 ms window centered on stimulus
onset with data collapsed across all stimuli in an experiment.

Statistical comparison between image pairs. The key question, for each
pair of images in every experiment, was how well neuronal activity dis-
criminated between the two members of the pair. The index of discrim-
inability was the mean across neurons of |A — B| where A and B were the
mean firing rates elicited by the two stimuli. This is the Neuron Index
given in Table 1. To compare the discriminability of two image pairs, we
applied a paired ¢ test to distributions of index values obtained across the
population of tested neurons. The p values reported in Table 1 reflect the
outcome of this test.

Visual search experiments

Data collection

We collected and analyzed data from six adults, four male and two fe-
male, each of whom completed the entire battery of visual search exper-
iments described below under a protocol approved by the Institutional
Review Board of Carnegie Mellon University. In each experiment, the
observer sat facing the screen with the right and left index fingers on two
keys. The observer was instructed to maintain fixation on a central cross
throughout each trial. The experiment consisted in responding with a key
press to each of a succession of displays. On each trial, six stimuli ap-
peared simultaneously at an eccentricity of 5° in a hexagonal array cen-
tered on fixation and arranged so that three items were to the right of
fixation and three to the left at symmetric locations (see Fig. 3B). The
observer was instructed to press the key on the same side as the oddball as
quickly as possible without guessing. The display was presented contin-
uously until a response had occurred or until 5 s had elapsed. At 5.3 s, if
no response had occurred, the trial was aborted and the next trial began
after 0.5 s.

Data analysis

Statistical comparison between image pairs. The key question was whether
the search reaction time differed significantly between two pairs of im-
ages. Given a pair of images, A and B, we collapsed the data across cases in
which the target was A and the distractor was B and cases in which the
reverse was true. We did likewise for the second pair of images, C and D.
The decision to collapse was justified by preliminary analysis indicating
that there were no significant reaction time (RT) asymmetries. To assess
the significance of the difference in RT between the two cases, we then
performed a two-way ANOVA with RT as the dependent variable and
with subject (six subjects) and image pair (AB or CD) as factors. The p
values reported in Table 1 reflect the outcome of this test.

Behavioral discrimination index. The raw measure of discriminability
between two images (the mean visual search RT) was smaller when the
two images were more discriminable. For a more direct comparison to
the neuronal data, we converted this to an index that increased with
discriminability: Lyenay = (RTogdpant — RTbasetine) > Where RTqgqpqn was
the mean across participants of the reaction time to report the side of the
oddball and RT, ;.. Was the mean across participants of the reaction
time to report the location of a single 2° diameter white disk presented 5°
to the left or right of fixation in a separate block of trials. This is the Search
Index given in Table 1. Computing this index is tantamount to comput-
ing the strength of the input fed to an integrator that triggers a behavioral
response when its output crosses a fixed threshold (see Neural network
model of visual search).

Set 1: Variable part identity

Stimuli. Each individual part (red or green rectangle, asterisk or slotted
rectangle, or upward or downward pointing chevron) was 1° wide and
0.5° tall. In a compound display, the distance from the base of the top part
to the apex of the bottom part (the measure of interpart distance used



1260 - J. Neurosci., January 27,2010 - 30(4):1258 -1269

Table 1. Summary of neuronal and behavioral results
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Set Neuron count Condition RT (ms) Searchindex (s ") Neuron index (s ") Stat test Search p value Neuron p value

1 174 A. Color 1310 1.0 2.8 AvsB — —
B. Pattern 1325 1.0 3.2 BvsC Fx Frx
C. Chevron 614 35 48 AvsC *EE bl

2 122 A. Far 831 2.0 3.8 AvsB e —
B. Middle 638 32 4.1 BvsC * —
(. Near 563 43 47 AvsC Fx *

3 14 A. Small 1045 1.4 3.1 AvsB e *
B. Medium 654 3.1 39 BvsC *x **
(. Large 553 45 55 AvsC Frx X

4 128 A.Far 1299 1.0 3.0 AvsB el —
B. Middle 1011 1.5 3.0 BvsC Fx *
(. Near 706 2.7 3.6 AvsC xx *

5 78 A.Tall 1554 0.8 2.6 AvsB el —
B. Square 1072 13 2.6 BvsC i e
(. Wide 685 2.8 44 AvsC xrx Hxx

6 78 A.Tall 1544 0.8 2.6 AvsB el —
B. Square 1072 13 2.6 BvsC Frx e
(. Wide 679 29 43 AvsC xx Hxx
Baseline 328

Setand Condition: See Fig. 2. Neuron count: Number of neurons tested with the stimulus set. RT: Average across six subjects of the reaction time to report the side on which an oddball or the baseline stimulus (a single salient target) appeared.
Search index: 1/(RT — B), where B is the baseline reaction time (328 ms)—increases with greater behavioral discriminability. Neuron index: The mean across neurons of the absolute difference between the firing rates elicited by the two
members of the pair—increases with greater neuronal discriminability. Stat test: The two conditions being compared. Search p value: Statistical significance of the difference between the RTs for the two conditions (ANOVA with subject and
image pair as factors). Neuron p value: Statistical significance of the difference between the neuronal discrimination indices for the two conditions (paired ¢ test on the distribution of the two indices across neurons). For all significant pair-wise

comparisons, the level of significance is indicated as: *p = 0.05, **p = 0.005, or ***p = 0.0005.

throughout this paper) was 0.25°. The compound stimuli are shown in
the top row of Figure 2.

Neuronal recording. The stimuli were presented at locations such that
the center of a compound stimulus was 2° contralateral to fixation. For
each of three cases (color, pattern, and chevron), there were six stimuli:
the two compound stimuli with transposed arrangement, the two indi-
vidual parts at the upper location and the two individual parts at the
lower location. We presented individual parts as well as compound stim-
uli so as to determine whether there was a systematic relation between the
responses to the two as discussed in supplemental Section 4, available at
www.jneurosci.org as supplemental material. On a given trial, all six
compound stimuli, all six parts at the upper location or all six parts at
the lower location were presented. Each was presented for 200 ms
followed by a 200 ms interstimulus interval. The order of the stimuli
within the trial was random. During recording from a given neuron,
each compound stimulus was presented 12 times, and each part was
presented six times at the upper location and six times at the lower
location.

Visual search. Observers completed a separate block of trials for each
pair of stimuli. For each of three stimulus sets (color, pattern, and chev-
ron), there was a block of trials. In each block, on randomly interleaved
trials, each member of the pair appeared as an oddball at each location
four times.

Set 2: Variable inter-chevron distance

Stimuli. The stimuli are shown in the second row of Figure 2. The indi-
vidual chevrons were 1° wide. The distance between the chevrons (from
the base of the top part to the apex of the bottom part) was 1.0° (far), 0.5°
(middle), or 0.25° (near).

Neuronal recording. The stimuli were centered 2° contralateral to fix-
ation. For each of three stimulus sets (far, middle, and near), there were
two stimuli with transposed arrangement. On a given trial, all six stimuli
were presented. Each was presented for 200 ms followed by a 200 ms
interstimulus interval. The order of the stimuli within the trial was ran-
dom. During recording from a given neuron, each stimulus was pre-
sented 12 times.

Visual search. Observers completed a separate block of trials for each
pair of compound stimuli (far, middle, and near). In each block, on
randomly interleaved trials, each member of the pair appeared as an
oddball at each location four times.

Set 3: Variable chevron size
Stimuli. The stimuli are shown in the third row of Figure 2. The chevrons
were 0.5° wide (small), 1° wide (medium), and 2° wide (large). The
distance from the base of the top part to the apex of the bottom part was
0.5° in all cases. Selection of these dimensions ensured that the small,
medium and large stimuli in this set were scaled versions of the far,
middle, and near stimuli in Set 2.
Neuronal recording. With the exception that the stimuli differed in size
rather than in distance, all procedures were the same as in experiment 2.
Visual search. With the exception that the stimuli differed in size rather
than in distance, all procedures were the same as in experiment 2.

Set 4: Variable inter-contour distance

Stimuli. Representative stimuli are shown in the fourth row of Figure 2.
Each part was constructed by stacking vertically two semicircles and a
quarter-circle. The height of each part was 2.25° and the width 0.5°.
Compound stimuli were constructed by juxtaposing the concave faces of
two parts with a distance between the inner edges of 1° (far), 0.5° (mid-
dle), or 0.17° (near). At each distance, there were four stimuli: two sym-
metric bug configurations (quarter-circles at top or at bottom) and two
asymmetric worm configurations (quarter-circles at top left and bottom
right or bottom left and top right).

Neuronal recording. The stimuli were centered 2° contralateral to fix-
ation. On a given trial, the four stimuli with the same interpart distance
(far, middle, or near) appeared two times each in random order, subject
to the constraint that no stimulus appeared twice in succession. Each
stimulus was presented for 200 ms followed by a 200 ms interstimulus
interval. Recording continued until each stimulus had been presented 12
times.

Visual search. At each distance (far, middle, or near), there were two
symmetric bug-like variants (quarter-circles at top or at bottom) and
two asymmetric worm-like variants (quarter-circles at top left and
bottom right or at bottom left and top right). This made for eight
target-distractor combinations (four possible targets crossed with
two possible variants of the distractor). Participants completed a sep-
arate block of trials for each condition (far, middle, or near).The 48
randomly sequenced trials in each block conformed to the 48 cases
obtained by crossing two vertical mirror-image variants of bug, two
lateral mirror-image variants of worm, six target locations, and two
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Six sets of image pairs used for neuronal testing in macaques and behavioral testing in humans. Except for the
chromatic pair, all were presented as white forms against a black background. The scale bar at the base applies to all images.

Table 2. Summary of stimuli in Sets 5 and 6

Size group Aspect ratio Height Width
A 1:3 (tall) 3.6° 1.2°
B 1:3 (tall) 1.8° 0.6°
C 1:1 (square) 1.2° 1.2°
D 3:1 (wide) 0.6° 1.8°
E 3:1 (wide) 0.4° 1.2°

I[] v 1O
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target identities (bug or worm). Thus each
form (bug or worm) was presented as target
four times at each location.

Sets 5—6: Variable aspect ratio

Stimuli. The stimuli were based on a design
introduced by Julesz (1981). As noted by that
author, the forms with S and IO topology rep-
resent different global arrangements of the
same local elements. For example, each form
contains two line terminators and four corners.
As noted by subsequent authors, the discrim-
inability of the two forms is affected by their
aspect ratio (Enns, 1986; Tomonaga, 1999).
The stimuli in the present experiment fell into
five size groups across which the aspect ratio
varied systematically (Table 2). Each size group
contained four stimuli: two mirror images with
S topology and two mirror images with IO to-
pology. For data analysis, the five size groups
were sorted into two sets (fifth and sixth rows
of Fig. 2): set 5: tall, square, wide with width
held constant (A, C, and E in Table 2); and set
6: tall, square, wide with perimeter held con-
stant (B, C, and D in Table 2). Perimeter here
refers to the rectangular envelope (= 2 X
height + 2 X width).

Neuronal recording

The stimuli were centered 2° contralateral to
fixation. On a given trial, a set of four stimuli
from the same size group appeared two times
each in random order, subject to the constraint
that no stimulus appeared twice in succession.
Each stimulus was presented for 200 ms fol-
lowed by a 200 ms interstimulus interval. Re-
cording continued until each stimulus had
been presented 12 times.

Visual search

For each size group (A-E), there were two
mirror-image variants with S topology and two
mirror-image variants with IO topology. This
made for eight target-distractor combinations
(four possible targets crossed with two possible
variants of the distractor for the given target).
Participants completed a separate block of
trials for each size group (A-E). The 48 ran-
domly sequenced trials in each block con-
formed to the 48 cases obtained by crossing
two mirror-image variants of the form with S
topology, two mirror-image variants of the
form with IO topology, six target locations
and two target identities (S or IO). Thus each
form (S or I0) was presented as target four
times at each location.

Neural network model of visual search
To explore the possible nature of the causal
linkage between visually selective neuronal ac-

tivity and visual search reaction time, we developed a six-unit neural
network (see Fig. 8). The six units had receptive fields centered at the
locations of the six hexagonally arrayed visual-search stimuli. The level of
activation of each unit was the linear sum of visually driven bottom-up
excitatory input and lateral inhibitory input from the five other units. All
units were selective for the same stimulus. On any given simulated trial,
one unit had a target in its receptive field and five had distractors. Due to
symmetry, the five units with distractors exhibited the same level of
activation. Thus the network could be described by two equations, one
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Figure 3. A, Neuronal recording experiments involved rapid serial presentation of randomly interleaved images centered 2° contralateral to fixation. Responses to the six image sets shown in
Figure 1 were collected in separate blocks of trials. B, On each trial of a visual search session, a hexagonal array of images at 5° eccentricity was presented. One of the images was an oddball. The
oddball and the distractors belonged to one of the pairs shown in Figure 2. The observer was required to press the right or left key according to whether the oddball was on the right or left. The
difference in eccentricity between images in the neuronal and visual search experiments arose from the need to optimize the placement of the images in the neuron’s receptive field during recording

and to optimize the spacing of the items in the array during visual search.

for the activation of the unit with the target in its receptive field (A,), and
one for the activation of each of the five units with distractors in their
receptive fields (A,):

A, =M+ 0.5d — 5kA,
A, = M— 05d — k(A, + 44,). (1)

The first term in each equation represents the average of the activations
elicited by the target and the distractor. We set M to 13.7 spikes/s (the
average strength of the visual response across all IT neurons and all
stimuli). The second term represents bottom-up stimulus-selective vi-
sual excitation. If simulating the response of a network of X-selective
neurons to a display in which the target was an X and the distractors were
diamonds, we set d to 4.8 spikes/s (the average across all neurons of the
measured difference in the firing rates elicited by an X and a diamond). If
simulating the response of a network of diamond-selective neurons to
the same display, we set d to —4.8 spikes/s. For other simulated condi-
tions, we did likewise, always basing d on the average discriminative
signal as measured in IT. The third term represents lateral inhibition. We
set k to 0.1. The particular choice of the value of k was not critical to the
qualitative pattern of results.

We fed the output of each unit to an integrator. The RT was taken as
the time following stimulus onset at which the first integrator—the one
driven by the most active unit in the network— crossed threshold. In the
case with which we were concerned—the case in which the target was the
stimulus preferred by the units in the network—the reaction time was
given by the equation:

RT = B + q/(A, + o), (2)

where B was the baseline response time, g was the threshold, and ¢ was a
heuristic constant. By transposing terms and using the definition of the
behavioral discrimination index used in the visual search experiments
[Iyehay = 1/(RT — B)], we obtain the relation:

Ibehav = (Al + C)/q' (3)

Equations 1 and 3 together define the behavioral discrimination index,
I ehav as @ function of the neuronal discrimination index, d, with two free
parameters, g and ¢. We adjusted the free parameters (Isqcurvefit func-
tion, MatLab) to obtain the best fit among 17 measured values of I, ...,
and the values of I ., generated by the model when given as input the 17
corresponding neuronal discrimination indices (see Fig. 5). The best fit
was obtained with ¢ = 0.54 and ¢ = —10.5 spikes/s.

Fourier power difference index

For each of the two members of an image pair, we first computed an
orientation and spatial frequency power spectrum. This yielded a value
for power at each point in a rectangular grid spanning two-dimensional
Fourier space. To these points we applied a Cartesian-to-polar transfor-
mation. Then we computed by interpolation the power at each point on

arectangular grid in the transformed space. This grid spanned 64 spatial
frequencies from one cycle per frame to 64 cycles per frame in equal steps
of 0.09 octave and 61 orientations from —90° to 90° in equal steps of 3°.
Next, we blurred the power values to simulate the bandpass characteris-
tics of V4 neurons (David et al.,, 2006). The blurring function was a
Gaussian with a bandwidth (full width at half height) of 1.2 octaves in the
spatial frequency domain and 7.7° in the orientation domain. This step
eliminated fine-grained patterns, present in the spectra of simple geo-
metric figures, that vary in a nonmonotonic manner under continuous
variation of properties such as interpart distance. We then normalized
the spectrum by scaling power at each point to the average across all
points. This step, by ensuring that the volume under each surface had a
value of 1, eliminated accidental effects due to factors such as contrast
and brightness. We proceeded to subtract one spectrum from the other.
Rectifying and integrating over the resulting surface provided a scalar
measure of the difference between the Fourier spectra. The value could
range from zero (for identical images) to two (for images—such as or-
thogonal gratings—with no overlap in Fourier power space).

Coarse footprint difference index

To calculate the coarse footprint difference index, we first low-pass
filtered each image of a pair, using a Gaussian blur function with a SD
0.08 times the extent of the longer dimension. This reduced spectral
power by >80% beyond a low-pass cutoff of 3 cycles per object. Next
we normalized the volume under each image to a value of 1. Finally,
superimposing the images with their centers of mass in alignment, we
created a difference image by pixel-wise subtraction. Rectification
and integration of the pixel values in the difference image yielded a
scalar index of the difference between the images that could in prin-
ciple range from 0 to 2.

Results
Correlated neuronal and behavioral measures of
image discriminability
We performed parallel single-neuron recording experiments in
monkeys and visual search experiments in humans using six
stimulus sets each of which consisted of three pairs of images (Fig.
2). The images in each pair contained an identical collection of
local elements but differed in the arrangement of those elements.
Thus discrimination between the members of the pair depended
on registering their global organization. Within each set, the pairs
differed with regard to some variable likely to affect the discrim-
inability of the two members of the pair, for example, in set 1, the
identity of the parts and, in set 2, the interpart distance (Fig. 2).
In microelectrode recording experiments, we performed test-
ing with images from each set in a different block of trials (Fig.
3A). Over the course of a given block, each image in the set was
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Examples of neuronal responses to the three pairs of compound images from set 1and to the individual parts from which they were formed. A-C, Representative responses to the three

pairs of compound images. Data are from different neurons. D—F, Average activity elicited among a population of 174 neurons, by the preferred and nonpreferred members of each pair. Note that
the red-green compounds and the asterisk-rectangle compounds are poorly discriminated relative to chevron compounds. G-L, Representative responses to the three pairs of parts when presented
at the upper location (G-I) and the lower location (J-L). Data are from the same neurons as in A-C. M-0, Average activity elicited among a population of 174 neurons by the preferred and
nonpreferred parts. Note that the red and green rectangles and the asterisk and slotted rectangle are at least as well discriminated as the upward and downward pointing chevrons. Preferred
and nonpreferred stimuli were identified on the basis of one half of trials and the population plot was based on the other half. Thus, if neuronal responses were unselective, the preferred and

nonpreferred curves would overlap. Stimulus onset coincides with the left edge of each panel.

presented 12 times. The number of neurons tested with each set is
indicated in Table 1 (Neuron count). The number varied from set
to set because some neurons could not be held long enough for
testing with all sets. Neurons in IT responded differentially to
stimuli consisting of the same local elements in different global
arrangements (Fig. 4). The selective responses were genuinely
based on global arrangement as indicated by the fact that re-
sponses to parts could not predict responses to wholes (supple-
mental Section 1, available at www.jneurosci.org as supplemental
material). Furthermore, they were determined by relatively ab-
stract global properties as indicated by the fact that a given ar-

rangement was preferred consistently over substantial changes in
the size of the parts and the distance between them (supplemental
Section 2, available at www.jneurosci.org as supplemental mate-
rial). The strength of neuronal selectivity varied across image
pairs. For example, in set 1, neurons differentiated poorly be-
tween compound images formed from colored parts (Fig. 4A, D)
and patterned parts (Fig. 4 B, E) but discriminated well between
compound images formed from chevrons (Fig. 4C,F). As a mea-
sure of the ability of population activity in IT to discriminate
between the images in each pair, we computed the average, across
all visually responsive neurons in both monkeys, of the absolute
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difference between the mean firing rates
elicited by the two images. The resulting
neuronal discrimination index is pro-
vided in Table 1 (Neuron index). All ma-
jor trends demonstrated by this approach
were confirmed by comparing counts of
neurons showing individual significant
effects (supplemental Section 3, available
at www.jneurosci.org as supplemental
material) and were found to be present
in data from each monkey considered
individually (supplemental Section 4,
available at www.jneurosci.org as supple-

Behavioral Discrimination Index (5-1)
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mental material). Population histograms 02
demonstrated qualitatively the same
trends as seen in the quantitative analysis
(supplemental Section 5, available at www.
jneurosci.org as supplemental material).

In visual search experiments involving
six human participants, we measured the
mean reaction time to indicate the loca-
tion (left or right visual field) of an odd-
ball presented among distractors, where
the oddball and the distractors were the
two members of a pair (Fig. 3B). We col-
lected data in a separate block of trials for
each pair of images. In the course of a
block, each member of the pair appeared
as an oddball four times at each location.
Oddball search was easy for some pairs of
images and difficult for others. For exam-
ple, in set 1, the images formed from chev-
rons (Fig. 1C) popped out from each
other whereas the images formed from
colored and patterned parts (Fig. 1A, B)
did not (for a demonstration that X and
diamond stimuli popped out from each
other according to the classical criterion
for popout, see supplemental Section 6,
available at www.jneurosci.org as supple-
mental material). We also collected data
in a baseline block of trials that required
reporting the location (right or left visual

Figure5.
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The behavioral discrimination index is plotted against the neuronal discrimination index for all 17 tested image pairs.
The point corresponding to each pair is indicated by a number keyed to the display of images at the right. The best fit line is
indicated in black. The output of a best-fit model incorporating contrast-enhancing lateral inhibition (Fig. 8) is indicated by the
superimposed dotted white curve.

field) of a single salient stimulus. The
mean oddball reaction time for each pair
and the mean baseline reaction time are
presented in Table 1 (RT). For each image
pair, we computed a behavioral discrimi-
nation index that became larger the more
discriminable two images were and that
was consequently directly comparable to
the neuronal discrimination index. This had the form 1/(RT — B)
where RT was the mean oddball reaction time for a given image
pair and B was the mean baseline reaction time. This index is
equal to the strength of the difference signal that would have to be
fed to an integrator starting at time 0 in order for its output to
cross a fixed threshold and trigger a behavioral response at time
RT (see Materials and Methods). The behavioral discrimination
index for each pair is reported in Table 1 (Search index).

It is evident from comparison of the neuronal and behavioral
discrimination indices (Table 1) that they tended to vary in par-
allel across image pairs. To quantify this effect, we computed the
correlation between the two measures across the entire set of

)
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A-C, Blurred normalized Fourier power spectra for X and diamond images and the difference spectrum obtained by
subtracting the diamond spectrum from the X spectrum. Note that the brightness scales are not the same. D, E, The behavioral and
neuronal discrimination indices as measured experimentally are plotted against the Fourier power difference index forall 17 image
pairs. The numbers appended to the points have the same significance as in Figure 5. Note that for the color and pattern pairs from
set 1 (points 1and 2) are related by vertical mirror reflection and therefore have zero Fourier power difference.

image pairs (Fig. 5). The correlation was strongly positive (r =
0.95) and highly significant ( p < 0.00000001). The precision of
the correspondence is especially striking because (1) the physio-
logical results for different image sets were obtained from popu-
lations of neurons that did not fully overlap, (2) data for each set,
even when collected from the same neurons, were collected in
different blocks of trials, which might conceivably have produced
contextual effects, and (3) there was no prior reason to suppose
that the relation between the indices would be linear. This out-
come was robust across changes in the epoch during which the
firing rate was computed, changes in the properties of the neurons
selected for study and changes in the metric used to characterize



Sripati and Olson e Inferotemporal Cortex and Visual Search

A v B
AN

X

<>

O

C Difference

J. Neurosci., January 27,2010 - 30(4):1258-1269 * 1265

(David et al., 2006, 2008). To explore this
3 idea, we first computed for each pair of
i images used in this study a map of power
2 in Fourier space (Fig. 6A,B). Next, we
generated a difference map by subtraction
(Fig. 6C). Finally, by rectifying and inte-
grating across the difference map, we de-
rived a scalar index of the difference
2 between the images that could in principle
range from 0 to 2. Further details are given
in Materials and Methods. Upon compar-
ing the Fourier difference index to the neu-
ronal and behavioral discrimination indices
across image pairs (Fig. 6 D, E), we discov-
ered that the correlation, although positive,
was weak and did not attain significance
(neuronal index: r = 0.40, p = 0.11; behav-
ioral index: r = 0.39, p = 0.12).

Coarse footprint
The discriminability of images differing in

d global organization might be inversely
proportional to the degree to which their
footprints overlap when superimposed.
Differences measured in image space, un-
like those measured in the Fourier power
domain, contain information about spa-
tial phase. A pixel-based measure could
thus explain the observation that IT neu-
rons are able to discriminate between im-
ages that differ only with regard to
spatial phase—for example mirror im-
ages (Rollenhagen and Olson, 2000). To
explore this idea, we first low-pass filtered
each image of a pair, using a Gaussian blur
function with a SD equal to 0.08 times the
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Figure 7. A-C, Coarse footprints of X and diamond images and the difference image obtained by pixel-wise subtraction of

diamond from X. D, E, The behavioral and neuronal discrimination indices as measured experimentally are plotted against the
coarse footprint difference index for 16 image pairs. The numbers appended to the points have the same significance as in Figure
5. Note that the color pair from set 1 (point 1) was excluded from the analysis because the coarse footprint index can be straight-
forwardly calculated only for monochromaticimages. F, Correlation between behavioral and neuronal discrimination as a function

of degree of blur.

neuronal selectivity (supplemental Section 7, available at www.
jneurosci.org as supplemental material). We conclude that the ability of
humans to discriminate between image pairs with differing global orga-
nization closely parallels the ability of IT neurons to discriminate be-
tween them.

A physical metric predicting image discriminability

Why are some pairs of images differing in global arrangement
well discriminated while others are not? Is there some identifiable
metric of the difference in global arrangement between two images
that can explain this outcome? We assessed the ability of two metrics
of image difference to explain the data. One is based on the Fourier
power spectrum and the other on the distribution of brightness across
pixels in image space.

Fourier power spectrum

The discriminability of images differing in global organization
might be proportional to the difference in their Fourier power
spectra. This would be consistent with the idea proposed for area
V4 that pattern selectivity arises from neurons’ possessing re-
stricted receptive fields in orientation and spatial frequency space

longer dimension (Fig. 7A,B). This re-
duced the spectral power by >80% be-
yond spatial frequencies of 3 cycles per
object. Next we created a difference image
by pixel-wise subtraction (Fig. 7C), and
rectified and integrated it to obtain a dif-
ference index that could range from 0 to 2
(see Materials and Methods). The full results are provided in
supplemental Materials (Section 10, available at www.jneurosci.
org as supplemental material). Plotting the neuronal and behav-
ioral discrimination indices against this index across image pairs
(Fig. 7 D, E) revealed highly significant positive correlations (neu-
ronal index: r = 0.89, p < 0.000005; behavioral index: r = 0.89,
p < 0.000005). The strength of the correlations was reduced by
blurring the images with Gaussian blur functions having SDs
greater or less than 0.08 (Fig. 7F). We conclude that a simple
measure based on the difference between the coarse (3 cycle per
object) footprints of two images predicts the ability of IT neurons
and humans engaged in visual search to detect a difference in
global organization.

A model linking neuronal discrimination to

behavioral discrimination

There is a simple mechanism by which better discrimination be-
tween a pair of images at the level of IT could give rise to a shorter
reaction time for detecting one shape among distractors having
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the other shape. It is based on stimulus-
specific spatial-contrast-enhancing lateral
interactions between neurons responding
to images at different locations. Neurons
throughout the visual system respond
more strongly to a preferred stimulus pre-
sented in the classic receptive field if it is
different from items in the surround than
if it is the same (Lee et al., 2002; Constan-
tinidis and Steinmetz, 2005). Surround
modulation in low-order visual areas is
conditional on the nature of low-order
features such as orientation (Li, 1999;
Nothdurft et al., 1999; Bair et al., 2003). It
is possible, by analogy, that surround
modulation in high-order visual areas
depends on global attributes for which
the neurons in those areas are selective.
The effect would be to enhance the re-
sponse to an oddball distinguished from
distractors by its global attributes, with
the degree of enhancement dependent
on the degree to which neurons differ-
entiate between the two.

As proof of principle, we studied a net-
work consisting of six units selective for
the same image, with receptive fields at the
six locations of the hexagonal search array
(Fig. 8). The level of activation of each
unit is the sum of its bottom-up excitatory input and lateral in-
hibitory input originating from the other five neurons (Materials
and Methods, Neural net model of visual search). If the oddball is
the preferred stimulus and the distractors are nonpreferred stim-
uli, then the level of activation of the unit with the oddball in its
receptive field will depend on (1) the strength of bottom-up ex-
citatory input driven by the presence of the preferred stimulus in
its receptive field and (2) the strength of lateral inhibition driven
indirectly by the presence of the nonpreferred stimulus in the
receptive fields of the other units. The greater the discriminative
capacity of the units (the greater the difference between
bottom-up excitation elicited by the preferred stimulus and
bottom-up excitation elicited by the nonpreferred stimulus) the
greater the level of activation of the unit with the oddball in its
receptive field. The strength of activation can be transformed into
a reaction time by accumulating it through an integrator until a
decision threshold is reached. The reaction time is shorter for
stimuli well discriminated by the units (Fig. 8 A) than for poorly
discriminated stimuli (Fig. 8 B). The model thus provides a
mechanistic transformation of neuronal discrimination ability
into reaction time. Fitting the two free parameters of the
model to data obtained with 17 image pairs yielded an ex-
tremely good fit (Fig. 5, dotted white curve superimposed on
best-fit line). The assumptions on which this demonstration
rests—that there is stimulus-specific lateral inhibition and that a
population of neurons with variable discriminative capacity can
be modeled by a few neurons with discriminative activity equal to the
average across the population—remain to be tested. Neverthe-
less the demonstration makes clear that a simple mechanism
based on contrast-enhancing lateral inhibition could account
causally for the relation between neuronal discriminability in IT
and human visual search efficiency as observed in these
experiments.

Sripati and Olson e Inferotemporal Cortex and Visual Search

RT
........ * Threshold
Time
F
RT
-.......---------*- Threshold

Time

Figure8.  Aplausible mechanisticlink between the neuronal discrimination signal and visual search reaction time s afforded by
a model incorporating contrast-enhancing lateral inhibition. A, The model consists of six units with receptive fields (hatched
circles) centered on the locations of the six items in the search array (in this case an X oddball among diamond distractors). The units
mutually inhibit each (as indicated by the black lines connecting the receptive fields). B, Responses of the network to the display
shown in A on the assumption that the units are X-selective. The unit with the oddball in its field is strongly active because (1) it
receives strong bottom-up excitation from the X in its receptive field and (2) the other units, which inhibit it, receive only weak
bottom-up excitation from the diamondsin their receptive fields. €, Strong activation from the unit with the oddball in its receptive
field, fed to an integrator, causes the output of the integrator to rise rapidly toward a decision threshold with the result that the
reaction time (RT) is short. D—F, When the same units are stimulated with a display in which the X and diamonds are less
discriminable, the unit with the oddball in its field is less strongly active because the other units, which inhibit it, receive stronger
bottom-up excitation from the diamonds in their receptive fields. Consequently, the output of the integrator to rises more slowly
toward a decision threshold with the result that the RT is longer.

Discussion

We have assessed the ability of neurons in monkey IT and of
humans engaged in visual search to discriminate between images
that differ exclusively at the level of global organization which
we define in the following manner. Imagine systematically
scanning two images with a window of fixed diameter and
characterizing each image as the collection of details seen
through the window without regard to the specific location of
any detail. A pair of images differs solely at the global level if,
to detect a difference between them, it is necessary to scan
them with a relatively large window. For the image pairs in
Figure 1, discrimination would be just possible with a window
having a diameter one quarter of the image’s height and would
become progressively more robust as the diameter increased
beyond that limit. The first essential finding of this study is
that I'T neurons are more sensitive to some global differences
than to others. The second essential finding is that the ability
of IT neurons to discriminate between a pair of such images is
correlated with the ability of humans to discriminate between
them during visual search.

Why are some global differences better discriminated

than others?

The mere demonstration of a correlation between behavioral
discrimination and neural discrimination is generally consid-
ered a sufficient endpoint in such studies (Edelman et al., 1998;
Op de Beeck et al., 2001; Allred et al., 2005; Kayaert et al., 2005b;
Hausthofer et al., 2008). However, it is worthwhile to consider
the underpinnings of the correlation by asking why, in physical
terms, some image pairs are easier to discriminate than others.
We explored this issue by applying to images in our experimental
set two measures that are “global” in the sense that they depend
on the distribution of content across the image as a whole but are
also “low level” in the sense that they depend on convolving the
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image with simple filters. One of these, based on the Fourier
power spectrum, provided a poor fit to the data. The other, based
on the coarse footprint, provided a good fit. Although the coarse
footprint measure worked well for images in this particular set, it
is only a first step toward a general account of discrimination
based on global structure. To explain results obtained with high-
pass-filtered images will require refining the measure (supple-
mental Section 8, available at www.jneurosci.org as supplemental
material). Furthermore, any complete approach will have to take
perceptual organization into account (Palmer, 1999; Kimchi et
al., 2003). Neurons in IT are sensitive to figure-ground organiza-
tion (Baylis and Driver, 2001). So are humans engaged in visual
search (Enns and Rensink, 1990; He and Nakayama, 1992; Davis
and Driver, 1994; Rensink and Enns, 1998). Figure-ground
organization may have played a role even in the present exper-
iment. For example, the line segments in the X may have been
construed as having figural status and the line segments in the
diamond may have been construed as the boundaries of an
enclosed figure.

Does the human homolog of IT guide search based on

global attributes?

The simplest possible interpretation of the neuronal-behavioral
correlation is (a) that humans posses an area homologous to IT,
(b) that neurons in this area represent global image structure in a
code equivalent to the code in IT, and (c) that humans base global
search on activity in this area. These points seem plausible but
each must be qualified. (a) The human lateral occipital and fusi-
form regions are generally regarded as homologous to macaque
IT on the grounds of their location and object-selective BOLD
responses (Grill-Spector et al., 2001; Tootell et al., 2003; Orban et
al., 2004; Pinsk et al., 2009) but no homology is certain. (b) The
idea that representations in lateral occipital and fusiform cor-
tex are similar to those in IT remains to be established. One
approach to characterize the object representation in humans
is to assess the similarity in the BOLD activation patterns
elicited by individual objects (Edelman et al., 1998; Williams et
al., 2007; Hausfhofer et al., 2008). These similarity patterns in
humans reveal a categorical structure that is correlated with the
similarity patterns observed in monkey IT (Kriegeskorte et al.,
2008). However, it is not clear whether this categorical structure
reflects the geometry of objects or simply their category. (c) Even
findings based on this approach would not clinch the argument
that humans engaged in global search rely on representations
in lateral occipital and fusiform cortex. This might be accom-
plished by demonstrating selective impairment of visual
search based on global image attributes after occipitotemporal
injury. Visual search is certainly impaired in patients with
visual agnosia arising from occipitotemporal damage (Hum-
phreys et al., 1992; Saumier et al., 2002; Kentridge et al., 2004;
Ballaz et al., 2005; Foulsham et al., 2009). However, no tests have
involved targets and distractors similar to the ones used in this
study. We note finally that even if humans are guided by repre-
sentations in IT-homologous cortex during visual search based
on global attributes, it may still be the case that search based on
local features depends on areas of lower order (supplemental
Section 11, available at www.jneurosci.org as supplemental
material).

What is the relation of these findings to classic theories of
visual search?

Feature integration theory (FIT) as propounded by Treisman
and colleagues (Treisman and Gelade, 1980; Treisman and Gormi-
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can, 1988; Treisman and Sato, 1990; Treisman, 2006) has been the
dominant theoretical framework for understanding visual search
over recent decades. The data that we have presented and the
model with which we have been able to fit the data are, however,
contrary in spirit to FIT. Our results are best understood as add-
ing to an accumulating body of evidence that calls into question
four intertwined assumptions embodied in FIT.

Features versus conjunctions

FIT posits that search is efficient if the target is distinguished from
the distractors by a unique low-level feature but not if it is distin-
guished by a conjunction of features. In fact search for some
conjunctions is efficient and search for some features is not. Xs
and diamonds (different conjunctions of identical parts and lo-
cations) (von der Malsburg, 1999) pop out from each other (sup-
plemental Section 6, available at www.jneurosci.org as
supplemental material). So do different conjunctions of the
same spatial frequencies and orientations (Sagi, 1988). Con-
versely, a target distinguished by a unique feature will not pop
out if the featural difference from the distractors is too small
(Moraglia, 1989; Nagy and Sanchez, 1990; Bauer et al., 1996;
Nagy and Cone, 1996).

Striate versus extrastriate cortex

FIT posits that search is efficient if the target is distinguished from
the distractors by an attribute represented explicitly by neurons
in primary visual cortex (Li, 1999; Nothdurft et al., 1999) and not
otherwise. In fact, some complex image attributes to which striate
neurons are insensitive support popout (Wolfe and Horowitz,
2004). These include the arrangement of parts in the image plane
(Pomerantz et al., 1977; Heathcote and Mewhort, 1993; Davis
and Driver, 1994; Rensink and Enns, 1998; Conci et al., 2006).
The occurrence of popout in these cases implies that visual areas
outside striate cortex can guide efficient search (Hochstein and
Ahissar, 2002).

Parallel versus serial search

FIT posits that two measured behavioral phenomena (search
time independent of set size vs increasing with set size) indicate
two modes of search (parallel vs serial). In fact, a purely par-
allel model can shift gradually from seemingly parallel to
seemingly serial behavior as the difference between the target
and the distractors decreases (Deco and Zihl, 2006). During
conjunction search, which FIT supposes to be serial, neuronal
activity in monkey extrastriate cortex shifts steadily as atten-
tion converges on the target and not discontinuously as would
be expected from serially allocating attention to different
items (Bichot et al., 2005).

Preattentive versus attentive vision

FIT posits that there is a qualitative difference between the rep-
resentation of an image formed during preattentive vision (when
attention is distributed across the array) and the representation
formed during attentive vision (when it is the sole object of at-
tention). In fact, when multiple items appear in the visual field, all
other things being equal, a neuron fires at a rate corresponding to
the average of its responses to the individual items (Zoccolan et
al., 2005). Attention to one of the items induces a quantitative
increase in its degree of influence (Reynolds et al., 2000) but not
a qualitative change such as would occur if neurons were sensitive
only to the collection of basic features in an object forming part of
an array but were sensitive to conjunctions of features in an iso-
lated object.
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The results of our study and other observations as noted
above agree in supporting an alternative to FIT put forward by
Duncan and Humphreys (1989, 1992). In their scheme, all
search is parallel and operates on sophisticated representa-
tions of objects. Search can occupy any point along a contin-
uum of efficiency, with efficiency increasing as the target and
distractors become more dissimilar. A gap in this theory has
been the lack of an operational measure of dissimilarity. Our
results suggest a plausible measure based on differences in
neuronal activity in visual areas including high-order cortex
homologous to IT.
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