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Abstract
The circadian clock regulates many aspects of physiology including cardiovascular function. Internal
oscillators exist in endothelial, smooth muscle cells and fibroblasts of the vasculature. Vascular tone
and thrombus formation – two key elements of vascular function in regard to adverse cardiovascular
events - exhibit diurnal rhythmicity. In this review, we describe changes in vascular function that
result from genetic disruption of discrete elements of the circadian clock.
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Introduction
Several aspects of cardiovascular physiology and the incidence of cardiovascular events, such
as sudden cardiac death, myocardial infarction, unstable angina, ventricular tachycardia and
ischemic and hemorrhagic stroke, are subject to diurnal variation, peaking in the early morning
hours.1, 2 The early morning surge in blood pressure, accompanied by a decline in endothelial
function, coincides with the peak incidence in clinical cardiovascular events.3, 4 The
corresponding oscillations in gene and protein expression of known regulators of vascular
physiology highlights the potential importance of the vascular clock in the described diurnal
variation of the incidence of cardiovascular events.5, 6

Blood vessels are composed of three major layers. The inner layer is composed of a monolayer
of endothelial cells that forms a barrier between the artery wall and the circulating blood.
Endothelial cells determine blood-tissue permeability, control vascular tone and regulate the
properties of the vascular surface with regard to hemostasis. Endothelial cells release nitric
oxide (NO), which activates an enzymatic cascade in the smooth muscle cell that results in
smooth muscle relaxation and reduced vascular tone. Other molecules produced by the
endothelial cells, such as endothelin-1 and angiotensin-II, act to contract smooth muscle cells.
The endothelial surface contains a set of factors that regulate platelet adhesion, coagulation
(thrombomodulin) and fibrinolysis (plasminogen activators, inhibitors). The medium layer of
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the blood vessel consists mainly of smooth muscle cells, which are responsible for
vasoconstriction and vasodilation. Endothelial cells, circulating mediators and the sympathetic
nervous system, regulate smooth muscle tone. Finally, the outer layer is a connective tissue
structure that fuses the vessel with connective tissue from the surrounding organs. The outer
layer contains fibroblasts, which, together with endothelial cells, plays a critical role in the
angiogenic process.

The oscillator exists as a self sustained transcriptional-translational circuit consisting of
positive and negative loops. This circuit creates a rhythm in gene expression with a period of
approximately (circa-) one day (dies), which drives circadian rhythms and adapts the
physiology of an organism to its needs in an anticipatory manner. The organization of
physiology appropriately to adapt to changes in the timing of recurring events (e.g. sunrise,
the time of food availability) lies in the ability of the circadian oscillator to synchronize its
phase in response to external cues. Importantly, the increased frequency of disorders such as
obesity and the metabolic syndrome among night-shift workers and humans with sleeping
disorders suggest broader involvement of the circadian clock in chronic disorders of
physiology.7 The molecular core of the circadian clock consists of a negative feedback loop
comprised of a positive limb of basic helix loop helix (bHLH) transcription factors Bmal1,
Clock and Npas2 and a negative limb of regulatory proteins period (Per) 1,2,3 and
cryptochrome (Cry) 1,2.8 Heterodimers of Bmal1 with Clock or Npas2 act as activators and
drive transcription through E-boxes located within the promoters of Per and Cry genes. Post-
translational modifications regulate Per and Cry proteins which then feedback and inhibit the
positive limb, resulting in rhythmic oscillation of clock components. At the same time,
additional feedback loops participate in the core of the circadian clock. Bmal1, Clock/Npas2
heterodimers drive the transcription of the nuclear receptors Rev-Erbα and ROREα, which in
turn repress or activate Bmal1 transcription respectively. The positive limb of the oscillator
regulates not only the transcription of clock components, but also a significant percentage of
the transcriptome, imposing a rhythm in cellular physiology by creating a rhythm in gene
expression.9

The oscillator exists in every cell and tissue examined with the exception of the testis.8, 10 The
circadian system is largely organized in a hierarchical manner. Surgical ablation of the
suprachiasmatic nucleus (SCN) in the hypothalamus ablates all hormonal and activity rhythms,
suggesting the existence of a master circadian pacemaker located in the SCN.11 Circadian
clocks have been described in many different peripheral tissues and evidence for the tissue-
specific role of the oscillator is beginning to accumulate. In this review we describe aspects of
vascular physiology that display circadian rhythms and provide the evidence that support a
role for the circadian clock in the regulation of vascular function.

Vascular function exhibits diurnal rhythmicity
The existence of a circadian rhythm in the function of human blood vessels has long been
recognized.12 Two aspects of vascular function, vascular tone and thrombus formation have
been studied in respect to the daily cycle. We have previously described a circadian variability
in both sympathetic tone, and vascular reactivity to adrenergic receptor agonists.13 Other
studies have shown that vascular tone exhibits a circadian variation in humans.14 Blood flow
and vascular resistance in the forearm and the vasodilator response to phentolamine (an α-
adrenergic-antagonist) but not to sodium nitroprusside (a direct vasodilator) varies at different
times of the day.14 Flow-mediated dilation of brachial artery, a widely used clinical index of
endothelial function, displays diurnal variation when examined in healthy young men.15 The
sensitivity of aortic preparations to either vasoconstrictor or vasorelaxing agents is different at
different times of the daily cycle, with both endothelium-dependent and -independent
relaxations being more pronounced at 03:00 than at other times of the day.16 In support of the
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latter, endothelial nitric oxide synthase (eNOS) activity exhibits circadian variation, possibly
as a result of a variation in its state of phosphorylation.17-20

Platelet aggregation and the thrombus formation subsequent to plaque rupture may precipitate
vascular occlusion and resultant tissue infarction and ischemia. Although there have been
reports of diurnal variation in platelet aggregability ex vivo,21 the relationship of these
observations (prone as they are to artifact ex vivo, attributable in part to diurnal variation in
extracellular fluid volume in vivo) to actual platelet activation in vivo is unknown. However,
factors external to the platelet—such as plasminogen activator inhibitor (PAI)-1 and tissue
plasminogen activator (tPA), which are produced by the vascular endothelium and do indeed
oscillate—may influence platelet activation in vivo. PAI-1 and tPA are produced by the
vascular endothelium and show diurnal variability throughout the day-night cycle. Other
mediators of the hemostatic system display diurnal variation, including coagulation factors (II,
VII, X, and tissue factor pathology inhibitor [TFPI]).22-24 Fibrinogen, the circulating
precursor of fibrin (a clot stabilizing protein), displays circadian variation in humans,25 with
a peak in the early morning. We recently showed that the time to thrombotic vascular occlusion
in response to a photochemical injury displays diurnal variation.26

A functional circadian clock exists within different cellular elements of the
vasculature

The first molecular evidence of the existence of a circadian clock in the vasculature came with
the identification of rhythmic oscillation in gene expression of clock components in mouse
aortas isolated at different times throughout the 24-hour period.27-30 The existence of a
functional clock was consequently demonstrated by Davidson et. al.31 who discovered
rhythmic luciferase activity driven by the Per1 gene promoter in veins and arteries cultured
from the transgenic Per1-luciferase rat. This in vivo identification of a circadian clock was
accompanied by in vitro evidence of the existence of the clock in vascular fibroblasts, smooth
muscle and endothelial cells. Fibroblasts in culture show a circadian pattern of expression for
all circadian clock components after synchronization with serum that phase aligns the cells in
culture.32, 33 The rhythmic pattern of expression persists for more than 20 days in culture,
suggesting the existence of self-sustained circadian clocks in fibroblasts.34 Dramatic
oscillations in circadian clock components have been observed in vascular smooth muscle cells
(VSMC) throughout the 24-hour period.27, 28, 35 Synchronization of hemangioendothelioma
cells in culture with serum resulted in circadian expression of clock genes, providing evidence
for the existence of a circadian clock in vascular endothelial cells.36 Although we identified
rhythmic expression of Bmal2 and Per2 in VSMC in culture following serum shock,27 we
failed to detect rhythmic oscillations of clock components in endothelial cells isolated from
aorta after serum shock.26

The oscillations in Per1/2, Cry1/2 mRNA levels in the mouse aorta peak during early circadian
night (the time period during constant darkness that corresponds to the night period of a regular
day-night cycle), whereas Bmal1 and Npas2 peak at the beginning of circadian day (the time
period under constant darkness corresponding to the day period of a regular day-night cycle).
These findings indicate that the circadian oscillator in aorta is in temporal phase alignment
with the master circadian oscillator in the SCN in mice. Cultures of vascular smooth muscle
cells also show an inverse phase between Per, Cry and Bmal1 gene expression (Figure 1). It is
still unknown whether individual cells in the vasculature communicate timing information to
each other. Single cell recordings and co-culture experiments indicate that cultured fibroblasts
do not influence each other's rhythms to any measurable degree.33 However, different tissue
explants harvested from the same SCN-lesioned animal display circadian oscillations with
different phases and period lengths.34 This suggests that intercellular communication within
an organ may exist. Further evidence of intercellular communication of timing information
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comes from the intercellular coupling of SCN neurons that is essential for synchronization and
robustness of cellular oscillators.37

As we already mentioned, the circadian oscillator of the aorta is in temporal phase alignment
with the SCN, suggesting that as with the other peripheral oscillators, the SCN provides
synchronizing cues to the circadian clock of the vasculature. However, the oscillator of the
vasculature responds to signals other than the ones coming from the SCN. These signals may
entrain the oscillators in the vasculature out of phase with the SCN. We have shown previously
that retinoic acid and the synthetic glucocorticoid, dexamethasone, phase shift Per2 mRNA
rhythms in human vascular smooth muscle cells.27 Our findings suggest that periodic
availability in steroid hormones and vitamins, such as retinoids, might phase shift or reset the
peripheral clocks of cells in the vasculature.

Vascular clock output
The circadian oscillator of any cell regulates the expression of a number of genes - called
circadian clock output genes - resulting in rhythms in physiological processes. It is quite
possible that molecular clocks within the different cell types of a vessel may express different
circadian output genes. According to several microarray studies38-40 clock output genes vary
widely between different cell types in different tissues, suggesting a tissue-specific role of
clocks. This is consistent with the possibility that the genes under circadian control may differ
between the different cells types of the vascular bed.

We examined the rhythmic expression of genes in the thoracic aorta using high density arrays.
40 Genes relevant to protein folding, protein degradation, glucose and lipid metabolism,
adipocyte maturation, vascular integrity and the response to injury demonstrated a circadian
pattern of oscillation in mouse aorta. The number of genes exhibiting circadian expression (307
genes out of approximately 8000 probe sets examined) corresponds to the 5-10% of the
transcriptome reported to oscillate in other tissues. The genes with an oscillating pattern of
expression in aorta provide a list of candidate genes under the control of the vascular clock.
Studies in vascular endothelial cells have identified Pai-1 and thrombomodulin as targets of
the circadian clock of the vascular endothelium.36, 41, 42 The Pai-1 gene contains two
consensus E-boxes in its promoter, and is driven by the endothelial specific circadian
heterodimer Bmal2:Clock,42 and also Bmal1:Clock.41 The Bmal2:Clock heterodimer binds
directly to the E-box of the thrombomodulin promoter and drives its rhythmic expression in
vascular endothelial cells.36 The above findings suggest a role of the vascular clock in a variety
of vascular functions including pressor responses and thrombogenesis.

Evidence for the importance of circadian clocks in vascular function
The evidence to support a role of the circadian clock in vascular function comes primarily from
animal models with genetic deletion of components of the circadian clock. The sensitivity of
aorta to vasoactive agents is described to vary according to time of day.16 This variation is
altered in mice with mutated circadian clock elements, while the downstream effector response
to nitric oxide, through guanylyl cyclase, remains intact.17, 43 The latter is consistent with
observations in humans demonstrating that the response to sodium nitroprusside does not vary
according to time of day.14 In individuals with compromised endothelial function, this diurnal
variation in vascular endothelium-dependent vasodilatation is blunted.44 Endothelium-
dependent relaxations are reduced in Per2 mutant mice and the diurnal variation that the
relaxations normally exhibit is absent in the mutant mice. Aortic rings isolated from Per2
mutant mice exhibit impaired endothelium-dependent relaxations to acetylcholine,43 which
stimulates NO release from the endothelium via activation of endothelial acetylcholine-M3
receptor.45 The expression of endothelial acetylcholine-M3 receptor or eNOS is not altered in
the aortas of Per2 mutant mice. Moreover, the endothelium-dependent relaxations to
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ionomycin, which stimulates eNOS enzymatic activity via non-receptor-mediated increase in
intracellular Ca2+ concentration, are also reduced significantly in the Per2 mutant mice during
the inactive phase of the daily cycle. This reduced response to ionomycin is improved by the
cyclooxygenase (COX) inhibitor indomethacin, suggesting an increase in COX-derived
vasoconstrictors in the Per2 mutants. Aortas from Per2 mutant mice express significantly
higher COX-1 and indomethacin is able to abolish the differences in endothelium-dependent
responses to ATP described in aortic rings from Per2 mutant mice.43 Recent data are also
consistent with impaired eNOS signaling and endothelial function in mice with dysfunctional
circadian clocks.17, 19 eNOS expression is not modified in these mice, but there is evidence
that post-translational mechanisms regulating eNOS activity are compromised, consistent with
observations demonstrating that eNOS activity exhibits a circadian variation,20 which maybe
a consequence of its phosphorylation state.17-19

Changes in catecholamine production in mice with dysfunctional circadian oscillators may also
contribute to the abnormal vasoactive responses described in these mice. Bmal1 knockout and
Npas2 mutant mice46 and endothelial cell-specific PPARγ (Peroxisome Proliferator-Activated
Receptor γ) knockout mice which have reduced Bmal147 all have substantially reduced levels
of norepinephrine and epinephrine in plasma, both at night and during the day. The
catecholamine-mediated vasoconstriction response to an α-1-adrenergic receptor agonist is
suppressed in Cry-deficient mice.48 This suppression of the α-adrenoceptor response may be
caused by an impaired intracellular pathway for α-adrenoceptor-mediated contraction of
vascular smooth muscle cells, including reduced expression of α-adrenoceptors. This result is
consistent with the possibility that Cry genes in the vasculature contribute to circadian changes
in arterial blood pressure regulation by modulating α-adrenoceptor-mediated vasoconstriction
in the peripheral vessels. However, it is possible that dysregulation of the clock in the
vasculature results from a depletion of sympathetic nervous input after disruption of the central
circadian clock in the Cry knockout mice.

The impaired vascular responses in mice with dysfunctional clocks are reflected in the blood
pressure of these mice. Transgenic mouse models with disrupted circadian clocks exhibit
alterations in blood pressure and its variability over time.46, 48 Bmal1 knockout mice have
reduced mean arterial pressure especially during the active phase of the day.46 Bmal1 deletion
alters the expression of catechol-O-methyl transferase (comt) in aorta, an enzyme that accounts
for an extraneuronal low-affinity high-capacity “sink” for clearance of catecholamines.46 Comt
participates in the regulation of blood pressure, with comt-deficient mice being resistant to salt
induced hypertension.49 Kininogen, another gene of potential relevance to blood pressure
control,50 was also dysregulated in the aorta of Bmal1 knockout mice.46 Similar to the
universal Bmal1 knockout mouse, deletion of Bmal1 specifically in vascular endothelium leads
to a reduction of blood pressure during the active phase of the day and increased heart rate
throughout the 24 hr cycle without changes in plasma catecholamines, nitric oxide biosynthesis
or fibrinolytic efficiency.26 In agreement with the findings from Bmal1 deletion, Npas2 mutant
mice46 and Per2 mutant mice43 had reduced mean arterial pressure, irrespective of clock time.
On the other hand, the circadian variation in blood pressure was lost in Cry1/Cry2 double
knockout mice48 and Clock mutants46 without changes in overall pressure levels. In addition
to those models of disrupted clock function, deletion of PPARγ in vascular endothelial and
smooth muscle cells resulted in a reduction of Bmal1 expression and blunting of the diurnal
variation of blood pressure.47 The endothelial cell-specific deletion of PPARγ led to a reduction
in blood pressure only during the active phase similar to the reduction described in the
endothelial-specific knockout of Bmal1. Interestingly, the smooth muscle cell-specific deletion
of PPARγ resulted in an increase of the blood pressure during the resting phase with no change
during the active phase.47
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The endothelial dysfunction observed in mice with dysfunctional clocks may reflect increased
vascular senescence.19 The ability of endothelial cells from Per2 mutant mice to proliferate
and form vascular networks is substantially reduced.19 Reduced proliferative capacity is a
marker of increased senescence of endothelial cells. Moreover, aortas and endothelial cells
isolated from Per2 mutant mice show increased senescence as assessed by β-galactosidase
activity, accompanied by increased Akt signaling. Inhibition of Akt signaling restored the
impaired vascular network formation and endothelial cell proliferation in Per2 mutant mice.
On the other hand, overactivity of Akt has been linked to increased vascular senescence through
increased reactive oxygen species generation and decreased NO bioavailability, as well as
impaired angiogenesis.51, 52 Per2 mutant mice show decreased angiogenesis in two different
in vivo experimental models. Incorporation of hemoglobin, which correlates with vessel
formation, after subcutaneous implantation of matrigel is reduced in Per2 mutant mice
compared to wild-type mice.19 In a second model, Per2 mutants show autoamputation and
impaired blood flow recovery in response to ischemia characterized by a smaller increase in
endothelial progenitor cells.19 Bone marrow transplantation experiments showed reduced
blood flow recovery to ischemia in mice receiving bone marrow from Per2 mutants, suggesting
a role of bone marrow derived endothelial progenitor cells in ischemia-induced
neovascularization.19 However, blood flow recovery in Per2 mutant mice receiving bone
marrow from wild-type mice was only partially restored to wild-type levels, suggesting that
impaired intrinsic vascular function, in addition to impaired endothelial progenitor cells
function, contributes to the altered angiogenic response and autoamputation in Per2 mutants.
In support of a role for endothelial progenitor cells in ischemia-induced neovascularization,
infusion of wild-type endothelial progenitor cells in Per2 mutant mice restores ischemia-
induced neovascularization and blood flow recovery. It is known that circadian rhythms affect
stem cell function, thus disruption of circadian genes is likely to affect the function of bone
marrow-derived cells, including endothelial progenitor cells.53, 54 Both increased endothelial
senescence and decreased endothelial progenitor cell mobilization may contribute to the
autoamputation observed in Per2 mutant mice.

Recently, we showed that deletion of Bmal1 specifically in the vascular endothelium results
in loss of the temporal pattern in susceptibility to thrombotic vascular occlusion, as assessed
by a vessel injury model.26 The diurnal variation in the time to thrombotic vascular occlusion
in response to photochemical injury was also completely abolished in Clock mutant mice,
further supporting a role of the circadian clock.26 The deletion or mutation of clock components
not only abolished the diurnal variation in thrombogenesis but also had an impact on the
functional response of the endothelium. The time to thrombotic vascular occlusion (TTVO)
was shorter in mice with endothelial deletion of Bmal1. A shorter TTVO was also observed in
global Bmal1 knockout mice. The observed difference in TTVO does not appear to be due to
alterations in arterial blood flow because overall baseline blood flow was not altered in mice
with both global and endothelial specific deletion of Bmal1. On the other hand, Clock mutant
and Npas2 knockout mice had a significantly longer time to thrombotic vascular occlusion.
The difference between Clock mutant, Npas2 knockout mice and mice with endothelial specific
deletion of Bmal1 in TTVO may be attributed to the lower plasma PAI-1 levels in Clock mutant
and Npas2 knockout mice. Mice with endothelial specific deletion of Bmal1 have normal PAI-1
and tPA plasma levels.26

The role of the circadian clock in vascular function was recently investigated in a model of
blood flow reduction. Arteries of young Bmal1 knockout mice were unable to adapt to chronic
reduction of blood flow by inward luminal remodeling.17 This response of the arteries of Bmal1
knockout mice was accompanied by a substantial increase in collagen deposition in the medial
layer and increased thickening of the arterial wall. Older Bmal1 knockout mice exhibited a
significant susceptibility to thrombosis in response to vessel ligation. The thrombosis was
accompanied by tissue remodeling around the site of thrombus formation. In arterial regions
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that were thrombus-free, aged Bmal1 knockout mice revealed a paradoxical enlargement of
lumen diameter after ligation.17 Both Clock mutant and Bmal1 knockout mice exhibited a
significant increase in neointimal area and intima to medial ratio in response to mechanical
injury of the vascular endothelium under constant darkness.17 However, under a regular light
dark daily cycle, the wall thickening and inward remodeling induced by arterial ligation were
not different between wild-type and Clock mutant mice, providing strong evidence for a direct
link between light cycle- and circadian rhythm-dependent changes in vascular function.
Moreover, PAI-1 was upregulated in the remodeled vascular endothelium of Bmal1 knockout
mice. Aortas from both Bmal1 knockout and Clock mutant mice exhibited a severely impaired
vasorelaxant response to acetylcholine relative to wild-type mice under constant darkness. This
impaired response in Clock mutant mice was again not apparent under light-dark conditions,
providing further evidence in support of a direct link between the biological clock and vascular
integrity. The impairment in aortic relaxation in Bmal1 knockout mice was improved by
administration of the superoxide oxygen radical scavenger superoxide dismutase, without
changes in the smooth muscle cell responses to nitric oxide. The endothelial dysfunction and
pathological vascular remodeling observed in Bmal1 knockout mice was attributed to reduced
Akt signaling. In addition, attenuation of phosphorylated eNOS – a target for Akt to exert its
regulatory role in vascular function - was also described in the arteries of Bmal1 knockout
mice. The effects of circadian clocks in the regulation of vascular function are summarized in
Figure 2. Table 1 provides a summary of the vascular phenotypes observed in genetic models
of dysfunctional clocks.

The only study not using genetic deletion of clock components to investigate the effect of the
disruption of the circadian clock on vascular function was performed in a mouse model of
cardiac hypertrophy. Disruption of the circadian clock by altering the light cycle to a 10h light:
10h dark phase scheme resulted in abnormal thinning as opposed to hyperplasia of the aorta
vessel wall and less hypertrophy of vascular muscle cells.55

Circadian clocks residing outside the vasculature and vascular function
In all of the previous studies, with the exception of the one involving mice with endothelial
deletion of Bmal1, it is unclear whether the effect on the vasculature comes from a circadian
oscillator residing inside or outside the vasculature. Although our study on the deletion of
endothelial Bmal1 strongly suggests a role of the vascular clock in the physiology of the
vasculature, we may not exclude a role for ectopic circadian oscillators. Several lines of
evidence indicate the participation of the master oscillator in the SCN and other peripheral
oscillators in the production and circadian variation of potent vasoactive proteins. The SCN
impinges on the circadian rhythm in glucocorticoid release by regulating both the
hypothalamic-pituitary-adrenal axis and the autonomic nervous system.56, 57 Recently, a SCN-
dependent light-induced release of corticosterone in the adrenal gland has been described
without an accompanying activation of the hypothalamo-adenohypophysial axis. This
highlights the importance of the circadian clock in the phenomenon.58 Glucocorticoids, of
which cortisol in humans59 and corticosterone in rodents60 are the most potent, have robust
diurnal rhythms. Glucocorticoids can suppress the induced production of vasodilators, such as
prostacyclin and NO in the endothelium.61 The arterial contractile sensitivity to catecholamines
is potentiated by glucocorticoids. Glucocorticoids are also known to suppress inflammation
and regulate vascular permeability through control on tight junction proteins.61

Another set of vascular effectors regulated by the circadian clock are the catecholamines,
epinephrine and norepinephrine. Catecholamines are potent vasoactive hormones that
contribute acutely to vasoconstriction, endothelial dysfunction and platelet activation. Both
epinephrine and norepinephrine oscillate with a diurnal rhythm.62 Amplification of the diurnal
variation of catecholamines may influence atherogenesis and the response to vascular injury.
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63 Animal models suggest that the positive components of the molecular clock can affect
expression of key rate-limiting enzymes in catecholamine generation such as tyrosine
hydroxylase,64 comt, pheylethanolamine – n – methyl transferase (pnmt) and monoamine
oxidase (mao)B.46 Interestingly, catecholamines are potent synchronizers of the circadian
clock, raising the possibility that their effect on vascular function is mediated, at least in part,
through the vascular clock. Depletion of both norepinephrine and epinephrine, by genetic
deletion of dopamine β-hydroxylase, results in loss of the diurnal oscillation in blood pressure.
35 Norepinephrine and epinephrine acting via α1 and β2 adrenergic receptors phase shift the
circadian clock in mouse and human vascular smooth muscle cells in vitro.35 However, aortic
clocks in dopamine β-hydroxylase knockout mice that cannot synthesize either norepinephrine
or epinephrine, can be entrained by food restriction.35 Similar to catecholamines, we found
glucocorticoids to be potent synchronizers of the circadian oscillator in the VSMCs.27 A third
potent synchronizer of the oscillator in VSMCs is angiotensin II. Angiotensin II exhibits
considerable diurnal variation and plays a central role in the regulation of systemic blood
pressure through multiple effects, some of which are exerted on the vasculature.65, 66 Treatment
of VSMCs with angiotensin II induces significant oscillation in bmal1, per2 and dbp.28

Overexpression of the renin II gene in the rat is associated with a phase delayed or inverted
circadian rhythm of blood pressure, attenuated circadian and photic induction of c-fos gene in
SCN neurons, and attenuated phase shifting of behavioral and cardiovascular rhythms in
response to light.67, 68 Studies in AT2 receptor knockout mice reveal disrupted circadian
rhythms in blood pressure and heart rate compared with wild type mice.69 All the above
findings raise the possibility that glucocorticoids, catecholamines and angiotensin II may
contribute to regulation of vascular function including integration of the SCN with the
peripheral oscillators in the vasculature (Figure 3).

Conclusion
Although diurnal variation in vascular physiology has been long recognized, many aspects of
how the the molecular clock influences vascular function remain unknown. During the past
decade, a model of function for the circadian clock has been developed. Disruption of this
model by genetic manipulation suggests an influence of the molecular clock on diverse aspects
of cardiovascular function. However, it is known that many of the circadian clock genes have
non-clock related actions; therefore careful interpretation of those studies is needed. Future
use of tissue specific knockout models of circadian clock components and the use of diversified
models of clock dysfunction will hopefully prove helpful in unraveling the network of circadian
oscillators residing both inside and outside the vasculature that regulate cardiovascular biology.
Understanding the role of the clock in vascular function should eventually lead to mechanistic
explanations of the temporal incidence in adverse cardiovascular events and present novel
therapeutic opportunities. One of the major challenges in this effort will be the identification
of mechanisms underlying the oscillations in vascular physiology. This knowledge will
potentially enable prospective studies of therapies targeting vascular pathology in respect to
diurnal variation. Furthermore, therapeutic approaches may be designed to act in an
anticipatory way. Already, antihypertensive drug therapy is timed to intercept the morning
surge in blood pressure while mindful of diurnal variation in drug metabolism. However, the
ultimate goal is to identify and target for correction the fundamental defects leading to
dysregulated rhythms of vascular physiology.
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Non-standard Abbreviations and Acronyms

NO Nitric oxide

Bmal1 Brain and muscle Arnt-like protein-1

Clock Circadian Locomotor Output Cycles Kaput

Npas2 Neuronal PAS domain-containing protein 2

Per Period

Cry Cryptochrome

ROREα Retinoic acid-related orphan receptor elements α

SCN Suprachiasmatic nucleus

eNOS Endothelial nitric oxide synthase

PAI-1 Plasminogen activator inhibitor 1

tPA Tissue plasminogen activator

VSMC Vascular smooth muscle cells

COX Cyclooxygenase

PPARγ Peroxisome proliferator-activated receptor γ

Comt Catechol-O-methyl transferase

TTVO Time to thrombotic vascular occlusion

Pnmt Pheylethanolamine – n – methyl transferase
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Figure 1. Accumulation of circadian clock gene transcripts in human and mouse aortic smooth
muscle cells (SMC) and mouse aorta
In the mouse aorta, clock gene mRNA transcripts Per2, Bmal1, and clock output gene dbp
display circadian oscillations. Clock and Bmal1 heterodimers drive transcription of Per2 and
dbp by binding to E box consensus sequences in their promoters. The peak in Per2 and dbp
expression is observed around CT36 corresponding to the transition between the light and dark
period. Bmal1 expression is driven by RORα acting at RRE sequences and subsequently
repressed by RevErbα. The peak in Bmal1 expression is observed at CT24 corresponding to
the transition from the dark phase to the light phase. Mouse aortas were harvested in constant
darkness. Clock gene mRNA transcripts similarly display circadian rhythmicity in human and
mouse aortic smooth muscle cells after treatment with 50% serum. The phase of the rhythms
of these cells cultured in vitro is expected to be different to the in vivo rhythm due to the effect
of the autonomous nervous system. Oscillation of the clock output gene dbp in smooth muscle
cells is in phase with Per2 with a peak at t=24 hour post serum shock in human cells. Per2 and
dbp peak slightly earlier (close to t=18 hours) in mouse smooth muscle cells. Expression of
Per2, Bmal1, and dbp was monitored by qPCR. From Ref. 35 with permission.
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Figure 2.
Overview of the importance of circadian clocks in vascular function. Both the master clock in
the suprachiasmatic nucleus (SCN) and the peripheral clocks, including the ones within the
vasculature, impose a rhythm in several mediators of vascular function. The SCN can exert its
effect both directly into the vasculature and indirectly by synchronizing peripheral clocks.
Glucocorticoids, catecholamines, angiotensin II and endothelial nitric oxide synthase (eNOS)
activity vary with time within the day. This temporal variation is responsible for a diurnal
variation in vasoacting responses resulting in the diurnal rhythm of blood pressure. Moreover,
circadian clock function is necessary for physiological angiogenesis and thrombogenesis.
Circadian clocks inhibit Akt signaling and resulting vascular senescence and promote
endothelial progenitor cell mobilization to maintain angiogenesis. Vascular luminal
remodeling and composition requires functional circadian clocks for physiological
thrombogenesis.
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Figure 3.
A network of circadian clocks regulates vascular function. The master oscillator in the
suprachiasmatic nucleus (SCN) stimulates the release of glucocorticoids and catecholamines
by the adrenal glands. Two pathways mediate the stimulation of the adrenals. The first involves
activation of the pituitary and the second the autonomic nervous system. Glucocorticoids and
catecholamines exert pleiotropic effects on the vasculature including the synchronization of
the vascular oscillator. Oscillators, not only in SCN, but also in pituitary and adrenals
participate in the regulation of glucocorticoid and catecholamine oscillations. ATCH:
adrenocorticotropic hormone
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Table 1

Phenotypes relevant to vascular function in genetic models of dysfunctional circadian clock

Mouse model Observed phenotype

Bmal1 knockout Reduced endothelial-dependent vascular
relaxation

Reduced plasma catecholamines

Reduced mean arterial pressure

Loss of circadian variation of arterial pressure

Shorter time to thrombotic vascular occlusion

Accelerated thrombosis in response to vessel
ligation

No adaptation to chronic reduction of blood
flow

Increase in neointimal area in response to
mechanical injury of the vascular endothelium

Endothelial cell-specific Bmal1
knockout

Reduced mean arterial pressure during the
active phase of the day

Loss of circadian variation in susceptibility to
thrombotic vascular occlusion

Shorter time to thrombotic vascular occlusion

Clock mutant Reduced endothelial-dependent vascular
relaxation

Loss of circadian variation of arterial pressure

Loss of circadian variation in susceptibility to
thrombotic vascular occlusion

Longer time to thrombotic vascular occlusion

Increase in neointimal area in response to
mechanical injury of the vascular endothelium

Npas2 knockout Longer time to thrombotic vascular occlusion

Npas2 mutant Reduced plasma catecholamines

Reduced mean arterial pressure

Phase shift of circadian variation of arterial
pressure

Per2 mutant Reduced endothelial-dependent vascular
relaxation

Reduced mean arterial pressure

Increased vascular senescence

Decreased angiogenesis

Cry1/Cry2 double knockout Reduced catecholamine-mediated
vasoconstriction

Loss of circadian variation of arterial pressure

Increased baroreflex sensitivity
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