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Abstract

Myocardial ischemia and cardiac dysfunction have been known to follow ischemic heart diseases (IHDs).
Despite a plethora of conventional treatment options, their efficacies are associated with skepticism. Cell ther-
apies harbor a promising potential for vascular and cardiac repair, which is corroborated by adequate preclinical
evidence. The underlying objectives behind cardiac regenerative therapies subsume enhancing angiomyogenesis
in the ischemic myocardium, ameliorating cellular apoptosis, regenerating the damaged myocardium, re-
populating the lost resident myocardial cells (smooth muscle, cardiomyocyte, and endothelial cells), and finally,
decreasing fibrosis with a consequent reduction in ventricular remodeling. Although-cell based cardiomyoplasty
approaches have an immense potential, their clinical utilization is limited owing to the increased need for better
candidates for cellular cardiomyoplasty, better routes of delivery, appropriate dose for efficient engraftment, and
better preconditioning or genetic-modification strategies for the progenitor and stem cells. Mesenchymal stem
cells (MSCs) have emerged as powerful candidates in mediating myocardial repair owing to their unique
properties of multipotency, transdifferentiation, intercellular connection with the resident cardiomyocytes via
connexin 43 (Cx43)-positive gap junctions in the myocardium, and most important, immunomodulation. In this
review, we present an in-depth discussion on the complexities associated with stem and progenitor cell thera-
pies, the potential of preclinical approaches involving MSCs for myocardial repair, and an account of the past
milestones and ongoing MSC-based trials in humans. Antioxid. Redox Signal. 11, 1841–1855.

Introduction

Complicated comorbidities of ischemic heart diseases
(IHDs) have resulted in a major worldwide death toll

(109). As the regenerative capacity of the myocardium is ex-
tremely limited, negative remodeling and myocardial scar
leads to cardiac decompensation and a gradual terminal
failure (99). Contemporary pharmacologic and interventional
strategies for myocardial repair [like surgical cardiomyo-
plasty, ventricular resynchronization, and heart trans-
plantation (81)] fail to ameliorate these pathophysiologic
complications and have unveiled numerous flaws, thereby
paving a way for the global era of cell-based therapeutics.

The bone marrow acts as a reservoir, housing diverse types
of progenitor cells (e.g., endothelial progenitor cells, mesen-
chymal stem cells, and hematopoietic stem cells), which are
differentially regulated by growth factors and cytokines, af-
fecting their retention, self-renewal, cell-cycle status, and
mobilization (88). These distinct subsets of progenitor cells
are multipotent, although more committed, arising from a
parent stem cell, and developmentally, hold a hierarchy be-
tween stem cell and a fully differentiated adult cell. On the
contrary, stem cells define a class of multipotent=pluripotent
cells fully capable of self-renewal and clonal expansion (36).
Although, literature is replete with instances of both autolo-
gous stem and progenitor cell therapies for the treatment of

Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington,
Connecticut.

ANTIOXIDANTS & REDOX SIGNALING
Volume 11, Number 8, 2009
ª Mary Ann Liebert, Inc.
DOI: 10.1089=ars.2009.2455

1841



ischemic cardiomyopathies and their improved therapeutic
outcomes have been widely accepted, these trials have led to a
less precise use of terms to identify multipotent cells and true
stem cells. For example, the terms mesenchymal stem cells
(MSCs) and mesenchymal progenitor cells are used inter-
changeably.

Preclinical studies have shown evidence for a beneficial
effect of the transplanted progenitor and stem cells on the
enhanced recovery of cardiac functions, which in turn is me-
diated by replacement of the scarred tissue, reduced fibrosis,
restoration of the myocyte contractile activity, and formation
of a vascular meshwork for nourishing the newly formed
tissue. These therapies participate in myocardial repair via
three basic mechanisms: enhanced angiogenesis, decreased
cellular apoptosis, and improved myocardial regeneration.

Myocardial infarction engenders an irreversible loss of
cardiomyocytes (CMs). It has been reported that a typical
human infarct involves a loss of 1–1.5 billion CMs with a
consequent loss in myocardial cell mass (approximately one
third of the total volume) (14, 92, 97). Therefore, progenitor
cell therapies that can contribute to an increase in the number
of viable and functional CM population behold considerable
clinical significance. As a consequence, many stem and pro-
genitor cell types (including skeletal myoblasts, ESCs, EPCs,
HSCs, MSCs, iPSCs, etc.) have been subjected to challenges to
demonstrate a CM-differentiation potential. However, the
true potential of any of these cell types in defining a CM lin-
eage is controversial.

MSCs, also defined as the multipotent subset of marrow
stromal cells (48), comprise a rare population of multipotent
progenitor cells in the adult bone marrow (89) and are con-
sidered as promising candidates for myocardial repair owing
to their unique properties of plasticity, efficient self-renewal,
immune tolerance, release of paracrine effectors, trophic
support, and establishment of Cx43-positive intercellular
connections with the functional CMs. Furthermore, MSCs
are omnipresent in virtually all postnatal organs and tissues
as pericytes (26), afford easy handling, possess enormous
expansion potential, and comply with allotransplantation.
MSCs have been shown to acquire the characteristics of os-
teoblast, chondrocyte, adipocyte, neuron, CM, smooth mus-
cle, and endothelial cells, thus affording diverse clinical
utilization for cell-based therapeutics (13, 82, 84, 127, 132).
Most important, they have been termed ‘‘universal cells,’’ cells
that can work in any host owing to the lack of MHC class II
molecules and B7 costimulatory molecules for MHC class I
(17).

However, hypoxia, deficiency of survival factors, ischemia,
and inflammatory cytokines resulting from oxidative stress
and CMs apoptosis in the infarcted myocardium limit the
longevity of the transplanted MSCs. Therefore, approaches to
ameliorate the harsh microenvironment in the ischemic myo-
cardium and to promote the longevity of engrafted cells via
preconditioning (hypoxic, anoxic, pharmacologic, heat shock)
the MSCs or genetically modifying them (overexpressing Akt,
CXCR4, SDF-1, IGF-1, HGF, etc.) before their transplantation
have yielded promising results. These modified or precondi-
tioned MSCs have been proclaimed to stimulate the survival
and cardioprotective pathways in the infarcted myocardium.
Moreover, the translation of MSC therapy to clinical cardi-
ology has demonstrated some promising improvements in

the cardiac functions of patients with acute myocardial in-
farction (AMI) along with a significant increase in left ven-
tricular ejection fraction (LVEF) after 3 months. In addition,
perfusion defects detected by positron emission tomography
were significantly ameliorated after MSC transplantation. The
study also demonstrated an increased cardiac mechanical ca-
pability and electrical property, as measured by real-time
cardiac electromechanical mapping and lack of any occur-
rences of arrhythmia in the MSC-administered patients during
electrocardiographic monitoring (23).

The future of MSC-based cellular cardiomyoplasty ap-
proaches is encouraging, although further standardization of
the delivery strategies and a better understanding of their
transdifferentiation, niche regulation, and homing are re-
quired.

Candidates for Cell Therapy in Myocardial Repair

Nonresident cells of the myocardium

Skeletal myoblasts. Initial pioneering attempts by C. E.
Murry (75) for cell-based myocardial regeneration began with
the injection of 3�106 skeletal myoblasts (SkMs) superficially
into the center of cryoinjured myocardium, which formed
myotubes after 3 days of transplantation and myofibers by
2 weeks. These myofibers showed the characteristics of slow-
twitch muscle that could be stimulated to contract ex vivo.

Following this, autologous skeletal myoblasts (SkMs) were
used to ameliorate the ischemic myocardium (118, 119), ow-
ing also to their increased resistance to an ischemic microen-
vironment and the ability to form myotubes in vivo (79, 112).
Interestingly, modified human SkMs expressing human
VEGF-165 were found to increase the capillary density and
LVEF in a porcine model of myocardial infarction (47, 111).
Moreover, diazoxide-preconditioned SkMs were found to
release paracrine factors that promoted cardiac angiomyo-
genesis in Fischer-344 rats (79).

However, it was soon realized that these SkMs fail to
couple electromechanically with the resident CMs in the
myocardium. Although, after the coculture of SkMs (N-cad-
herin and Cx43 positive) with neonatal or adult cardiomyo-
cytes, the resulting myotubes contract in synchrony with the
cardiomyocytes, this electromechanical coupling was dis-
rupted following the in vivo engraftment, consistent with the
lack of expression of N-cadherin and Cx43 in vivo (96). This
may contribute to electrical heterogeneity in hearts treated
with SkMs, which in turn may cause the increased ventricular
arrhythmia as seen in clinical studies of myoblast transfer,
thus limiting their therapeutic use (72).

Embryonic stem cells. Unlike most adult stem cells, em-
bryonic stem cells (ESCs) clearly have a cardiomyogenic po-
tential. These cells were successfully isolated from human
blastocysts by Thomson et al. (120), after the initial attempts of
Evans et al. (39) and later by G. Martin (70) in the same year.
ESCs posses all the qualities of a prototypical stem cell: clonal
expansion, self-renewal and multipotentiality (41). In addi-
tion, they can transdifferentiate into myocardial cell types;
endothelial cells, and CMs (27, 58, 65, 95). Transcriptional and
functional profiling of human ES cell (hESC)-derived CMs
revealed a similarity to those found in 20-week fetal heart
cells, thereby appearing as a strong candidate for the in vivo
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replacement of apoptotic CMs in the failing myocardium (16).
Furthermore, ESC-derived cardiomyocytes (ESC-CM) elicit
electromechanical coupling via Cx43-positive gap junctions
(27, 143).

Unfortunately, despite this huge potential, the transplan-
tation of undifferentiated ES cells into immunodeficient or
syngeneic hosts can bring about teratomas, induction of ar-
rhythmias, and allorejection (20, 143).

Hematopoietic stem cells. HSCs probably define a class of
the oldest progenitor cells that are still in use for cell-based
therapeutics. Initial studies using HSCs can be traced back to
the 1970s. Studies involving an injection of Lin�=c-Kitþ HSCs
in the periinfarct area of female C57BL=6 mice showed de novo
cardiac regeneration (68% of the infarct volume) (83). In an-
other attempt, intravenous injection of GFP-tagged Lin�ScaIþ

HSCs in murine model revealed intercellular connections of the
administered cells with the resident CMs. In the same study,
Lin�CD34þCD38� human HSCs demonstrated intercellular
connections with the resident cardiomyocytes in immunode-
ficient mice (NOD=SCID=IL2rgnull) (51).

However, subsequent studies failed to show any differen-
tiation of the labeled HSCs to CMs or endothelial cells in the
infarcted myocardium (80). Furthermore, HSC transplanta-
tion has been reported to be associated with some postoper-
ative complications (107).

Mesenchymal stem cells. MSCs are found in many adult
tissues like bone marrow [<0.001% of all bone marrow
mononuclear cells (BMNCs)], adipose (abundant source),
placenta, and umbilical cord blood, exhibiting unique prop-
erties like easy procurement and handling, multilineage po-
tential, capability of mediating vascular and myocardial
repair, and, most important, immunomodulation. Since the
pioneering discovery of bone marrow stromal cells (BMSCs)
by Alexander Friedenstein (40), MSC-based cellular cardio-
myoplasty approaches have come a long way. MSCs-based
therapies herald a great potential in rejuvenating the failing
heart through its paracrine effects. In addition, they clearly
demonstrate an ability to acquire some phenotypic charac-
teristics and markers of CMs (81) and mediate intercellular
connections (associated with exchange of quasi-symmetric
junctional current) with the resident CMs, through Cx43-
positive gap junctions (9, 11, 87, 91, 126).

Endothelial progenitor cells. Improved neovasculariza-
tion can play a crucial role in rescuing the failing ischemic
myocardium. Endothelial progenitor cells (EPCs) are poten-
tial candidates for cardiovascular repair (2% of all BMNCs), as
they have been shown to mediate neovascularization at the
infarct border zone. Bone marrow–derived hemangioblasts
and peripheral blood–derived monocytes can differentiate
into EPCs, which in turn can differentiate into functional en-
dothelial cells (135). Soon after the discovery of EPCs by
Asahara et al. (6), it was realized that tissue ischemia and
cytokines can mobilize EPCs, thereby contributing to neo-
vascularization of the ischemic tissue (115). Many other
studies have also demonstrated that EPCs can mediate vas-
culogenesis under diverse pathophysiologic conditions like
wound healing, limb ischemia, and after myocardial infarc-
tion, under the influence of the released cytokines (38, 52, 66).

These EPCs are characterized by their ability to take up
acetylated low-density lipoprotein and are CD34þ=CD133þ=
Flk-1þ.

Quite interestingly, EPCs share many common character-
istics and overlapping expression of surface markers with
diverse cell types. For instance, EPCs derived from the bone
marrow as well as the circulating EPCs demonstrate the ex-
pression of endothelial markers Flk-1, Tie-2, VE-cadherin,
CD34, CD146, and E-selectin, just as do the mature circulating
endothelial cells. Moreover, the uptake of acetylated LDL, a
property associated with EPCs, can be mimicked by mono-
cytes and certain hematopoietic cells (33, 93). However, de-
spite these complexities related to the purification and
characterization of EPCs (121), EPCs are the most commonly
studied candidates in clinical trials for reendothelialization
and neovascularization of the myocardium (124).

Resident progenitor cells

Cardiac progenitor cells. The paradigm of heart being a
postmitotic organ was challenged by the discovery of cardiac
progenitor cells (CPCs), which are clustered in specialized
microenvironments (niches) throughout the myocardium in
the adult heart. CPC populations are classified into different
subtypes, based on their surface markers: Sca1þ, Isl1þ, etc. (8).

Experimental studies using an injection of EGFP-tagged
CPCs in the proximity of a chronic infarct revealed enhanced
homing and accumulation of CPCs within the scar. Moreover,
CPCs were found to effectuate cardiac regeneration when
administered either intramyocardially or through an in-
tracoronary route (10, 12, 99, 101). A significant study by
Dawn et al. (30) showed that the intravascularly administered
CPCs, in a rat model of temporary coronary occlusion fol-
lowed by reperfusion, migrate to the myocardium and pro-
mote myocyte regeneration, form new coronary vasculature,
and reduce the infarct size without any event of cell fusion
between the administered CPCs and the resident CMs. A re-
cent study revealed that the engrafted CPCs not only medi-
ated an increase in the number of myocytes and coronary
vessels, but also replaced almost 42% of the scar with newly
formed myocardium, thereby attenuating ventricular dilation
and leading to a consequent improvement in cardiac func-
tions. It is argued that this reparative mechanism of CPCs
involves the synthesis of MMPs to degrade the collagen pro-
teins and formation of tunnels within the fibrotic tissue during
their migration across the scarred myocardium (99).

The unique property of CPCs is that they can be isolated
from a patient after endomyocardial biopsy followed by their
ex vivo expansion (as cKitþ cardiospheres), as demonstrated
by Marbán et al. (8, 106). These culture-expanded cells can
then be reinjected into the same patient, thus averting the
potential risks of allotransplantation.

Despite these advantages, the therapeutic use of CPCs be-
comes complicated, owing to the difficulties in acquiring
myocardial samples from patients and their expansion in
quantities of therapeutic significance (61). Therefore, local
injection of growth factors to incite the resident CPCs has been
offered as an effective approach to mediate myocardial re-
generation. Matrix metalloproteinases (MMPs), hepatocyte
growth factor (HGF), insulin growth factor-1 (IGF-1), and
stromal cell–derived factor-1 (SDF-1) have been implicated in
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CPC homing and their differentiation into CMs and vascular
cells (99).

The presence of resident CPCs in myocardium has been
argued for some time. However, why the resident CPCs do
not contribute substantially to the recovery of cardiac func-
tions during pathophysiologic complications still remains a
mystery. The decreased oxygen supply in the periinfarct area
and reduced vascular perfusion might hinder the activation of
the resident CPCs (99). Furthermore, the origin of CPCs is
quite unclear. Whether they arise early during embryogenesis
or are extracardiac in origin or dedifferentiated from adult
CMs has been largely debated (8).

Induced pluripotent stem cells

A major breakthrough in stem cell research came from the
discovery that differentiated cells like mouse embryonic or
adult fibroblasts can be reprogrammed to an ESC-like state
after the retroviral introduction of four factors, Oct3=4, Sox2,
c-Myc (dispensable), and Klf4 by Takahashi et al. (114). This
direct reprogramming approach might enable researchers to
treat patients with their own modified cells, thereby affording
a simpler, safer, and time-efficient approach to obtaining the
desired cell types (128). Interestingly, these iPSCs have also
been derived from single neonatal foreskin (human dermal
fibroblasts), and the resultant cell lines are morphologically
indistinguishable from human ESCs (hESCs) (67). iPSCs can
also acquire the characteristics of functional CMs. Moreover,
molecular, structural, and functional comparison of iPSC-
derived CMs unveiled striking similarities to those derived
from ESCs (71). In addition, studies done by Narazaki et al.
demonstrated that iPSCs can differentiate into mesodermal
cells; endothelial cells; mural cells; arterial, venous, and lym-
phatic endothelial cells; and self-beating CMs in vitro (78).
Thus, iPSCs pose a potential source of autologous functional
CMs for myocardial regeneration (71).

However, just as the other progenitor cell therapy ap-
proaches, the clinical use of iPSCs has a long way to go. The
mechanistic regulation of this ‘‘turning back of an adult cell’s
developmental clock’’ to an ES-like state (developmental re-
programming) requires further understanding as well as im-
proved quality control. After the delivery of iPSCs, the
residual undifferentiated pluripotent cells can induce terato-
mas caused by the viral vector. Thus, an increasing need exists
for iPSC therapies without the involvement of any integrating
virus (123).

Despite the availability of a plentitude of diverse classes of
stem cells for the treatment of ischemic cardiomyopathies, the
use of each cell type is associated with posttreatment com-
plications. The intricacies associated with stem and progeni-
tor cell therapies, like induction of teratomas by ESCs and the
failure of SkMs to couple electromechanically with functional
CMs, pose a major challenge for their clinical use. Therefore,
an indispensible need exists for a suitable candidate for better
cell-based myocardial regenerative therapies.

Allogenic MSCs are promising candidates for alleviating
chronic heart diseases. On engraftment, MSCs are known to
express myocyte (desmin, troponin T) and vascular (aSMA,
factor VIII) markers and to establish Cx43-positive intercel-
lular connections with the resident CMs (5, 45, 136, 139). These
properties of in vivo differentiation, immunomodulation (31,

56, 60, 108), and establishment of gap junction (Cx43, Cx40)-
and adherens junction (N-cadherin)-based intercellular con-
tacts with native CMs make them the preferred candidates for
the treatment of ischemic cardiomyopathies.

MSCs: A New Paradigm for Cell-Based
Cardiomyoplasty

It is well known that the capacity of the myocardium to
regenerate is extremely limited. Myocardial pathophysiologic
comorbidities are often associated with an increased CM ap-
optosis and replacement fibrosis in the infarcted heart. After
the realization of local and systemic postoperative complica-
tions associated with some stem and progenitor cell therapies
(68, 113), MSCs have emerged as a powerful tool to mediate
myocardial repair and regeneration owing to their unique
characteristics and have been studied intensively in basic
cardiac research as well as in clinical studies.

Occurrence

MSCs are a rare population of cells originating from the
bone marrow (*0.001–0.01%). Although MSCs appear pre-
dominantly in the bone marrow, they also prevail in adipose,
synovium, periosteum, muscle, dental pulp, periodontal li-
gament, placenta and umbilical cord blood (81).

Expression of myocardia-specific markers

Several studies have emphasized that MSCs can define a
vascular endothelial, osteocyte, chondrocyte, or adipocyte
lineage (82, 84). In addition, MSCs have been reported to ac-
quire the phenotype of CMs both in vitro, after 5-azacytidine
treatment, and in vivo, in a murine model of myocardial in-
farction (122). Moreover, in vitro studies done at our labora-
tory (unpublished) clearly demonstrate that MSCs can acquire
the markers not only for CMs, but also for endothelial and
smooth muscle lineages in a hypoxic milieu, on exposure to
the released cytokines from the respective cell types. This
expression of CM lineage–specific markers by MSCs has been
corroborated with an increased expression of cardiac-specific
transcription factors: Nkx2.5, GATA4, and contractile pro-
teins cardiac myosin heavy chain (MHC), a-sarcomeric acti-
nin, phospholamban, and cTnT during their in vitro coculture
with CMs (5, 29, 136, 139). Furthermore, several studies have
provided mounting evidence on the ability of MSCs to acquire
a CM phenotype in both infarcted and healthy myocardium
(29, 102, 122). MSCs also demonstrate an expression of
a-subunits of the cardiac-specific L-type calcium channel
(a1c); the transient outward potassium channel (Kv4.3), and
cardiac atrial natriuretic peptide (142).

However, most of these studies have been done in coculture
experiments of MSCs with CMs. Whether similar observations
in the in vivo studies can be attributed to the transdiffer-
entiating MSCs or are caused by the proliferating endogenous
CMs and cardiac progenitors as a response to the released
bioactive factors from MSCs remains controversial (45, 92).

Intercellular connection through gap junctions
with resident CMs

On engraftment into the infarcted myocardium, growth
factor (FGF-2, IGF-1, BMP-2)-treated MSCs have been re-
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ported to form intercellular connections with the host CMs via
Cx40 and Cx43-mediated junctions. These heterotypic gap
junctional channels formed by cardiac-specific Cx40 and Cx43
are not only associated with the movement of partially
asymmetric junctional currents (87, 126), but also allow the
exchange of small molecules and secondary messengers be-
tween adjacent cells and are believed to play a major role in
the cytoprotection of resident CMs (45).

Release of cardioprotective cytokines

MSCs not only modulate the neighboring cells through
physical contacts but also via paracrine actions. The paracrine
effects are mediated via angiogenic, antiapoptotic, mitogenic,
and homing factors. These trophic factors (cytokines and
growth factors) include VEGF, HGF, IGF-1, and SDF-1 (85,
138, 141). Genetically modified MSCs overexpressing Akt
have been shown to release cardioprotective factors (para-
crine hypothesis), affording cytoprotective effects on adult rat
ventricular CMs (ARVCs) exposed to hypoxia (43).

Activation of other progenitor cells
via paracrine stimulation

Despite the existence of CPCs in the myocardium, and after
the finding that they can contribute to improved cardiac
performance in a rat myocardial infarction model (12), clinical
implications of CPC-based therapeutics remains elusive
owing to the hurdles pertaining to CPC isolation and expan-
sion from patients. Recently, it was shown that the paracrine
effects of MSCs can be used as an indirect approach to activate
the resident endogenous CPCs. Considering the fact that HGF
has been clearly shown to instigate the migration and survival
of endogenous CPCs, the paracrine effectors released by
MSCs like HGF, VEGF, and IGF-1 can trigger the resident
CPCs, thereby affording their activation, proliferation, mi-
gration, and differentiation (77).

EPCs have long been known for their potential in initiating
neovascularization (6). The ligand for chemokine receptor
CXCR4, SDF-1a, is capable of effectuating EPC mobilization
(44). Several studies have shown that this chemokine also me-
diates the recruitment of progenitor cells like HSCs (62) and
CPCs (125) and provides trophic support to the resident CMs
in the myocardium (141). As MSCs have been proposed to
secrete SDF-1a (141), indirect mobilization of EPCs via MSCs
might pave the way for future therapeutics.

Immunomodulation

It has been argued that these multipotent MSCs can me-
diate an immunosuppressive effect. Although MSCs do ex-
press MHC class I, they lack the B7 costimulatory molecule
and escape recognition via both CD4þ T helper (TH) (naı̈ve
and memory) and CD8þcytotoxic T (TC) cell subsets. More-
over, MSCs can induce a bias toward TH2 rather than TH1 (two
stable differentiation states of TH that produce different
lymphokines and different effector functions via divergent
signaling mechanisms) (56), owing to reduced IFN-g secretion
(31, 60). Surprisingly, the expression of surface markers as-
sociated with lymphocyte activation, like CD25, CD38, and
CD69, have been shown to decrease in the presence of MSCs

(60). Therefore, they can inhibit lymphocyte proliferation by
B-cell mitogens. Furthermore, MSCs can self-modulate im-
mune responses by arresting the stimulated T cells at the
G0=G1 checkpoint of the cell cycle via inhibiting cyclin D2 (42).
MSCs even inhibit the IL-2–mediated activation of natural
killer (NK) cells (108).

MSC Niche, Mobilization, and Homing

In recent years, research has illuminated the long-lingering
question about the localization or niche for marrow stromal
cells or MSCs (25). Although MSCs have been isolated from
diverse postnatal organs like brain, liver, spleen, kidney, lung,
bone marrow, muscle, thymus, and pancreas (26), most of
the contemporary research has been concentrated on MSCs
isolated primarily from the BM. These progenitor cells reside
in predefined niches and home to the target organs upon ac-
tivation (Fig. 1). Niches are three-dimensional entities com-
posed of supporting cells, extracellular matrix, growth factors,
and survival signals (physiochemical microenvironment),
and mediate the quiescence, self-renewal, or differentiation of
the stem cell population (34). Niches are structurally tailored
to meet the requirements of the resident stem cells, and the
resident cells in turn play an indispensable role in architectural
organization of the niche (61). Furthermore, niche homeosta-
sis is maintained by a complex interplay between cytokines,
chemokines, proteases, and adhesion molecules (55).

The endosteal niche

Bone marrow is composed of both endosteal and proximal
or interdigitated vascular niches. The endosteal niche is lo-
cated at the endosteum [inner surface of the bone that inter-
faces the BM (57) of the trabecular bone] and houses the
dormant=naı̈ve MSCs and HSCs. The endosteal surface is rich
in calcium ions, and the engraftment of stem cells to the
endosteal niche is dictated by a calcium-sensing receptor
(CaR) expressed on the surface of these progenitor cells (3).
BM-MSCs are believed to play a pivotal role in hematopoiesis
through a series of complicated paracrine signaling networks
(25). Recent attempts toward the transcriptional profiling of
MSCs have unveiled many molecules common to the HSC
niche (86). Bioactive factors released by BM-MSCs, like VEGF,
SDF-1, Ang-1, Ang-2, M-CSF, Flt-3, IL-3, BMP-2, GM-CSF,
and SCF have been implicated in modulating the HSC niche.
Furthermore, BM-MSCs also provide the stromal component
to the HSC niche (35). Two of the three types of HSCs, those
that belong to the osteoblastic niche and those comprising the
reticular stromal niche, directly descend from MSCs. A third
type of HSCs belong to the vascular endothelium niche (127).

The perivascular or periendothelial niche

MSCs are known to be present throughout the body,
housed in the perivascular niche as pericytes, and play a
crucial role in stabilizing the blood vessels. MSCs express
adhesion molecules P-selectin and VCAM-1, which are vital
for their endothelial attachment. The surrounding supporting
cells, ECM and signaling molecules act in coordination to
activate the naı̈ve MSCs, which can then proliferate, as a
consequence of lost attachment with the basement membrane
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and endothelial cells (25). After the systemic release of che-
moattractants (like SDF-1) from the infarcted myocardium
(100), the activated MSCs residing in the periendothelial niche
(acting as vascular pericytes) are released after digestion of
the ECM (by matrix metalloproteinases) (32). After their ac-
tivation, they egress to the ischemic region, followed by en-
graftment from local or surrounding sites (18) by using
CXCR4 (24) or integrin b1 (50) receptors. It has been observed
that a decreased vascular density corresponds to a diminished
number of viable MSCs (17), emphasizing the role of peri-
vascular niches in housing and nurturing MSCs as pericytes.
In addition, MSCs also comprise an indispensible part of the
HSC niche (25). The ‘‘paracrine crosstalk’’ between the MSCs
and HSCs affords niche interaction and maintenance in the
perivascular milieu (17).

The cardiac niche

The cardiac niche houses the cardiac progenitor cells
(CPCs) and is responsible for maintaining homeostasis be-
tween the cycling and quiescent CPCs. Although the CPCs are
classified into different subtypes based on their surface
markers, Sca1þ, Isl1þ, and so on (8), specific localized niches
for the respective CPC subtypes have not yet been clearly
defined.

One of the major factors secreted by the myocardium early
after MI is stromal cell–derived growth factor-1 (SDF-1),
which is released into the circulation after MI, thus creating a
systemic SDF-1 gradient (1). SDF-1–CXCR4 signaling plays a
crucial role in mobilization of MSCs to the infarcted myo-
cardium. SDF-1 binding to its cognate receptor CXCR4, ex-
pressed on MSCs, mediates many complex biologic functions,
including proliferation, antiapoptosis, mobilization, and re-
tention of the homed MSCs in the ischemic region to ensure
their participation in the repair process (28, 46). During
myocardial ischemia, MSCs from the perivascular niche mi-
grate to the cardiac niche. After their niche migration, the
released paracrine effectors (antiapoptotic, chemotactic and
antifibrotic factors) from MSCs (e.g., VEGF, HGF, IGF-1, or
MCP-1), can mediate myocardial angiogenesis, after which
MSCs stabilize the degenerating microvessels and render
trophic support via reestablishing new perivascular niches,
thereby mediating niche homeostasis (25). Recently, it was
proclaimed that these bioactive factors released by MSCs are
effective and sufficient to activate and protect the endogenous
CPCs in the myocardium from hypoxic stress (77). In vitro
treatment of CPCs with MSC-conditioned medium caused
their enhanced migration (probably via HGF-mediated acti-
vation of MMP-2=9) and differentiation into CMs (77). Fur-
thermore, the chemoattractants secreted by MSCs, like SDF-1,
can mediate an efficient migration of CPCs (125), as well as the
homing of HSCs (37).

MSCs in Cardiovascular Repair

The efficacy of MSC cardiomyoplasty in alleviating the
pathophysiology associated with myocardial infarction was
realized quite early after the initial attempts to deliver rat
MSCs in an infarcted heart with a reperfusion model (116).
Pluripotent MSCs used to ameliorate idiopathic dilated car-
diomyopathy (DCM) in a swine model demonstrated that the
observed improvement in the left ventricular function was
associated with the expression of CM and endothelial cell–

specific markers by the engrafted MSCs, improved vascular
perfusion, reduced fibrosis, and most important, with the
release of a plentitude of angiogenic, antiapoptotic, and mi-
togenic factors (76).

MSCs can acquire cardiomyocyte, endothelial,
and smooth muscle markers

As the heart’s capacity for self-regeneration is extremely
limited, the success of stem and progenitor cell therapies for
myocardial repair relies on the three major events: after en-
graftment, the cells should proliferate and replace the dying
cells, electromechanically couple with resident CMs, and fi-
nally differentiate into functional CMs, endothelial and
smooth muscle cells (92).

DNA demethylating agent 5-azacytidine has long been
said to induce cardiac differentiation in MSCs. Initial research
revealed that, on treatment with 5-azacytidine, MSCs show an
increased current flux across Kþ and Ca2þ channels, mim-
icking CM-like characteristics (7). Much of the subsequent
work on MSCs from human bone marrow, fatty tissues, or
umbilical cord clearly demonstrated an expression of the
markers for cardiac myocytes (myosin heavy chain, a-actinin,
vimentin, and troponin-I) (4, 54, 94, 137).

Rat MSCs grown with adult CMs and aortic smooth mus-
cle cells, in direct coculture experiments, acquired markers for
CM (a-actin, desmin, cTnT) and smooth muscle (calponin and
aSMA) lineage (132), respectively. In addition, the endothelial
differentiation of MSCs has been well characterized in the
presence of VEGF, IGF-1, and EGF in different experiments.
The differentiated cells strongly stain positive for von Will-
ebrand factor (vWF) and VEGF receptor-2 (Flk-1) (53, 63, 84).

Interestingly, the ex vivo treatment of MSCs with a cocktail
of insulin, dexamethasone, and ascorbic acid from patients
undergoing CABG has been shown to induce the expression
of cardiac troponin I, sarcomeric tropomyosin, and cardiac
titin, thereby forming CM-like cells (CLCs) (103). Quite in-
terestingly, recent findings have revealed that the proteins
expressed in the infarcted myocardium can induce the
expression of cardiac-specific markers on the engrafted
MSCs in vivo in a TGF-b1– and BMP-2–dependent manner
(19).

In vitro experiments done in our laboratory revealed that
rat MSCs grown in a hypoxia-preconditioned medium from
rat cardiomyoblast (H9c2), endothelial (YPEN-1), and smooth
muscle cells (A10), demonstrate an enhanced expression of
cardiac troponin T (cTnT), platelet–endothelial cell adhesion
molecule-1 (PECAM-1), and a-smooth muscle actin (aSMA)
markers, respectively, thereby emphasizing their multipot-
ency and a gradual acquisition of the respective cell pheno-
types (unpublished data) (Fig. 2).

Strategic Approaches in MSC-Based Cardiomyoplasty

Genetically modified MSCs

The number of injected stem cells does not necessarily reflect
surviving ones in the infarcted myocardium that actually
contribute to the cellular cardiomyoplasty. Oxidative stress is a
major challenge for the survival of transplanted cells in the
ischemic milieu (69). Akt is a serine=threonine kinase down-
stream of the phosphatidylinositol 3-kinase (PI3K) pathway
and has been implicated in conferring protection against
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FIG. 2. Rat MSCs grown in
hypoxia-preconditioned me-
dia from rat cardiomyoblast
(H9c2), endothelial (YPEN-1),
and smooth muscle cells (A10)
demonstrate enhanced ex-
pression of the acquired car-
diac troponinT (cTnT),
platelet–endothelial cell ad-
hesion molecule-1 (PECAM-
1), and a-smooth muscle
actin (aSMA) markers, re-
spectively.

FIG. 1. Niche-to-niche migration of MSCs. Niche interaction and paracrine crosstalk play a crucial role in niche homeo-
stasis. After myocardial ischemia, MSCs home from the perivascular niches along the SDF-1=CXCR4 signaling axis to the
infarcted myocardium and participate in the repair process.



oxidative stress–induced apoptosis (133). Therefore, initial at-
tempts to enhance the expression of Akt in the transplanted
MSCs, a protein implicated in survival of CMs against
ischemia=reperfusion injury, was a major success. On en-
graftment, these rat MSCs overexpressing Akt-1 revived al-
most 80–90% of the myocardial volume and normalized
cardiac functions (69).

Paracrine effectors are the major players through which the
engrafted MSCs exert their beneficial effects (43, 46, 77, 82, 92,
117, 138). Therefore, enhancing the expression of these trophic
factors and cytokines or their receptors through genetic
modification can afford their efficient survival, homing, and
mobilization in the infarcted myocardium. MSCs overexpress-
ing CXCR4, to render an enhanced migration and regenera-
tion effect on binding to its ligand CXCL12 (SDF-1), showed
increased neomyoangiogenesis and a decrease in collagen
I=III ratio in the infarcted wall, thereby effectuating reduced
remodeling (24, 140). Similarly, SDF-1–overexpressing MSCs
have yielded beneficial results by preserving the resident CMs
and rendering them trophic support (141). Recently, it was
demonstrated that MSCs overexpressing insulin-like growth
factor (IGF)-1 can improve their survival and engraftment
through the release of SDF-1a (46). In addition, the adminis-
tration of engineered MSCs overexpressing antiapoptotic
protein Bcl-2 showed a significant reduction in CM apoptosis
(by almost 32%), and it was found to enhance VEGF expres-
sion in the myocardium (64). Another very crucial paracrine
effector, G-CSF, produced by the infarcted heart, serves as a
primitive injury-repair–response mechanism in the body. G-
CSF–related therapies for the injured heart certainly are a
promising approach (59). For instance, G-CSF has been shown
to mediate an increase in the LVEF of patients with AMI (2).
Moreover, direct protective effects of G-CSF on CMs and stem
cell mobilization from the bone marrow have been reported
recently (59).

Combination therapies involving MSCs

The ischemic microenvironment in the infarcted myocar-
dium and the paucity of survival factors pose a limitation on
the effectiveness of cell-based therapeutics. A combination of
stem and progenitor cells or a combination of angiogenic cy-
tokines with progenitor cells has proved more efficient in
ameliorating the myocardium than the administration of
MSCs alone. Attempts to coinject MSCs with angiogenic
protein VEGF in MI hearts revealed that the microenviron-
ment modulation by VEGF involving reduced cellular stress,
and increased prosurvival factors (phospho-Akt and Bcl-xL),
resulted in a better engraftment of the transplanted MSCs,
and significantly improved cardiac functions (90).

Preconditioned MSCs

Preconditioning MSCs have emerged as an extremely
powerful strategy for enhancing the therapeutic efficacy of
MSCs. Diverse preconditioning approaches have been shown
to render significant cardioprotective effects.

Growth factor–based preconditioning approaches involv-
ing the administration of MSCs pretreated with a combination
of IGF-1, FGF-2, and BMP-2 in a rat MI model offered a sig-
nificant upregulation of the Cx43-mediated gap junctions in
addition to affording a cytoprotective role on the resident
CMs (45). In vivo delivery of the CXCR4 ligand SDF-1 pre-

conditioned MSCs in the myocardium after LAD ligation re-
duced infarct size and fibrosis after a 4-week period (85).

Heat-shock proteins (HSPs) are molecular chaperones
triggered as a response to stress and are involved in cellular
homeostasis by aiding proper folding of proteins under di-
verse pathophysiologic conditions. Initial attempts to realize
the effect of heat shock on MSCs revealed elevated levels of
HSP 27, HSP70, and HSP90, downregulated proapoptotic
protein HSP60 (110), and reduced levels of cellular apoptosis.

Recently, the efficacy of hypoxic preconditioning (HPC) in
energizing the naı̈ve MSCs was bolstered through several
studies. HPC of BM-MSCs before transplantation into the
infarcted heart led to an upregulation of the prosurvival and
proangiogenic factors like Hif-1, Ang-1, VEGF, Flk-1, eryth-
ropoietin, Bcl-2, and Bcl-xL, thus affording increased angio-
genesis and a consequent cardioprotection (49). It has been
postulated that hypoxic stress induces Akt and its down-
stream effectors along with cMet; the major receptor for
hepatocyte growth factor (HGF), thereby revealing its mech-
anistic role (98). Several in vitro studies have demonstrated
that MSCs can decrease the apoptotic index, increase surviv-
ability, and stabilize the mitochondrial membrane potential
via the upregulation of Bcl-2 and VEGF and an increased ERK
and Akt phosphorylation (129). Quite surprisingly, adminis-
tration of anoxic-preconditioned (AP) MSCs also showed a
potent improvement in cardiac functions (130). During dia-
betic cardiomyopathy, AP-MSCs have been shown to afford
an antiapoptotic effect, possibly mediated through the upre-
gulation of the Bcl-2=Bax ratio and by inhibition of caspase-3
activation in the myocardium (130).

MSCs in tissue engineering

Lack of organ donors and immunorejection impose limi-
tations on the clinical use of cell-based therapeutics. The ad-
vent of engineered tissues has proved an alternative strategy
to procure the organs or tissues from a patient’s own cells.
These cells are then seeded onto biodegradable scaffolds and
expanded, followed by implantation in areas of need, thus
eliminating the potential drawback of allograft rejection.

MSCs are powerful candidates for tissue engineering be-
cause of their ease in isolation, in vitro expansion, and multi-
potency. As a myocardial infarct leaves a thin scarred area
housing the apoptotic CMs, construction of an adequate car-
diac mass to replace the scar poses a potential hurdle for the
engraftment of engineered tissue=cell-monolayer scaffolds.
Initial attempts with a monolayer of adipose-derived MSCs to
repair scarred rat myocardium demonstrated a significant
reversal in ventricular wall thinning (73). Another attempt,
employing porous acellular bovine pericardium sandwiched
with multilayered sheets of MSCs, illustrated improved car-
diac functions in a syngenic rat MI model (21).

Ex vivo tissue engineering using 3D bioscaffolds seeded
with multilayered MSCs have yielded viable cardiac tissues
(134). Moreover, cardiac MSC patches were shown to confer
superior cardiac function and to generate neomuscle fibers
and neomicrovessels in the entire patch, together with an
upregulation in cytokines and cardioprotective factors, upon
transplantation in syngenic rats with ligated LADs (21). Fur-
thermore, cardiac patches comprising hMSCs embedded in
rat-tail type I collagen matrix (collagen hydrogel), and deliv-
ered epicardially in LAD-ligated Fischer rats, revealed im-
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proved myocardial remodeling. This significant study
showed that the improved cardiac functions did not require
long-term cell engraftment, emphasizing the paracrine mod-
ulatory effects of MSCs (104).

In conclusion, as conventional cell-delivery strategies are
blemished by poor cell engraftment, leakage out of the injec-
tion sites, and inhomogeneous cell distributions (104), tissue
engineering provides an enticing solution for clinical thera-
peutics.

Preclinic to Clinic: Past, Present, and the Future

Despite the burgeoning progress in preclinical research and
after the realization of the great therapeutic potential of MSC-
based cardiomyoplasty, its translation to clinical cardiology
has not passed beyond phase I trials, for the major part, owing
to contrasting results and the lack of stable reproducible
therapeutic benefit to the patients.

Initial attempts, involving percutaneous administration
of allogenic MSCs in acute myocardial infarction (AMI) pa-
tients, followed by analysis with positron emission tomogra-
phy (PET) and cardiac electromechanical mapping (EMM),
showed a significant improvement in LV function after 3
months (23). Furthermore, single-photon-emission computed
tomography and echocardiographic analysis, after the trans-
plantation of autologous bone marrow MSCs in patients with
old myocardial infarction demonstrated a radical improve-
ment in cardiac functions (74). Interestingly, clinical studies
on chronic ischemic cardiomyopathy patients with an oc-
cluded left anterior descending artery revealed restored LVEF
and improved exercise tolerance with MSC-based cardio-
myoplasty (22). In addition, attempts to use MSCs in the treat-
ment of idiopathic dilated cardiomyopathy demonstrated
reduced plasma BNP levels, although no significant improve-
ment in LVEF was noticed (131). This opposing observation
might be attributed to a plethora of varying factors

Table 1. Ongoing MSCs Cardiomyoplasty Clinical Trials*

Project Location Aim Condition Intervention

MSC therapy in patients
undergoing cardiac
surgery (PROMETHEUS)

NHLBI, USA Low and high dose
intramyocardial autologous
MSC injection in MI
patients with chronic
ischemic LVD undergoing
CABG (Phase I=II)

chronic ischemic
LVD

MSCs

Transendocardial autologous
cells (hMSCs=hBMCs)
in ischemic heart
failure (TAC-HFT)

University of
Miami, USA

Transendocardial delivery
of autologous hMSCs and
hBMCs for cardiac
repair (Phase I=II)

Chronic ischemic
LVD; HF

MSCs
BMCs

Combination stem cell
therapy for the
treatment of severe CI

TCA Cellular,
Therapy, USA

Intracoronary and
transendocardial
administration of stem
cells for CI patients
unsuitable for
percutaneous revascularization
and surgical procedures
(Phase II)

Severe CI BMNCs
MSCs

MSCs to treat AMI Orisis Therapeutics,
Inc., USA

Intravenous injection
of MSCs (Provacel)
following AMI

AMI MSCs

Vasculogenesis in
patients with severe
myocardial ischemia

Rigshospitalet,
Denmark

BM MSC stimulated for
endothelial differentiation
for neovessel formation in
ischemic tissue
(Phase I=II)

Myocardial ischemia,
CHD

BM MSCs

Autologous MSC
therapy in HF

Rigshospitalet,
Denmark

NOGA-guided direct
intramyocardial injection of
MSCs for cardiomyoplasty
and neovessel formation
in HF patients (Phase I=II)

HF MSCs

Combined CABG
and stem-cell
transplantation for HF

Helsinki University,
Finland

Intraoperative transmyocardial
BM MSCs
transplantation for low LVEF
patients scheduled
to CABG (Phase II)

HF BM MSCs

*Source: http:==clinicaltrials.gov
AMI, acute myocardial infarction; CABG, coronary artery bypass graft surgery; CHD, chronic heart disease; CI, coronary ischemia; HF,

heart failure; LVDf, left ventricular dysfunction; LVEF, left ventricular ejection fraction.
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(e.g., differences in the routes of administration, varying dis-
ease models and microenvironments, diverse pathophysio-
logic backgrounds of the patients, delivery vehicles, and the
number of injected cells). Therefore, rigorous endeavors in
standardizing the dose, time, delivery strategy, and manip-
ulation of the microenvironment via paracrine effectors (e.g.,
via engineered cardiac patches) are required in the future.

Our present limitations with respect to the choice of
best candidates for cellular cardiomyoplasty, route of
delivery, appropriate dose, and better preconditioning or
genetic-modification strategies for progenitor and stem cells,
influence the long-term safety and efficacy of myocardial
regenerative therapies, which are still in an incipient stage.
Several clinical attempts are under way to guide us through
the realization of the true potential of MSC-based therapeutic
cardiomyoplasty (Table 1).

MSC-Based Cardiomyoplasty: Unresolved Puzzles
and Future Insights

Cell-based therapeutic approaches with diverse types of
stem and progenitor cells hold a huge potential, not only for
the treatment of cardiovascular diseases, but also for a vast
array of other degenerative and age-related diseases. Despite
this immense efficacy, the success of stem cell therapeutics is
being challenged by many obstacles, which must be ad-
dressed for diversifying their wider clinical use.

A patient’s pathophysiologic profile is crucial in deter-
mining the best route for administering progenitor cell ther-
apy (105). Intracoronary infusion of stem and progenitor cells
allows them to priority-pass to well-perfused regions in the
myocardium, thus ensuring a favorable microenvironment
for survival. Unfortunately, preclinical studies have shown
that these intracoronary-administered cells often get trapped
and aggregate in small capillaries, owing to their adherent
nature, or move into systemic circulation, thus diluting the
therapeutic effects (92). Other routes of delivery, like intra-
venous injection, provide an extremely efficient noninvasive
route for stem or progenitor cell delivery. However, systemic
injection also poses potential flaws owing to the possible
homing of the infused cells to other organs or extravasations.
Finally, despite the highest cell retention and survivability
during intramyocardial delivery, this route has the risk of
ventricular perfusion, thus limiting its clinical use. Therefore,
an optimal route for delivery must be reconsidered. To
overcome these drawbacks, modern delivery strategies, like
epicardial administration of MSCs as a cardiac patch, pose a
promising approach (134).

Although the therapeutic administration of a large number
of stem and progenitor cells (*1–5 million cells per injection)
have often been used in clinical studies, it is still controversial
whether a single administration or an injection at multiple
sites would bring forth an efficient and stable functional im-
provement of cardiac functions in the infarcted myocardium
(15). There are quite a few hazards with stem cell therapies.
Teratoma formation by ESCs and iPSCs, collagen deposition
after SkM transplantation, inflammatory reaction and leuko-
cyte infiltration after HSC delivery, and so on, certainly raise a
question on the effectiveness of these approaches. Therefore,
the choice of a suitable stem cell type is still under an earnest
consideration. With the promising properties of immuno-
modulation, establishment of intercellular connections with

the resident CMs, and paracrine effects, MSCs have paved
their way in the treatment of myocardial pathophysiologic
complications.

The ischemic milieu and the severe paucity of survival
factors limit the survival of progenitor and stem cells in the
infarcted myocardium. Therefore, better cellular cardiomyo-
plasty approaches that can mediate a copious release of car-
dioprotective paracrine effectors to modulate the acerbic
microenvironment and to enhance the viability and transdif-
ferentiation of the engrafted progenitor cells still must be
addressed. The bioactive factors released by MSCs, which can
be enhanced further by genetically modifying these progeni-
tor cells, have been suggested as an alternative strategy
affording long-term viability and engraftment of the admin-
istered cells.

In conclusion, the success of MSC cardiomyoplasty and the
advancements in tissue engineering have opened a new di-
mension in cellular cardiomyoplasty, conferring novel thera-
peutic options for the generations yet to come.
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cell; BMP, bone morphogenetic protein; BNP, brain natriuretic
peptide; CABG, coronary artery bypass graft surgery; CLCs,
CM-like cells; CM, cardiomyocyte; CPC, cardiac progenitor
cell; cTnT, cTnI, cardiac troponin T, cardiac troponin I; Cx,
connexin; CXCR4, chemokine receptor 4; EGF, epidermal
growth factor; EPC, endothelial progenitor cell; ESC, embry-
onic stem cell; FGF, fibroblast growth factor; GM-CSF,
granulocyte–macrophage colony-stimulating factor; HGF,
hepatocyte growth factor; HPC, hypoxic preconditioning;
HSC, hematopoietic stem cell; HSP, heat-shock protein; IFN,
interferon; IGF-1, insulin growth factor-1; IHD, ischemic heart
disease; IL, interleukin; iPSC, induced pluripotent stem cell;
LAD, left anterior descending artery; LVEF, left ventricular
ejection fraction; MCP, monocyte chemoattractant protein;
MMP, matrix metalloproteinase; MSC, mesenchymal stem
cell; NK cell, natural killer cell; PECAM-1, platelet endothelial
cell adhesion molecule; SCF, stem cell factor; SDF-1=CXCL-12,
stromal cell–derived factor-1=chemokine receptor ligand-12;
SkM, skeletal myoblast; VEGF, vascular endothelial growth
factor; vWF, von Willebrand factor; aSMA, smooth muscle
actin-a chain.
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