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WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Analysis of data from clinical trials is often

performed using univariate statistics.
• In early phases of clinical drug

development, interpretation of rare clinical
events can be difficult by univariate
methods.

• Principal component analysis has proven
successful within related scientific areas
such as, for example, genomics and
metabonomics, where compression of data
and extraction of maximum information are
of utmost importance.

WHAT THIS STUDY ADDS
• This study reveals that multivariate

chemometric methods coupled with
visualization gives a comprehensive
overview of early clinical trial data to guide
dose and regimen selection and provides
additional findings overlooked by traditional
univariate methods.

• This method revealed novel
pharmacological patterns in the treatment
of metastatic melanoma with recombinant
interleukin-21.

AIMS
Evaluation of the utility of multivariate data analysis in early clinical drug
development.

METHODS
A multivariate chemometric approach was developed and applied for
evaluating clinical laboratory parameters and biomarkers obtained from two
clinical trials investigating recombinant human interleukin-21 (rIL-21) in the
treatment of patients with malignant melanoma. The Phase I trial was an
open-label, first-human dose escalation safety and tolerability trial with two
separate dosing regimens; six cycles of thrice weekly (3/w) vs. three cycles of
daily dosing for 5 days followed by 9 days of rest (5+9) in a total of 29 patients.
The Phase II trial investigated efficacy and safety of the ‘5+9’ regimen in 24
patients.

RESULTS
From the Phase I trial, separate pharmacological patterns were observed for
each regimen, clearly reflecting distinct properties of the two regimens.
Relations between individual laboratory parameters were visualized and shown
to be responsive to rIL-21 dosing. In particular, novel systematic
pharmacological effects on liver function parameters as well as a bell-shaped
dose–response relationship of the overall pharmacological effects were
depicted. In validation of the method, multivariate pharmacological patterns
discovered in the Phase I trial could be reproduced by the dataset from the
Phase II trial, but not from univariate exploration of the Phase I trial.

CONCLUSIONS
The new data analytical approach visualized novel correlations between
laboratory parameters that points to specific pharmacological properties. This
multivariate chemometric data analysis offers a novel robust, comprehensive
and intuitive tool to reveal early pharmacological responses and guide selection
of dose regimens.
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Introduction

Clinical drug development is a stepwise, time-consuming
and complex process during which an increasing amount
of data is collected across numerous trials with different
end-points and aims. In controlled clinical trials, subjects
are carefully evaluated with respect to predefined clinical
and laboratory end-points and closely monitored with
respect to unexpected effects. In clinical drug develop-
ment it is important to extract as much information
as early as possible to establish the foundation for the
selection of regimen, dose, and patient population for
subsequent large-scale clinical trials.Traditional analysis of
clinical data is often univariate in nature. Multivariate
analysis is capable of finding patterns that are only
revealed by relations between variables. Chemometric
data analysis tools coupled with visualization provide an
opportunity for a rapid and comprehensive overview of a
given biological experiment such as a clinical trial. For
example, principal component analysis (PCA) allows
visualization of a multivariate dataset through so-called
principal components. The principal components are vari-
ables that are weighted averages of the original variables
and found in such a way that they optimally (in a least
squares sense) represent the major part of the variation in
the data in as few components as possible. Each compo-
nent can be considered as a descriptive fingerprint of the
intrinsic underlying latent variations of the data in the
sense that it contains information from all variables simul-
taneously (for review, refer to Wold et al. [1] and Christie
[2]). Unlike more deductive approaches that typically need
verified or hypothesized relevant measurements [3], PCA
makes it possible to perform an exploratory analysis
including many variables, even those that are not a priori
known to be relevant. The exploratory analysis can then
provide means for assessing to which degree such vari-
ables are indeed relevant. Chemometric methods have his-
torically been developed for chemical analysis, but have in
recent years proven valuable in other areas, such as
genomics and metabonomics [4–7].

In the present study we applied PCA in early clinical
pharmacology trials investigating recombinant human
interleukin-21 (rIL-21) in the treatment of malignant mela-
noma. IL-21 is a cytokine with pronounced antineoplastic
properties, primarily exerted by stimulation of natural killer
(NK) cells and cytotoxic T-cell subsets to kill tumour cells
(for review, see Skak et al. [8]). Currently, rIL-21 is in the
development for the treatment of various neoplastic
conditions, including malignant melanoma. Early clinical
investigations have revealed that rIL-21 was generally well
tolerated with signs of antineoplastic effects in a subset of
patients [9, 10].

The most common adverse events encountered in the
first-human dose trial were fatigue, fever, nausea, and
headache and the maximal tolerable dose was declared to
be 30 mg kg-1 [9]. Moreover, serum levels of soluble CD25

(sCD25) were shown to reflect rIL-21-mediated systemic
immune activation and distinct pharmacodynamic
responses of individual dosing regimens [9, 11]. In addi-
tion, several other molecular biomarkers of NK and T-cell
activation have been investigated, including mRNA expres-
sion of the effector molecules granzyme B and perforin in
CD56+ NK cells and CD8+ T cells [9, 12].

Here we propose a multivariate approach to analyse
clinical laboratory parameters that can provide valuable
information on pharmacological responses complemen-
tary to univariate methods when applied in early clinical
pharmacology trials.

Methods

Data material
The present study is based on an early clinical develop-
ment programme including a Phase I and Phase II trial.The
Phase I data are from an open-label, two-armed dose esca-
lation study, investigating the safety and tolerability, biom-
arkers, pharmacokinetics, and efficacy of increasing doses
of rIL-21 administrated as an intravenous (i.v.) bolus injec-
tion in two different dose regimens: dosing at three times
weekly (3/w) (Monday, Wednesday and Friday) in a period
of 6 weeks (a total of 18 doses across six cycles) with four
different dose levels (1, 3, 10 and 30 mg kg-1) and daily
dosing for 5 days followed by 9 days without treatment
(5+9) in a period of 6 weeks (a total of 15 doses across three
cycles) with six different dose levels (1, 3, 10, 30, 50 and
100 mg kg-1). In the Phase I trial, a total of 29 patients with
histologically confirmed surgically incurable metastatic
stage IV malignant melanoma were enrolled [9].The Phase
II trial was an open-label, single-armed, fixed-dose study
investigating the efficacy, safety and biomarkers of
30 mg kg-1 rIL-21 administered as i.v. bolus injection in the
‘5+9’ dose regimen for a period 6 weeks. A total of 24
patients were enrolled and 12 patients were continued on
extension treatment for assessment of progression-free
survival [10]. According to the Phase I and Phase II proto-
cols, a total of 43 variables encompassing clinical labora-
tory parameters and biomarkers were assessed in both
trials. The half-life of rIL-21 is approximately 1–4 h [9]. The
plasma levels of rIL-21 were hence not detectable at the
time points when the majority of samples for laboratory
parameters and biomarkers were collected, and pharma-
cokinetic data were therefore not included in the present
analysis.

All patients were treated at the Austin Hospital, the
Peter MacCallum Cancer Centre, the Royal Melbourne Hos-
pital, Cabrini Health (all in Melbourne, Australia),Westmead
Hosital (Sydney, Australia) or Sir Charles Gairdner Hospital
(Perth, Australia). All patients provided written informed
consent before any study-specific procedures. The trial
protocols were approved by the Human Research Ethics
Committees of the participating hospitals and were imple-
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mented under the Australian Therapeutic Goods Adminis-
tration Clinical Trials Notification scheme. The clinical trials
were sponsored by Novo Nordisk A/S.

Data analysis
The data were analysed using a modified version of PCA.
PCA is a model where the multivariate dataset is com-
pressed into a few orthogonal/uncorrelated principal com-
ponents (PC) holding the systematic variation of the
dataset. Each component is simply a new variable com-
puted as a weighted average of all the original variables
and can be considered a descriptive fingerprint in the
sense that it contains information from all variables simul-
taneously. The weights are determined so that the first
component explains as much as possible of all the vari-
ables. Subsequent components are determined similarly,
explaining as much as possible of the yet unexplained part
of the variation in data. Results from PCA are presented as
components, each containing a score and a loading vector.
Each loading vector has as many elements as variables and
the elements are the weights for calculating the new vari-
ables – the scores. Hence, a numerically high weight
implies that the specific variable is important for the com-
ponent. The sample specific scores explain how the obser-
vation behaves with respect to the component. A high
score value means that the specific observation has high
values on the variables with high loading elements [1].

As expected from clinical trial data, the analysed
datasets contain substantial variation across patients (data
not shown).The influence of this variation is not of primary
concern initially as the focus is on the overall treatment
effect within each dose regimen. In order to focus on treat-
ment effects in the PCA analysis, filtering is performed by
removing the average level from each subject and each
variable. This way, all individual patient data will have the
same average level for every variable. Mathematically,
removing patient-specific effects is done by orthogonal-
ization and can be considered as a way to focus the analy-
sis on the part of the data specific to treatment-related
effects. As a consequence of this, no patient covariates was
included in the analysis, as these effects would be removed
in the orthogonalization step. Note that no use is made of
treatment information in the orthogonalization, which is
important in order to avoid spurious correlations (for
details see Appendix).

The PCA solution is a least squares solution over all the
variables and can therefore be overly influenced by
individual variables that are given in numerically large
numbers. The variables are hence scaled (and centred) to
have equal variance prior to PCA. According to the proto-
col, not all laboratory or biomarker parameters were
assessed on all trial visits. Values for such visits, i.e. for
samples that were not obtained, are in PCA defined as
‘missing values’. These data are hence not deviating from
the trial protocol but merely just collected as planned, i.e.
at different time points compared with most other vari-
ables. Expectation maximization provides means for fitting
the model without introducing biased estimates due to
such ‘missing values’ [13]. Using expectation maximization,
the amount of missing values in the data is irrelevant, as
these do not affect the resulting model. Only the amount
of determined information present in the data is critical.

Outliers
Outliers are single measurements or samples identified as
statistically irregular in the model, i.e. samples that influ-
ence the model in a way that is potentially detrimental to
use of the model. The outliers are determined by model
residuals (Q-residuals) and distance to model centre
(Hotellings T2), and further examined for general pattern
deviation and/or single variable measurement deviation
[1]. One out of 212 data points was removed as an outlier
from the Phase I ‘3/w’ dataset. A single extreme measure-
ment was removed from the Phase I ‘5+9’ dataset. No
outliers were removed from the Phase II dataset. The
characteristics for the outliers are listed in Table 1. It is of
utmost importance to emphasize that outliers are not nec-
essarily wrong and hence should be medically evaluated
for clinical relevance and eventually be examined properly
by other methods. However, this is not described further as
it is beyond the scope of the present paper.

Model post-processing
The result of the first step is a PCA model of filtered data
that contains a score and a loading vector for each com-
ponent.The score vector has as many elements as there are
time–patient points. The model can be further elaborated
by re-arrangement of the scores into a matrix with as many
rows as doses and as many columns as time points as
written in step 4 of the Model description (Appendix,
Model description). For each score vector a matrix is made

Table 1
Overview of removed outliers. If identifiable, the diverging measurements are listed

Patient ID Removed data points Outlier values
Number of recorded values
(out of 43) Clinical observations

105 – ‘3/w’ All data points at day 2 2 No clinical observations observed
112 – ‘5+9’ Band Abs at day 8 Band Abs – 0.8 12 No clinical observations observed
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where the average score for a given dose and time is given
in the corresponding element. This matrix provides infor-
mation on the time–dose information of that particular
component and is analysed with a subsequent PCA model
providing an even further condensed approximation of
the variation in the data useful for understanding, e.g. the
time-dependent variation. This will be exemplified in the
Results section. An algorithm for the complete data
analysis is described in the Appendix.

All calculations are conducted using in-house algo-
rithms written in MATLAB® ver. 7.6.0.324. The function can
be downloaded from www.models.life.ku.dk.

Results

Pharmacological responses of the ‘5+9’
dose regimen
By applying PCA to the ‘5+9’ datasets, two significant
(P < 0.001) components appeared. For the ‘5+9’ regimen,

components 1 and 2 describe 20.0% and 9.7%, respec-
tively, of the total variation across all variables (Figure 1a,b).
The structure of the pharmacological response described
by the scores in the first component clearly reflected an
underlying signature of the ‘5+9’ dose regimen (Figure 1a).
During the course of 5 days of treatment, a pronounced
decrease in score values was observed in each treatment
cycle. This response was fully reverted during 9 days of
treatment pause. The pattern described by the second
component did not display a similar signature of the ‘5+9’
dose regimen. However, the score values increased to
some extent during the course of three treatment cycles,
indicating an accumulation of the pharmacological effect
reflected by the variables expressed in this component
(Figure 1b). Tentatively, and based on the shape of the
curves, the two components describe the acute and the
cumulative pharmacological effects, respectively. In order
to illustrate dose-dependency of these distinct pharmaco-
logical responses, score values as function of day and dose
were analysed with a subsequent one-component PCA

6

4

2

0

0123 5 8 12 15 19 26 29 3233 36 43 0123 5 8 12 15 19 26 29 3233 36 43

–2

–4

–6

–8

P
C

 1
 (

20
.0

%
)

P
C

 1
 (

90
.1

%
)

4

2

0

–2

–4

P
C

 2
 (

9.
7%

)

2

1.5

1

0.5

0

P
C

 2
 (

85
.5

%
)

P
C

 2
 (

9.
7%

)

2

1.5

1

1 3 10 30 50 100

0.5

0

Dose (10–3)

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.3 –0.2 –0.1 0 0.1 0.2 0.3
PC 1 (20.0%)

Time (days) Time (days)

GGTS

LDHS

ALTS
SGOTS

sCD25

C React ProtS
PTP INRP

GranzymeBCD56p
PerforinCD56p

GluS

HaptoglobinS

FibrinogenP
APTTP

BandsABSB

MCHCB

Lymphocyte ABSB

Reticulocy ABSB

Neutrophil ABSB

Monocytes ABSB

Specific GravU
BUNS

pHU ClS
Basophils ABSB

BiCarbS NaS
CaST CaS

AlbS
CreatinineS

MCVB
HaemoglobinB

Eosinophil ABSB
Uric AcidS

PhosS
KS

T Leucocytes CB

ThrombocytesB

T BilirubinS

GranzymeBCD8p

APS

PerforinCD8p

A B

C

D

E

1 3 10 30 MR50 100

Figure 1
Results from two component models of data obtained from regimen ’5+9’. (a) Score values for component 1 plotted vs. day for each of the six doses (mg kg-1)
and the mean response (MR) of those. (b) Score values for component 2 plotted vs. day. (c) Scores from one-component principal component analysis (PCA)
model of scores from component 1. (d) Scores from one-component PCA model of scores from component 2. (e) Loading plot of component 1 vs.
component 2. Subscripts: B, blood; P, plasma; S, serum; U, urine

M. A. Rasmussen et al.

382 / 69:4 / Br J Clin Pharmacol



as described in the Appendix (Figure 1c,d). For both
components of this subsequent PCA model, a bell-shaped
dependency of dose peaking at 30 mg kg-1 was observed,
indicating a maximal pharmacological response at this
dose level.The observation of a bell-shaped pharmacology
is novel and was not found in the original univariate analy-
ses of these data [9].

Potential relationships between the pharmacological
responses of the individual laboratory parameters and
biomarkers were assessed by a scatter plot of the first and
second loading vector of the initial PCA model across all
dose levels (Figure 1e). Based on the positions, the indi-
vidual parameters could be divided into several categories.
Parameters far from the origin are those most influential in
the model and parameters close to each other are corre-
lated with respect to the variation reflected by the compo-
nents. One group of laboratory parameters (upper right
quadrant) was composed of haematology parameters, e.g.
peripheral blood lymphocyte counts (Lymphocyte ABSB).
These parameters showed high scores for both compo-
nents and hence behaved as a combination of the two, i.e.
decreased during the 5 days of treatment, increased during
the 9 days of rest, and slightly accumulated during the 6
weeks of treatment. Opposite to this group (lower left
quadrant) was a group composed of biomarkers of NK cell
activation, e.g. perforin mRNA expression of purified
peripheral blood CD56+ NK cells (PerforinCD56p). These
parameters were negatively correlated to the group in the
upper right quadrant and hence increased during treat-
ment, decreased during rest, and slightly decreased during
the 6 weeks of treatment,reflecting rIL-21-mediated effects
on NK cell function. In general, variables with high positive
or negative loading values for the first component, e.g.
peripheral blood lymphocyte counts (Lymphocyte ABSB)
and sCD25, respectively, reflected the signature of the ‘5+9’
dose regimen and were thus qualified as biomarkers for the
overall pharmacological effects. Pharmacological effects
on these NK and T-cell activation biomarkers is an expected
finding and was also described in the original reports of
these data [9, 12]. However, the inverse relation between
peripheral blood lymphocyte and T leucocyte counts vs. NK
cell and T-cell activation markers that is clearly reflected in
Figure 1e has not previously been described and supports
rIL-21-mediated immune activation as the primary cause of
changes in these blood cell counts.

Variables with high (positive or negative) loading values
for the second component indicated an accumulation/
decreasing pattern registered during the 6 weeks of treat-
ment. Parameters with numerically low loading values for
both components, e.g. mean corpuscular haemoglobin
concentration (MCHCB) did not match the overall pattern of
the dataset and were hence inadequately described by this
model. However, this does not imply absence of clinical
relevance of such lab parameters,but merely indicated that
the overall patterns observed in the two components were
not reflected in these parameters.

Parameters with high loading values for the second
component and low loading values for the first, such as the
liver function parameters, e.g. gamma glutamyl transferase
(GGTS) behaved opposite to parameters with low second
component and high first component loading values such
as serum albumin (AlbS). The finding that these and other
liver function parameters systematically decreased and
increased, respectively, during treatment cycles is novel
and was not described in the original univariate analyses of
this dataset [9]. Moreover, a subsequent PCA clearly reveals
that this underlying pharmacological effect on liver func-
tion parameters is visible already at the third dose-level
(10 mg kg-1) tested during the dose-escalation part of the
Phase I trial (Figure 2).

Pharmacological responses of the ‘3/w’
dose regimen
Components 1 and 2 of the ‘3/w’ regimen described 12.7%
and 13.2% of the total variation, respectively (Figure 3a,b).
In contrast to the cyclic signature of the‘5+9’dose regimen,
a more continuous pharmacological effect was observed
for the ‘3/w’ regimen. This difference in pharmacological
effects between the regimens has previously only been
described by univariate analysis of sCD25 and hence not as
a general phenomenon across all assessed laboratory
parameters [9]. In the ‘3/w’ regimen the first component
showed large variability in the first few days of treatment,
followed by a decrease to a constant yet fluctuating level
from day 5 and onwards. Component 2 showed ascending
score values for the first 2–3 weeks followed by a stable
plateau for the rest of the treatment period, indicating that
steady state was reached for the pattern of variables
described in component 2. As for the ‘5+9’ regimen,
maximal pharmacological responses were observed for
the first component at 30 mg kg-1 (Figure 3c). However, due
to dose-limiting toxicities, dose levels >30 mg kg-1 were not
tested with the ‘3/w’ regimen [9]. For the second compo-
nent the pharmacological effect was observed to peak at
the 3 mg kg-1 dose level (Figure 3d).

Comparisons of pharmacological responses
between dose regimens
For the ‘3/w’ dose regimen both differences from and simi-
larities to the ‘5+9’ regimen were observed for the indi-
vidual laboratory parameters and biomarkers when
presented as a scatter plot of loading values correspond-
ing to components 1 and 2 (Figure 3e). As for the ‘5+9’
regimen, the liver function parameters, e.g. GGTS, clustered
opposite to AlbS in the direction of component 2, indicat-
ing an impact on the liver function for both regimens.
However, for the ‘3/w’ regiment the distance between
serum albumin and other liver parameters such as GGT
and alkaline phosphatase (APS) was less pronounced, indi-
cating similar but a more gradual effect on the liver func-
tion with the ‘3/w’ regimen compared with the ‘5+9’
regimen. For activation of NK cells, differences were
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observed between the two dose regimens. In the ‘3/w’
regimen, perforin mRNA expression of purified peripheral
blood CD56+ NK-cells (PerforinCD56p) and lymphocyte
ABSB clustered in a single quadrant (Figure 3e, upper left).
In the ‘5+9’ regimen, these parameters were clearly sepa-
rated in opposite directions, indicating a more pro-
nounced effect on NK cells compared with the ‘3/w’
regimen (Figure 1e). None of these pharmacological differ-
ences between the regimens was found by the univariate
methods in the original reports of these data [9, 12].

Clinical efficacy and adverse events
During treatment, tumour size was registered as a second-
ary end-point for efficacy. In this trial, sporadic antitumour
responses were observed in <10% of patients [9]. Analysis
of change in tumour size vs. score values (for both compo-
nents and regimens) did not reveal systematic variation in

laboratory parameters and biomarkers that correlated
with tumour shrinkage (data not shown). A similar analysis
for the two most commonly reported adverse events, i.e.
fatigue and pyrexia, revealed a positive correlation
between score values for component 1 and number of
fatigue events (P < 0.001) and pyrexia events (P = 0.02) for
regimen ‘5+9’, indicating a rIL-21 treatment-related
response (Figure 4 and Appendix, Analysis of adverse
events).

Validation of the model in an independent
clinical trial
A total of 43 variables were included in the ‘5+9’ regimen
datasets from both the dose-escalation Phase I trial and
the fixed-dose Phase II trial. A training model composed of
the ‘5+9’ Phase I dataset and a validation model of the
Phase II dataset was built. The training model from Phase I
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was analysed for the ability to predict score values from
the Phase II data (Figure 5a,b). Although there were minor
differences in magnitude of the pharmacological
responses, with a trend towards higher responses in the
Phase I trial, the pattern reflecting the signature of the‘5+9’
regimen was clearly sustained for component 1 (Figure 5a)
and to some extent also for the less descriptive second
component (Figure 5b). Significant correlations were
found between Phase I and II scores for each component
(PC1, R2 = 0.95, P < 0.0001; PC2, R2 = 0.75, P = 0.02).1 Simi-
larities between the Phase I and Phase II models were
further verified by visual comparison of loading values
from two independent PCA models (Figure 6). Mathemati-
cally, the loadings were rotated and superimposed in order
to see if the two models capture the same variation. This
revealed that most parameters clustered close together

1Calculated on scores from days represented in both trials.
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within the individual quadrants. Loading values for both
components were found to be significantly correlated
between the two trials (PC1, R2 = 0.94, P < 0.0001; PC2,
R2 = 0.40, P = 0.008). However, some parameters shifted
between the trials such as PerforinCD56p, GGT and
albumin, indicating an effect of the dose-escalation vs. a
fixed-dose trial.

Discussion

Analysis of individual laboratory parameters from a single
or groups of trials can be an exhaustive process in which
rare clinical events and/or unexpected pharmacological
responses may not be clearly emphasized until relatively
late in the development process. Moreover, such responses
may be more clearly reflected in a pattern of several vari-
ables rather than individual ones. We hypothesized that
multivariate chemometric data analysis coupled with visu-
alization would provide an opportunity for a rapid and
comprehensive overview of clinical trial data in revealing
novel pharmacological findings.The nature of multivariate
data analysis is to grasp the common variation of the data
and hence the variation common across several variables.
We developed a multivariate chemometric data analysis
tool based on PCA for visual inspection of pharmacological
responses in clinical pharmacology trials. The tool is an
unsupervised data analysis tool, which in an assumption-
free manner enables visualization of the main variation
present in data. It combines methods for handling data
collected at different time points as well as methods for
focusing on variations relating to dose–time effects rather
than interindividual effects. We utilized the tool to show
distinct signatures of pharmacological responses of clini-
cal laboratory and biomarker parameters in a Phase I and a
Phase II trial investigating rIL-21 in the treatment of
patients with malignant melanoma. The responses
reflected acute (first component) and cumulative (second
component) effects of two different dosing regimens. For
both regimens, a maximal pharmacological response was
for the first component observed at 30 mg kg-1 and sup-
ports the notion that additional pharmacological effect
cannot be achieved at doses >30 mg kg-1. However, for the
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second component of the ‘3/w’ regimen the response was
observed to peak at the 3 mg kg-1 dose level (Figure 3d).
Moreover, the response observed for this component
gradually increased throughout the trial, indicating accu-
mulation of some of the variables with the ‘3/w’ regimen
(Figure 3b). Interestingly, dose-limiting toxicities were
observed only at the 30 mg kg-1 dose level with the ‘3/w’
regimen and not the ‘5+9’ regimen, suggesting different
safety profiles of the two regimens [9]. Nevertheless, the
30 mg kg-1 dose level was during dose escalation in the
Phase I trial declared by clinical criteria as the maximal
tolerable dose for both regimens, supporting the utility of
chemometric approaches for selection of dose levels [9].
Moreover, the bell-shaped appearance of the phar-
macological effects observed with the ‘5+9’ regimen
(Figure 1c,d) has not previously been described and indi-
cates that additional pharmacological activity may not be
achievable at dose levels >30 mg kg-1. However, whether
doses >30 mg kg-1 will be feasible is still under consider-
ation [11].

In previous clinical investigations of rIL-21, serum levels
of sCD25 have been shown to reflect rIL-21-mediated sys-
temic immune activation and distinct pharmacodynamic
responses of individual dosing regimens [9, 11]. These
univariate sCD25 responses clearly resemble the observed
multivariate patterns of acute (first component) responses
across all the assessed laboratory and biomarker param-
eters and point to sCD25 as a robust surrogate for acute
pharmacological responses to rIL-21 (Figures 1e and 3e).
Other biomarkers also closely linked to the rIL-21 mecha-
nism of action such as perforin mRNA expression of NK
cells and numbers of peripheral blood lymphocytes have
also previously been described by univariate methods [9,
12].Here, we have shown more distinct responses between
the two regimens for these biomarkers, indicating more
pronounced effects with the ‘5+9’ regimen on NK cell acti-
vation.This difference between the two regimens is a novel
finding that was not identified during the original analyses
of the datasets based on univariate methods and supports
the utility of the multivariate approach in regimen
selection for subsequent late-stage clinical trials [9, 12].
However, these differences may at least in part also be
related to different sample time points and inclusion of
higher dose levels in the ‘5+9’ regimen.

In addition to mechanistic patterns of biomarker
responses, the multivariate approach also revealed novel
correlations between clinical laboratory parameters
related to the safety of this novel compound. In particular,
rIL-21 induced changes in liver function laboratory param-
eters that were clearly visualized by inverse clustering of
Albs and liver enzymes [GGTs, serum glutamic oxaloacetic
transaminase (SGOTs), serum alanine aminotransferase
(ALTs) and APs]. The observation that these liver function
parameters systematically changed and inversely clus-
tered is novel and was not detected during the original
univariate analyses of these data. However, sporadic events

of elevated liver enzymes were originally reported by
univariate analysis in a subset of the patients [9]. By apply-
ing the multivariate approach it clearly becomes visible
that these sporadic adverse events reflect a systematic and
more general underlying pharmacological adverse effect
on liver function parameters. Simultaneous analysis of
available data as they are reported reveals that this trend,
i.e. similar clustering of GGTs, SGOTs, ALTs and APs vs. Albs as
illustrated in Figure 1e, becomes evident already at the
third dose level (10 mg kg-1) in the regimen ‘5+9’ of the
dose-escalation Phase I trial (Figure 2c). This clearly sup-
ports the notion that the multivariate approach provides
additional information to univariate methods and this at
an earlier stage in the clinical development process. More-
over, differences between the dose regimens may indicate
a more gradual effect on liver function with the ‘3/w’
regimen compared with the ‘5+9’ regimen. This important
information was also not captured in the original univari-
ate analyses of the data, further supporting the utility of
multivariate approaches for regimen selection [9].

The systematic variation explained by the models is
approximately 30% for both regimens in two components.
There are 43 variables and hence if these were completely
independent of each other (orthogonal) each component
in a PCA would explain 2.33% of the variation. That 30% is
explained in two components therefore directly implies
that the variables have a large common underlying struc-
ture. It is also expected that the percentage of variance
explained is well below 100%. Otherwise, the measured
variables would have been completely redundant and all
information could have been implicitly obtained from
measuring just two variables rather than the present 43.
Hence, there is additional information in these variables
probably reflecting idiosyncratic phenomena that are not
related to treatment.

Variables that do not correlate with the variation in the
rest of the data material, i.e. data with low loading values
for both component 1 and 2, are insufficiently described by
the models. For example, the MCHCB was inadequately
described by the models. Evaluation of these types of vari-
able should be supplemented by additional univariate sta-
tistical analysis in order to ascertain whether such variables
have a different important clinical relevance.

According to the clinical trial protocols the individual
laboratory and biomarker assessments were collected at
different sample time points. For example, laboratory bio-
chemistry and urinalysis were assessed on days 1, 2, 3 and
5 in the first week of dosing, whereas sCD25 was assessed
on days 1, 2 and 5. In chemometric terms such sample
collection schemes create ‘missing values’. In the model,
such values are estimated by expectation maximization
(see Methods). Consequently, variables with a high
degree of ‘missing values’ are estimated with higher
uncertainty. For this reason, pharmacokinetic data were
not included in the present analysis. As for other cytok-
ines, the half-life of rIL-21 is very short, i.e. approximately
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1–4 h [9]. Hence, plasma levels of rIL-21 were undetect-
able at the time points when all other laboratory param-
eters were assessed. Future investigations of the
proposed multivariate approach in clinical pharmacology
trials investigating compounds with longer half-lives will
reveal any potential value of integrating pharmacokinetic
data into this model.

The robustness of the multivariate approach was tested
by comparing a Phase I data model with an independent
Phase II data model.This validation revealed that the phar-
macological pattern depicted in the Phase I trial was strik-
ingly reproducible and predictive of the response in a
subsequent and independent trial. This finding further
supports the utility of the multivariate approach in extract-
ing additional information from early Phase I trials to facili-
tate decision making and planning for late-stage clinical
development.

The presented multivariate models were not able to
reveal correlations between laboratory variables and clini-
cal end-points for efficacy using the present datasets.
Also by univariate methods, parameters predictive of effi-
cacy have not previously been reported and may at least
in part be related to the fact that the overall proportion
of patients that experienced measurable clinical antitu-
mour responses in these early trials was <10% [9, 10]. In
addition, these limited data were rather variable among
the individual patients, and lack of association to the sys-
tematic PCA components is therefore not surprising. In
other therapeutic areas such as diabetes, where clinical
efficacy end-points are more frequently encountered, the
multivariate model may have a higher potential in reveal-
ing correlations to efficacy. In support, the model did
reveal significant correlations between the first compo-
nent for the regimen ‘5+9’ and the more frequently
encountered clinical safety end-points for fatigue and
pyrexia, emphasizing that these events are related to the
acute (component 1) treatment response. By univariate
methods, increased levels of serum IL-10 have actually
previously been reported in patients experiencing dose-
limiting toxicities [14]. Since measurements of IL-10 and a
large number of other serum biomarkers were not
included in the Phase II trial, these data were not included
in the present analysis. However, the lack of strong corre-
lations to infrequently observed clinical end-points illus-
trates limitations in the utility of the presented
multivariate model. This points to the notion that multi-
variate models should be applied only in conjunction
with univariate methods in order to capture all relevant
information. Future studies will reveal if multivariate
models can be applied in other areas, e.g. in diabetes
where the trial design, efficacy rates and safety measure-
ments are very different from what is used in oncology.
The presented findings warrant further investigations of
the utility of multivariate chemometric approaches in
early- and late-stage clinical drug development across
therapeutic areas.

Conclusion

Multivariate chemometric data analysis offers a compre-
hensive and intuitive tool to reveal early pharmacological
responses in clinical pharmacology trials. The multivariate
nature of the method allows simultaneous analysis of
many parameters and allows more detailed findings than
traditional univariate approaches. The present study has
revealed novel correlations between laboratory param-
eters related to liver function and biomarkers exploring
the pharmacological properties of rIL-21. Furthermore, the
presented multivariate approach can be used as guidance
in dose and regimen selections for subsequent studies.
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Appendix

Model description
In the following, the complete sequence of steps in our
multivariate approach is explained in detail. The basis for
the algorithm is a data matrix X of size I (rows) times J
(columns). Each column holds the measurements of one
variable and each row contains the data for one subject
measured at one instance. Generically, the modelling is
conducted as the following:

1 Missing individual observations (elements of X) are
imputed using expectation maximization [13]. This
means that the model is determined in a least squares
sense given the observed data without any need to
exclude either rows or columns, which would be wasteful
and potentially critical given that only few subjects are
usually available. Imputation works by iteratively fitting
the model to complete data initialized with suitable
numbers where missing data occur and then at each
iteration replacing the elements that are missing with
estimates of the data obtained from the model.

2 The data matrix X (I X J) is orthogonalized in order to
remove systematic irrelevant variation, here due to
subject-specific variation. Orthogonalization can be
written formally as Xort = (I - DD+)X where Xort is the
filtered data, I (I X I) is the identity matrix, and D (I X nsubj) is
the design matrix with respect to subject. D+ refers to the
pseudoinverse of D, nsubj refers to the total number of
subjects/patients. The matrix D is a dummy matrix that
contains ones in column n in the rows of subject n. This
orthogonalization step removes any differences in
level between subjects, i.e. similar to what can be
termed the subject-effect in analysis of variance [15].
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Orthogonalization is described in detail in the latter part
of this Appendix. Removing this variation is essential in
order to filter off subject variation that is not related to the
effect of the treatment.Note that other types of irrelevant
variation can also be removed using several orthogonal-
ization steps if needed.Also, note that the residuals of the
orthogonalization contain the subject-specific variation
that, if needed, can be further scrutinized.

3 Having removed the subject-specific variation, a PCA
model [16] is determined on the orthogonalized data. As
opposed to traditional PCA, it is crucial to use the correct
number of components, because the missing data impu-
tation in step 1 depends on the number of components.
In practice, several numbers of components are tested
and evaluated using the explained variance vs. number
of components plot as is usual in PCA [17], and number
of iterations for determination of missing values.The sta-
tistical relevance of the model is tested by permutation
testing using 1999 random permutations [18].

4 Post-processing is performed on the result of the PCA
model in order to enhance the visualization. Specifically,
the scores of the PCA model are averaged across day-
dose. Hence, instead of presenting a score value for each
subject, the scores are shown as averages for a specific
day and dose.

The algorithm
According to the above, the formal algorithm can be
written as follows.

1 Missing data elements are imputed with mean values of
the respective variables.

2 Data are orthogonalized into; Xort (matrix with informa-
tion orthogonal to D) and Xrest (matrix with information
linear correlated to D)

X I DD Xort = −( )+

X DD Xrest = +

where D+ = (D�D)-1D�

3 Data are autoscaled to equal variance [19].
4 PCA on orthogonalized and autoscaled data, decompos-

ing Xort into a score matrix (T), a loading matrix (P) and a
residual matrix (E).

X TP Eort = ′ +

5 PCA data approximation calculated

X TPmodel-ort = ′

6 Approximation de-orthogonalized

X X Xmodel model-ort rest= +

7 Approximations backscaled
8 Missing data are imputed with backscaled

approximations.

Step 2–8 is repeated until convergence of approximation
results.

Orthogonalization
X (I X J) is a data matrix, D (I X k) is matrix (or vector) with
external information such as patient id. The purpose of
orthogonalization is to split X into a part linear related to D
(XD) and a part orthogonal/perpendicular to D (XOD).

Examine the linear regression problem

X DB E= +

where B is some regression matrix and E is the part of X not
explained by D. From this B can be extracted as:

′( ) ′ = ′( ) ′( ) =− −D D D X D D D D B B1 1

and XD can be estimated to:

X DB D D D D XD = = ′( ) ′( )−1

and XOD to:

X X X X D D D D X

I D D D D X I DD X
OD D= − = − ′( ) ′

= − ′( ) ′( ) = −( )

−

− +

1

1

with D+ = (D�D)-1D� as the pseudo inverse of D.

Analysis of adverse events
The numbers obtained throughout the trial period of the
most frequent adverse events (fatigue and pyrexia) were
compared with score values from a one-component PCA
model on the initial results. In Figure 4 data are shown for
regimen ‘5+9’.

Abbreviations for Figure 6
1 ALT (alanine aminotransferase) serum
2 APTT (activated partial thromboplastin time) plasma
3 Basophils ABS blood
4 BiCarbonate serum
5 BUN (blood urea nitrogen) serum
6 Calcium serum
7 Chloride serum
8 Creatinine serum
9 C-reactive protein serum

10 Eosinophil ABS blood
11 Fibrinogen plasma
12 Glucose serum
13 GranzymeBCD56p
14 GranzymeBCD8p
15 Haemoglobin blood
16 Haptoglobin serum
17 INR (International Normalized Ratio) plasma
18 LDH (lactate dehydrogenase) serum
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19 MCV (mean corpuscular volume) blood
20 Monocytes ABS blood
21 Neutrophil ABS blood
22 PerforinCD8p
23 Phosphorous serum
24 pH urine
25 Potassium serum
26 PT plasma
27 Reticulocyte ABS blood
28 SGOT (serum glutamic oxaloacetic transaminase)

serum
29 Sodium serum
30 Specific Grav urine
31 T Bilirubin serum
32 T Calcium serum
33 Uric acid serum
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