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Abstract
Several types of B cell lymphoma have been successfully treated with rituximab (RTX), and approval
by the FDA for use of RTX in the treatment of rheumatoid arthritis has increased interest in targeting
CD20 on B cells for other indications. Although large amounts of RTX can be infused into humans
with no apparent dose-limiting toxicity, recent evidence suggests that the body’s effector
mechanisms, including complement-mediated cytotoxicity and NK cell-mediated killing, can be
saturated or exhausted at high burdens of RTX-opsonized B cells. One of the consequences of this
saturation phenomenon is that the opsonized B cells are instead processed by a different pathway
mediated by FcγR on effector cells. In this alternative pathway both RTX and CD20 are removed
(“shaved”) from the B cells and are taken up by monocytes/macrophages. This process, formerly
called antigenic modulation, appears to occur in several compartments in the body and may play a
key role in the development of resistance to rituximab therapy.

INTRODUCTION
The mechanisms of B cell resistance to rituximab (RTX)-mediated cytotoxicity, can, like much
of immunology, be divided into innate and adaptive components. Innate components include
expression of CD20 at levels below the thresholds required to trigger RTX-mediated
cytotoxicity, and the activity and level of complement control proteins on malignant cells.1–
4 A patient’s innate cytotoxic effector mechanisms will play critical roles, as demonstrated by
differences in efficacy which correlate with polymorphisms in C1q and polymorphisms in and
effector cell densities of FcγR.5–9 In addition, as noted by Smith,10 differences in resistance
of cells in different compartments “could reflect differential access to antibody or to effector
mechanisms,” emphasizing the importance of tumor microenvironments.

Treatment with RTX does not destroy all malignant B cells, and over the long term (periods
in excess of one year) surviving B cells appear to acquire an adaptive resistance to later RTX
therapies,11,12 although in many cases the malignant cells still express CD20. The surviving
cells may take up residence in compartments in which they will be resistant to later attack by
RTX, but there is no evidence for or against this possibility. Over the short term, that is, at the
time of RTX treatment, there are several adaptive mechanisms by which targeted cells can
escape RTX-mediated cytotoxicity. As noted below, deposition of C3 activation fragments on
RTX-opsonized cells can block binding to FcγRIIIa on NK cells, inhibiting antibody-
dependent cellular cytotoxicity (ADCC).13 Although not yet formally proven for RTX, there
is evidence that sublytic complement attack on nucleated cells induces Ca2+ fluxes, leading
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to protein synthesis and at least temporary upregulation of defenses against complement-
dependent cytotoxicity (CDC).14 RTX treatment may acutely exhaust effector mechanisms
responsible for killing IgG-opsonized substrates. Under these conditions an alternative
processing pathway which removes RTX/CD20 complexes from B cells predominates, thus
insuring the resistance of CD20-negative cells to RTX therapy. Table I summarizes some of
the mechanisms by which resistance to RTX develops and also presents potential therapeutic
strategies to overcome this resistance. In this review we will focus our discussion on the loss
of efficacy of RTX treatment due to blockade or saturation of host effector mechanisms.

CYTOTOXIC MECHANISMS: VARIATIONS ON IMMUNE COMPLEX
PROCESSING

Seven years ago our laboratory initiated a clinical study in chronic lymphocytic leukemia
(CLL), to determine whether infusion of RTX promotes complement activation and deposition
of C3 activation fragments on circulating CLL B cells.15 We had demonstrated that in vitro
binding of RTX to B cells in the presence of complement leads to deposition of C3 fragments
on the cells; our findings in primates indicated that within minutes of RTX infusion, C3
fragments were deposited on RTX-opsonized cells.3,16 In both cases, C3b/iC3b was co-
localized with cell-bound RTX. In the clinical study, we found that after infusion of only 30
mg of RTX, C3 fragments were demonstrable on circulating B cells. However, an unexpected
observation set the stage for future investigations: The number of circulating CLL B cells
decreased considerably after infusion of 30 mg but then substantially increased after infusion
of the remaining ~600 mg RTX (~ 5 hours later). Although the final concentration of RTX in
the bloodstream (>100 ug/ml) was considerably higher than the concentration after infusion
of the first 30 mg (<5 ug/ml), it appeared that the cytotoxic action of RTX had been saturated
or exhausted. That is, B cells were not cleared from the bloodstream with a high level of
efficacy. This finding has been quite durable (Table II); we observed this pattern in all of our
studies of CLL patients receiving single agent RTX therapy in doses of ≥100 mg.17 These
observations dramatically emphasize the need for detailed analyses of the cytotoxic
mechanisms of RTX in different compartments in the body and in the bloodstream in particular.

An overwhelming body of evidence indicates that RTX-mediated cytotoxicity must rely on the
body’s immune mechanisms.1–3,9,15,18–23 These cytotoxic reactions are initiated by
recognition of the RTX-CD20-B cell immune complex, either by FcγR on effector cells (NK
cells and monocyte/macrophages) or by C1q, the first component of the classical pathway of
complement. Recognition of IgG–opsonized substrate cells by FcγRIIIa on NK cells can
promote ADCC.18,24,25 IgG-opsonized cells can also bind to macrophages via several different
FcγR, setting in motion cytotoxic pathways that lead to ADCC and phagocytosis.19,26 The
classic studies of Frank and Schreiber, which examined bloodstream clearance mechanisms
mediated by the mononuclear phagocytic system (MPS), revealed that binding of a few
thousand IgG molecules to a circulating cell such as an erythrocyte (E) leads to its rapid
clearance due to recognition by FcγR on tissue macrophages in the liver (Kupffer cells) and
spleen.26,27 Studies of polymorphisms in CD16 (FcγRIIIa), first reported by Cartron et al. and
confirmed by others5–7, indicate that individuals homozygous for the higher affinity binding
FcγRIIIa allotype (158 Valine) have considerably better responses to RTX therapy. This result
underlines the importance of ADCC and phagocytosis in the RTX mechanism.

IgG-opsonized cells can bind C1q, promoting several consecutive steps in the classical
complement activation pathway, including covalent deposition of C3 activation fragments on
the cells, followed by CDC due to assembly and penetration of the cell membrane by numerous
copies of the cytolytic membrane attack complex (MAC).23 RTX can mediate CDC of B cells
that express high levels of CD20. The results in certain mouse models,28,29 as well as the report
of Racila et al.,8 which correlated the response of patients with follicular lymphoma to
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polymorphisms in C1q, all suggest that CDC may play a role in the therapeutic action of RTX.
However, primary B cells from most CLL patients are refractory to RTX-mediated CDC due
to relatively low levels of expression of CD20. Upon infusion of RTX, circulating CLL cells
that are not lysed become heavily opsonized with C3 fragments;3,17 these C3 fragments may
promote clearance of the opsonized cells by the MPS, due to uptake mediated by complement
receptors on fixed cells.30,31 Conversely, several lines of evidence developed by Weiner and
colleagues suggest that C3 fragments bound to RTX-opsonized B cells may actually interfere
with NK cell-promoted ADCC due to C3b/iC3b-mediated blockade of access of NK cell CD16
to the Fc region of cell-bound RTX.13,32 Thus, it will be important to determine the relative
impact of C3 fragment deposition in targeting RTX-opsonized circulating cells to the MPS
compared to the effect of complement activation on sessile, non-circulating cells in tumors.

These potential problems may be overcome with second generation anti-CD20 mAbs such as
ofatumumab. Ofatumumab mediates CDC of B cells more effectively than RTX, most likely
due to increased binding of C1q to opsonized cells.33 Indeed, ofatumumab makes much more
efficient use of complement than does RTX and can, in the presence of limited amounts of
complement, mediate much higher levels of C3b deposition and CDC than does RTX in the
presence of much larger amounts of complement.33–35 Based on these observations, treatment
of patients with high B cell burdens with rituximab is more likely to consume complement due
to inefficient cell killing compared to treatment with comparable amounts of ofatumumab, and
future clinical studies should allow for evaluation of this prediction.

SATURATION and/or EXHAUSTION
A key question is whether the body’s effector mechanisms associated with immune complex
processing, complement activation, phagocytosis and/or ADCC, can be saturated or exhausted,
leading to persistence and proliferation of malignant B cells that would otherwise be eliminated.
That is, the B cell burden may be so high that although large doses of RTX saturate CD20 on
targeted B cells in different body compartments, the necessary effector mechanisms within
these compartments are not adequate to effectively kill targeted cells.

Insight into this question may be drawn from studies in systemic lupus erythematosus (SLE).
SLE is an autoimmune disease characterized by chronic proliferation of large quantities of
immune complexes in the circulation and in tissues.36–38 The kinetics of clearance from the
circulation of a model particulate immune complex, 51Cr-labeled IgG-opsonized E, are reduced
substantially in SLE, likely due to competition by circulating immune complexes.36 These
IgG-containing complexes can bind to FcγR on monocytes/macrophages, and then the immune
complexes, along with FcγR, are internalized. This process appears to down-modulate
expression of FcγRII and FcγRIII, compromising the activity of monocyte/macrophages in
clearing IgG-opsonized particles.38

In another example of saturation and exhaustion, Bowles and Weiner reported that NK cell-
mediated ADCC of RTX-opsonized cells comes at a price, in that CD16 (FcγRIIIa) on the NK
cells is severely down-regulated.39 The consequence of down-regulation is inhibition of killing
of additional RTX-opsonized B cells until CD16 can be re-expressed. In vitro experiments
reported by Bhat and Watzl suggest that one NK cell can kill at most 4 IgG-opsonized cells.
40 In vivo findings of Beredeja et al. indicate that after NK cell-mediated ADCC, re-expression
of CD16 on the NK cell and restoration of full cytotoxic activity may require 24 hours or more.
41 Varchetta et al. reported that as a consequence of NK cell-mediated ADCC of trastuzumab-
opsonized cells, CD16 on the NK cells is down-modulated, suggesting that NK cell-mediated
ADCC of other targets may also be subject to saturation.42 In the future, anti-CD20 mAbs with
Fc regions engineered to maximize ADCC may provide increased efficacy and methods to
increase NK cell cytotoxicity and/or numbers are under development.43–47
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Treatment of immune thrombocytopenia (ITP) with IgG anti-E antibodies (anti-D) makes
explicit use of saturation of effector mechanisms.48 This treatment leads to modest decreases
in the hematocrit due to clearance of IgG-opsonized E; however, the decoy IgG-E immune
complexes saturate the clearance capacity of the MPS, sparing IgG-opsonized platelets and
providing effective therapy for certain patients.49 Part of this saturation phenomenon is likely
due to down-modulation of FcγRIII. Song et al. examined a mouse model for this system and
reported that as a result of targeting E by infusion of specific IgG antibodies, splenic FcγRIII
was down-modulated.50 It is likely that splenic FcγRIII was internalized coincident with
phagocytosis of IgG-opsonized E.

The complement system can be exhausted as a consequence of RTX treatment. RTX-opsonized
B cells at densities seen in CLL (100,000 B cells per ul) substantially depleted complement
activity in serum.15 Although the cells were saturated with bound RTX, CDC was reduced
considerably compared to CDC seen for lower cell burdens, where complement activity was
adequate. The first CLL patient we studied had a moderate burden of circulating B cells (<
20,000 per ul), yet RTX treatment led to massive depletion of complement immediately after
the first infusion.15 His complement titer was partially restored one week later, but after the
second weekly RTX treatment (in a 4-week cycle) complement remained low for more than a
month, suggesting that the RTX-B cell immune complexes, in several compartments in addition
to the bloodstream, were continuing to activate and deplete complement. Complement titers
were decreased in other CLL patients who received RTX therapy; the time for restoration of
full complement activity after RTX treatment was variable, from days to weeks.15 Therefore
we suggested that fresh frozen plasma as a complement source may enhance RTX therapeutic
activity,15,51 and recent clinical studies, although not well controlled have provided some
evidence in favor of this paradigm.52 However, infusion of two units of fresh frozen plasma
may not be adequate to provide substantial long-term restoration of complement titers, and
additional studies will be required to determine if this approach has therapeutic utility.52

EXHAUSTION CAN RESULT IN INCREASED RESISTANCE: SHAVING
High levels of RTX-opsonized B cells can saturate effector mechanisms that would otherwise
promote RTX-mediated cytotoxicity. Under these conditions the RTX/CD20 complexes on B
cells will be subject to an alternative processing pathway, the “shaving reaction.”25,53 In this
process RTX and CD20 are removed from opsonized cells in a reaction mediated by FcγR on
acceptor cells, but the cells are not killed! This phenomenon was originally described in other
systems as antigenic modulation: loss of expression of surface antigens after binding of
antibody.54,55 Loss of the target of infused mAb T101 (CD5) on circulating malignant T cells
was reported by Bertram et al. more than 20 years ago.54 The shaving reaction resembles
trogocytosis (from the Greek, to gnaw or nibble), in which formation of an immunological
synapse leads to removal and internalization of ligands associated with donor cells by cognate
receptors on acceptor cells. Trogocytosis has been documented for B cells, T cells, neutrophils
and NK cells.56

By definition, macrophages are “big eaters” and might not be expected to engage in
trogocytosis. However, macrophages can make use of FcγR, especially FcγRI, to endocytose
small IgG-opsonized substrates by taking them into the cell without surrounding them.57–59

Therefore macrophages and other cells that express FcγR may be capable of either wholesale
phagocytosis and/or ADCC (most likely mediated by FcγRII and FcγRIII38), or trogocytosis,
in which the target cell-bound RTX (the ligand for FcγR) and CD20 are removed and
internalized by the acceptor monocyte/macrophage but the target cell is left alive and intact.
56 Our investigations of low-dose RTX for treatment of CLL (see below) suggest that
phagocytosis and shaving of RTX-opsonized B cells occur simultaneously. That is, some RTX-
opsonized cells that enter the liver are effectively bound to Kupffer cells and phagocytosed.
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However, other RTX-opsonized cells may pass through the gauntlet of Kupffer cells and escape
with some loss of bound RTX and CD20. We have recently obtained additional evidence that
macrophages can mediate either shaving or phagocytosis. After RTX-opsonized CD20-
positive mouse 38C13 B cells29 were incubated with adherent mouse peritoneal macrophages,
the cells were separated and examined. Macrophages had either phagocytosed entire cells, or
had trogocytosed small amounts of RTX and plasma membrane from the B cells. Moreover,
the recovered B cells had lost CD20 (Lindorfer and Taylor, unpublished observations).

The effector cell phenotype may influence the outcome of an encounter with a target cell.
THP-1 cells and freshly isolated monocytes promote shaving of RTX-opsonized B cells, but
do not mediate ADCC or phagocytosis.53 On the other hand, NK cells promote ADCC of RTX-
opsonized cells, and also take up RTX and CD20 from the cells.25 This process will lead to
down-regulation of NK cell CD16, thus suppressing/exhausting its ability to execute ADCC.
39 Neutrophils, which express several FcγR, also mediate shaving of RTX-opsonized cells, but
in the absence of complement activation and/or other mediators, they do not kill the cells.25

It is an oversimplification to assign all phagocytosis/ADCC to FcγRII and FcγRIII, and all
trogocytosis to FcγRI. However, we suggest this provides a reasonable paradigm to explain
the transition from clearance and destruction of RTX-opsonized cells to shaving that occurs
when CLL patients with high burdens of circulating cells are treated with standard doses of
RTX (Table II). The large burden of B cells cleared from the circulation (~2 X 1011) after
infusion of only 30 mg of RTX will likely saturate the phagocytic capacity of liver Kupffer
cells (~2 X 1010) as well as the ADCC capacity of circulating NK cells (~1 X 109) and in many
cases complement activity will be reduced.9,15,60 After RTX-opsonized B cells are cleared,
CLL B cells will re-equilibrate into the circulation from other compartments,61 and be
opsonized by RTX. However, based on the SLE immune complex model38 as well as the ITP
model,48,50 FcγRII and FcγRIII on tissue macrophages and FcγRIII on NK cells will be
substantially reduced, but FcγRI on macrophages and monocytes will be available to promote
shaving. The result is that cells which enter the circulation after the first round of clearance
will not only escape ADCC and phagocytosis by the MPS, but these cells will also have CD20
removed by the shaving reaction. This adaptive resistance may allow them to escape targeting
by RTX and proliferate.

Therefore, we initiated a pilot clinical trial in CLL to evaluate the effects of much lower, more
frequent (thrice-weekly) doses of RTX on the biology of circulating malignant B cells.17 The
testable hypothesis was that at RTX doses of ~35 mg (20 mg/m2), the plasma concentration of
RTX would be quite low (< 5 ug/ml) after the first round of clearance of opsonized cells. As
additional CLL cells entered the circulation from other compartments, these B cells would not
be opsonized by RTX, and cell-associated CD20 would be preserved. It would then be possible
to target circulating cells with an additional low RTX dose two days later, when the body’s
effector systems, previously saturated after the first RTX dose, would have recovered and could
then mediate additional clearance of opsonized B cells. In five out of six patients who received
the 20 mg/m2 dose, CD20 was largely preserved and in 4 of 6 patients additional RTX infusions
continued to promote clearance of malignant cells. This trial tested mechanisms leading to loss
of CD20 on CLL B cells, and the low dose paradigm may not be adequate for targeting B cells
that do not re-equilibrate into the bloodstream.17 However, these results, taken in context with
our findings in CLL patients who received RTX doses >100 mg (60 mg/m2), provide
compelling evidence that the body’s effector mechanisms responsible for clearing RTX-
opsonized cells can be saturated, thus sparing a population of RTX-opsonized cells. This
phenomenon evolves into a perfect storm: CD20 will be removed from RTX-opsonized cells,
allowing them to proliferate under conditions which support continued shaving of re-expressed
CD20. On the basis of these considerations it is not surprising that single agent RTX therapy
at standard doses has modest efficacy in CLL.1 Finally, in collaboration with A. Wiestner and
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his colleagues, we have found that subcutaneous delivery of lower, more frequent doses of
RTX has the potential to be an effective and convenient paradigm for CLL treatment.62

SHAVING OUTSIDE THE BLOODSTREAM
The clinical success of RTX in non-Hodgkins lymphoma is well-documented, suggesting that
RTX therapy is more effective at killing B cells in tissues than in the bloodstream.9,10 However,
approximately 50% of patients treated with single agent RTX do not respond, and responding
patients often suffer relapses one to two years later. It is therefore important to ask how effective
are the body’s effector mechanisms in tissue compartments, and, can these mechanisms also
be saturated or exhausted?

It is certainly reasonable that CD20-negative B cell lymphomas can develop long after RTX
therapy, likely due to outgrowth/mutation of a population of CD20-negative cells.63 However,
several immunohistochemical investigations have described CD20-negative B cells (positive
for CD79a, CD19, and other B cell markers) that appeared within a few months or even days
after completion of RTX infusions.63–71 Under these conditions, RTX was likely present in
the circulation and tissues. These studies made use of reagents that would reveal CD20 even
in the presence of bound RTX, thus precluding simple steric blockade as an explanation of the
findings. In many of these reports, B cells lacking CD20 were demonstrable in tumors of
patients with B cell lymphomas after RTX treatment.

RTX therapy is also used for other indications including rheumatoid arthritis (RA) or to
eliminate B cells before kidney transplants.70,71 In these investigations B cells were cleared
from the bloodstream for long periods. However, in the RA study, B cells lacking CD20 were
demonstrable in the bone marrow and synovium. In the transplant study, splenectomies were
performed 3–13 days after RTX infusion. B cells that were CD79a-positive but CD20-negative
were found in the spleens of patients who received RTX infusions ≥35 mg/m2. The results of
these two investigations suggest that although bloodstream clearance was effective due to the
large capacity of the MPS to clear “normal” levels of opsonized B cells, cytotoxic mechanisms
within tissue compartments responsible for eliminating normal B cells may have been
exhausted. We suggest that a substantial fraction of the B cells in tissues had lost CD20 due
to the shaving reaction. In principle it should be possible to test this hypothesis by sterile culture
of isolated B cells for a few days in the absence of RTX, to allow for CD20 to be re-expressed.
Examination of the levels of CD16 on monocyte/macrophages and NK cells within tissue
compartments in which shaving is suspected could be quite informative. If CD16 were down-
regulated, this would be consistent with the overall working hypothesis we have presented.

CONCLUSIONS and FUTURE DIRECTIONS
As we have noted in the introduction, there is increasing evidence that long after patients with
B cell lymphomas are successfully treated with RTX, they suffer relapses and in many cases
their disease is refractory to additional RTX treatments that include chemotherapy, although
their B cells do express CD20.11,12 The reason(s) for this apparent adaptive RTX resistance
remain unknown, and it is not unreasonable to speculate that one or more of the short-term
mechanisms that allow cells to chronically escape RTX-mediated cytotoxicity may play key
roles in this phenomenon. The elucidation of these long-term resistance “pathways” constitutes
a significant challenge not only for anti-CD20 therapies, but also likely with respect to other
mAb-based therapies in the treatment of cancer. Many different approaches for abrogating
resistance to immunotherapy are currently under investigation (Table I).

Our discovery of the shaving reaction (or perhaps rediscovery of antigenic modulation) was
based on clinical observations in CLL. Additional clinical studies as well as in vitro
experiments have provided important new insights into how RTX-opsonized B cells are either
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killed by or escape the body’s immune effector mechanisms. RTX is now used in combination
with a variety of chemotherapeutic regimens, with a higher level of clinical efficacy, and
therefore mechanisms of resistance will change. However, it is likely that many of the lessons
learned in analyzing innate and adaptive mechanisms of resistance of targeted cells to RTX
will be applicable toward understanding the action of other immunotherapeutic mAbs.9
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Table I

Mechanisms of Resistance to Rituximab Therapy and Potential Therapeutic Strategies to Overcome Resistance

Mechanism Potential Therapeutic Strategies Ref

• Loss of epitope

Permanent loss of CD20 (i.e. outgrowth of a
CD20-negative clone)

Target alternative epitope (e.g. CD52) 11,64

Temporary mAb-mediated loss of CD20 (i.e.
Shaving)

Lower, more frequent doses of mAb; IVIG or other
agents to block FcRγI

15,17,62,72

• Reduced ADCC

Exhaustion of ADCC Lower, more frequent doses of mAb; increase
activity or number of NK cells

39–41,46,47

Blockade of ADCC by deposited C3
activation fragments

Engineer mAbs, or adjust the dose in order to
maximize ADCC while minimizing C3 fragment
deposition

13,32

Polymorphisms in effector molecules (i.e.
FcγR)

Screen polymorphisms prior to therapy; engineer
Fc region of mAbs to maximize ADCC for all
patients

5–7,43–45

• Reduced CDC

Increased surface expression of complement
control proteins

Block the action of CD55 or CD59 73

Exhaustion of CDC (i.e. temporary depletion
of complement components)

Infusion of fresh frozen plasma; lower, more
frequent doses of mAb.

15,17,52

Sublytic C attack leading to increased
resistance to CDC

mAb designed to maximize C activation and
thereby minimize sublytic C attack

14,33,35

• Tumor microenvironment

Protective factors in tumor
microenvironment

Mobilize malignant cells to periphery; attack
stromal factors

74–76
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Table II

Key Measurements on CLL Blood Samples, Before, During and After RTX Infusion

Before treatment After 30 mg After 375 mg/m2

Normalized lymphocyte count Higha 100% Low 20% Intermediate 60%

Plasma RTX concentration 0 1–5 ug/ml >100 ug/ml

CH50 Normal Normal Depleted (10–90%)

CD20/cell, normalized 100 2–10 2–10

C3 fragments deposited No Yes Yes

a
Pretreatments levels varied from 5,000–100,000 lymphocytes/uL.15,17
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