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Abstract

The conventional therapeutic modalities for myocardial infarction have limited success in preventing the pro-
gression of left ventricular remodeling and congestive heart failure. The heart cell therapy and therapeutic
angiogenesis are two promising strategies for the treatment of ischemic heart disease. After extensive assessment
of safety and effectiveness in vitro and in experimental animal studies, both of these approaches have accom-
plished the stage of clinical utility, albeit with limited success due to the inherent limitations and problems of
each approach. Neomyogenesis without restoration of regional blood flow may be less meaningful. A combined
stem-cell and gene-therapy approach of angiomyogenesis is expected to yield better results as compared with
either of the approaches as a monotherapy. The combined therapy approach will help to restore the mechanical
contractile function of the weakened myocardium and alleviate ischemic condition by restoration of regional
blood flow. In providing an overview of both stem cell therapy and gene therapy, this article is an in-depth and
critical appreciation of combined cell and gene therapy approach for myocardial repair. Antioxid. Redox Signal.
11, 1929–1944.

Introduction

Ischemic heart disease is a leading worldwide cause of
morbidity and death (1). Therapeutic interventions include

behavioral and dietary modifications, pharmacotherapy, and
invasive surgical interventions, such as coronary artery by-
pass grafting (CABG) and percutaneous transluminal coro-
nary angioplasty (PTCA). Prophylaxis and conventional
therapeutic interventions are conservative and can provide
only symptomatic relief without addressing the major issue of
massive loss of functioning cardiomyocytes, which signifi-
cantly influences the long-term beneficial effects of treatment
in terms of heart function (27, 51, 95). Moreover, for a large
number of patients, these treatment modalities are not feasible
for one or more reasons. The approach of substituting the
damaged heart of the patient with a donor heart is constrained
by the problems of availability and graft rejection (6). This is
being replaced by the modern approach of regenerating the
damaged myocardium through heart cell therapy.

Transplantation of stem cells from various sources has been
carried out in animal studies and clinical trials. Mostly, the
donor stem cells have shown the ability to improve global
heart function through one or more mechanisms including (a)
myogenesis (including their ability to adopt smooth muscle,

skeletal, or cardiac phenotypes); (b) support of neovascular-
ization (3, 13, 40, 99, 175); and (c) the release of paracrine
factors with pleiotropic properties (141, 147, 149).

However, many obstacles arise, such as low survival rate of
transplanted cells, immune reaction to allogenic stem cells,
and changes in the number and function of stem cells with
aging and disease. For an efficient and effective treatment by
stem and progenitor cell engraftment, the technique remains
to be optimized for its progress as a routinely used clinical
modality.

Neomyogenesis alone, however, may not suffice. The
poorly vascularized scar tissue does not fully support the
survival and engraftment of the donor stem cells, which
negatively influences the therapeutic outcome. Moreover,
stem cells are highly sensitive to tissue ischemia (114). To en-
sure optimal therapeutic effectiveness of heart cell therapy, it
is therefore imperative to grow a vascular network that would
ably and adequately nourish the transplanted stem cells as
well as the newly formed myofibers. Therefore, stem cell
therapy for ischemic hearts must be combined with additional
therapeutic interventions to give adequate vascular support to
the newly formed myocardial tissue. Therapeutic angiogene-
sis, in this regard, represents a potential concomitant treat-
ment modality hat may be accomplished by angiogenic
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growth factor protein or gene delivery (7, 22). SkMs and
BMSCs have been explored as delivery vehicles for thera-
peutic genes encoding one or more angiogenic growth factors
to achieve a myoangiogenic response (55, 167, 168). Trans-
plantation of genetically modified stem cells for over-
expression of appropriate angiogenic factor(s) may be more
advantageous as compared to either stem cell transplantation
or gene therapy alone.

The current review summarizes the latest developments in
stem cell and gene therapy with special focus on angiomyo-
genesis for myocardial regeneration and repair. The advan-
tages, the inherent limitations, and future directions of stem
cell–based gene delivery are discussed to improve the results
of cellular cardiomyoplasty.

Stem Cell Therapy at a Glance

Stem cell therapy is fast developing as a potential strategy
in cardiovascular therapeutics. It involves repopulation of the
infarcted myocardium with cells having myogenic or angio-
genic potential or both. Mitotic activity of the cardiomyocyte
(14, 56), mobilization and homing-in of the BMSCs in re-
sponse to myocardial ischemia (159), and the existence of
resident cardiac stem cells (13, 58) are the recently reported
intrinsic repair mechanisms in the infarcted heart. However,
inadequacy of the intrinsic repair mechanisms must be sup-
ported by outside intervention. Heart cell therapy involving
transplantation of stem and progenitor cells with or without
genetic manipulation has been shown to supplement effi-
ciently the natural repair mechanism. The transplanted cells
replenish the postinfarction scar tissue with neofibers that
eventually are structurally and functionally integrated with
the host tissue (55, 99, 120, 121). In the search for an ideal cell
type with optimal characteristics (i.e., ease of availability, in
vitro expansion, response to physiologic and pathologic
stimuli, myogenic differentiation potential, ability to integrate
functionally with the host myocytes, and release of paracrine
factors), cells from various sources with differing potential
have been used. Because of the diversity in the nature and
sources of the cells used for the heart cell therapy, no definite
method of their classification exists. These cell types can be
grossly divided as autologous, allogenic, and xenogenic on
the basis of their source: neonatal, adult, and embryonic on
the basis of the age of the donor, and nonmyogenic and
myogenic on the basis of their ability to differentiate and
adopt a myogenic phenotype. The nonmyogenic cells, in-
cluding endothelial cells and endothelial progenitor cells (8,
63, 64), and the genetically modified fibroblasts (97) have been
implanted into the heart to assess their feasibility and effec-
tiveness in cardiac repair. However, more-encouraging re-
sults came from the studies that used cells with an inherent
ability to undergo myogenic differentiation and replace the
noncontractile scar tissue with a kind of muscle. These include
fetal and adult cardiomyocytes (77, 112, 161, 172), smooth
muscle cells (76, 173), cardiac stem and progenitor cells (19,
121), embryonic stem cells (ESCs) and ESC-derived cardio-
myocytes (134), umbilical cord derived stem cells (62, 75, 82),
BM and its sublineages (57, 105, 120, 158), and SkMs (16, 61,
99, 101, 143). Each donor cell type mentioned has shown
limited beneficial effects after engraftment into the heart, and
their suitability for clinical use has been restricted because of
various ethical, biologic, and technical concerns.

Among the donor-cell types, cardiomyocytes may be the
most suitable choice for heart cell therapy. The donor cardi-
omyocytes have been shown to form a stable graft in the
recipient heart, notwithstanding their availability, which re-
mains a drawback in their clinical application. From a prac-
tical standpoint, the use of both BMSCs and SkMs is attractive
because of their myogenic potential and ease of availability
from an autologous source without any ethical or religious
issues. Despite being effective, both of these cell types re-
portedly act through different mechanisms. BMSC-mediated
myocardial repair has been shown to result from either one or
more mechanisms involving neomyogenesis (33, 144, 146),
angiogenesis (33, 41, 93, 176), and paracrine release of multi-
ple cytokines and growth factors (32, 145, 149, 166). Likewise,
myogenically differentiated SkMs provide a scaffold-like ef-
fect through myogenic differentiation, thus replacing the
noncontractile and stiff scar tissue with more-flexible muscle
fibers (5). These changes prevent expansion and remodeling
of the left ventricle. Additionally, the release of paracrine
factors promotes the survival of host myocytes, attenuating
the infarct size expansion.

Besides other factors, the choice between SkMs and BMSCs
for transplantation is greatly influenced by the required out-
come of the procedure. Whereas the transplanted SkMs form
muscle fibers that provide a tenacious support for the weak-
ened myocardium and enhance diastolic cardiac function (5),
BMSC transplantation mainly induces angiomyogenesis and
improves systolic function (13, 18, 120). Keeping in view the
varied nature of the myocardial repair process, a more pru-
dent and relevant approach would be a simultaneous trans-
plantation of the different cell types to achieve the benefits
associated with the use of each cell type (144). Moreover, the
engraftment of SkMs and BMSCs must be combined with
other strategies to generate ‘‘super stem cells’’ that have been
‘‘preformatted’’ to survive, engraft, differentiate, and func-
tionally integrate in the ischemic heart and support the in-
adequate intrinsic repair mechanisms.

With encouraging results from preclinical experimental
studies, the safety and feasibility of BMSCs and SkMs also have
been assessed in human patients. The first clinical study was
performed by Menasche et al. (90) and involved autologous
SkM transplantation in a 57-year-old patient. The uneventful
cell transplantation was successfully performed as an adjunct
to coronary artery bypass grafting. After successful and un-
eventful SkMs engraftment, Menasche et al. (12) reported 10
more patients who received autologous SkMs engraftment as
an adjunct procedure to CABG. The patients’ left ventricle
ejection fractions increased from 23.8 to 32.1% with concomi-
tant systolic wall thickening and improved New York Heart
Association class from 2.7 to 1.6 on average. One of the 10
patients died of complications unrelated to SkM injection. No
cell transplantation-related complications were reported other
than unwanted ventricular tachycardia in four patients. Since
then, a large number of clinical studies have been performed in
various medical centers around the globe with both SkMs (20,
30, 49, 89, 106) and BMSCs (135, 137, 148, 162, 163). Most of
these clinical studies to date have been carried out as an adjunct
procedure with one of the routinely performed revasculariza-
tion procedures such as CABG (29, 42, 91, 136), placement of
left ventricular assist device (106), and percutaneous trans-
luminal angioplasty (4, 18), or used as a sole therapy (27, 108).
More important, the use of autologous cells in these studies
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alleviated the need for immunosuppression. Without excep-
tion, cell transplantation during these studies remained un-
eventful and without any cell transplantation–related
mortality, which is vivid proof of the safety of the procedure.

Even with these extreme safety observations, the develop-
ment of arrhythmias, although pharmacologically treatable,
was observed in the patients receiving SkMs engraftment,
with no such occurrences in cases of BMSCs engraftment.
Even though the arrhythmias have been observed in patients
receiving SkMs, no clear indication may be attributed to any
particular cell type (26).

The first and the only clinical studies using nonautologous
cells were performed by our collaborators, Law et al. (71).
They extrapolated our animal model study results to trans-
plant allogenic SkMs from young donors into three patients
by using transient immunosuppression (36). The first clinical
study involving cell transplantation on a beating heart was
performed by Sim et al. in Singapore (131). Under direct vi-
sion and stabilization with the Octopus III tissue stabilizer,
3.70�108 autologous SkMs in 3 ml of the patient’s own serum
were injected into the myocardium at 20 sites in and around
the infarcted myocardium. The cell-engraftment procedure
was well tolerated by the patient and showed improved left
ventricle ejection fraction.

The strategy of heart cell therapy has met with multiple
controversies. Reports have voiced skepticism vis-à-vis the
milieu-dependent differentiation potential of BMSCs after
engraftment (9, 98). The authors found no evidence of neo-
myogenesis after BMSC engraftment and called for a more
cautious interpretation of the results (12). Others have shown
serious concerns about the safety of the cell-engraftment ap-
proach by using both SkMs and BMSCs. Yoon et al. (174)
reported intramyocardial calcification subsequent to engraft-
ment of unselected bone marrow cells. They observed the
formation of a bright echogenic mass with acoustic shadow-
ing in almost one third of the surviving rat hearts. Likewise,
transplantation of undifferentiated mesenchymal stem cells
(MSCs) developed into fibroblastic scar tissue (157). The lack
of ability of SkMs to integrate functionally with host myocytes
remains a major concern (113). Furthermore, the proar-
rhythmogenic nature of SkMs has severely slowed the prog-
ress in their clinical application, although the underlying
mechanism of ventricular arrhythmias after SkMs engraft-
ment remains undefined (20, 91).

Although unconfirmed, it is generally anticipated that the
injection of cells with different depolarization and repolariza-
tion currents increases electrical heterogeneity at the site of
SkMs grafts and increase the risk of arrhythmias. A recent
report raised serious concern about BMSCs causing arrhyth-
mia after engraftment. This has further complicated the situ-
ation and has raised a serious question whether the arrhythmia
that was previously attributed to SkMs transplantation is a
general problem of stem cell therapy (154).

All these issues need careful consideration, and researchers
engaged in this cutting-edge area of research must look into
the factors that may be responsible for the altered growth and
differentiation characteristics of stem and progenitor cells.
The purity of the stem and progenitor cell culture, ex vivo
expansion, and the use of animal serum proteins during cell
culture may lead to cellular senescence, as compared with the
freshly isolated cells, with resultant loss in myogenic and
angiogenic potential (109). Similarly, evidence suggests that

functional characteristics of the stem and progenitor cells are
under the influence of redox regulation, and therefore, their
differentiation potential may be significantly influenced by
redox changes (43). Therefore, it is imperative to address these
issues by optimization of cell-processing conditions and by
the reprogramming of stem and progenitor cells to achieve the
desired outcome.

An Overview of Angiogenic Therapy
for the Infarcted Heart

Angiogenic response in the body is controlled by a delicate
balance maintained between a large number of pro- and an-
tiangiogenic factors and the involvement of redox-sensing
transcription factors such as NF-kB that regulate blood vessel
formation (86). Disruption of the natural balance between the
pro- and antiangiogenic factors results in pathologic conse-
quences, with abnormal blood vessel formation. Angiogenic
protein and gene-delivery strategies are potential treatment
options for ischemic tissues. The effectiveness of angiogenic
therapy has been extensively studied in the small and the
large experimental animal models (85, 167, 168). These studies
have paved the way for clinical application of therapeutic
angiogenesis in human patients (115). The choice of an ex-
perimental animal model is critical in assessing the applica-
bility of a therapeutic agent for clinical use. Some of the
experimental animals have preexisting arteriolar collaterals
and, therefore, are not the best models with which to study
myocardial angiogenesis (128).

Angiogenic growth-factor protein therapy

The administration of recombinant growth factor proteins
achieved a significant angiogenic response and resulted in
improved myocardial perfusion. Among these growth fac-
tors, fibroblast growth factor (FGF) was the first to be used for
myocardial neovascularization in a canine model (150). To-
gether with vascular endothelial growth factor (VEGF), these
two major proangiogenic factors have been extensively
studied. The growth-factor protein administration, however,
manages only a transient effect because of the relatively short
biologic half-life of these growth factors. Additionally, high-
dose bolus delivery of growth-factor proteins adds a potential
risk of systemic toxicity through cytokine diffusion into cir-
culation and into the nontargeted organ. Besides the selection
of an appropriate vector, targeted delivery of the angiogenic
growth-factor protein, genes, and the genetically modified
cells to the heart is essential to contain their nonspecific dis-
tribution and to achieve localized effects. Intravenous deliv-
ery, therefore, is not the best choice in most cases because of
the potential systemic response of the vectors. Intracoronary
delivery has been found to be appropriate for both protein
and gene transfer, but chances of systemic distribution are not
fully curtailed (31). The epicardial intramyocardial injection
of either angiogenic growth factors or their genetic forms
has significantly higher angiogenesis around the ischemic
myocardium (83). However, it is an invasive route of admin-
istration. Catheter-based trans-endocardial intramyocardial-
injection delivery provides equivalent benefits without the
need for surgery (69). Intra-pericardial delivery of angiogenic
factors may offer a theoretic advantage of prolonged exposure
of myocardial tissue to the administered drug, as result of a
reservoir function of the pericardium (66). Therefore, the
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strategy of growth-factor protein treatment warrants multiple
dose administrations or a special delivery system that may
ensure a prolonged effect of the growth factor. The delivery of
gene encoding for the growth factor of interest thus is a more
practicable and clinically relevant option.

Angiogenic gene-delivery strategy

Gene therapy involves transfer of naked DNA or a vector
constructed to encode a single or multiple growth factors of
interest into the targeted organ. Unlike protein therapy, the
main advantage of gene-transfer therapy is that it provides a
more sustained effect after a single administration, in com-
parison with protein therapy. Notwithstanding the involve-
ment and a critical role of angiogenesis in various physiologic
and pathologic processes, transgene expression in vivo re-
quires careful regulation in a spatial and temporal manner. A
variety of methods are available to deliver angiogenic growth-
factor genes (39). Transfer of naked DNA, due to its low
transfection efficiency, is not the preferred option for gene
delivery. Nonviral delivery vectors (i.e., nanoparticles, lipo-
somes) have been extensively studied (17, 21, 93, 171). Lack of
safety concerns and ease of production has extended their use
to human studies. Nevertheless, low transfection efficiency
and short duration of gene expression are the weaker links in
their clinical application. Replication-deficient viral vectors are
more efficient in gene delivery to the target organ and provide
a higher and more prolonged expression of the transgene (74,
123, 170). However, induction of host immune and inflam-
matory response and the safety concerns after prolonged gene
expression, in some cases with deleterious effects, are of major
concern with regard to their clinical use. Recombinant ade-
noassociated viruses have been used for angiogenic gene de-
livery to the heart for long-term gene expression with minimal
inflammatory response (164). The vector is, however, complex
and has limited packaging capacity. Furthermore, the long-
term sustained expression achieved by adenoassociated viru-
ses may not be required in some cases, such as myocardial
revascularization.

Angiogenic gene therapy in experimental animal
models

VEGF and bFGF are the most efficient and well-studied
growth factors from among the current array of growth fac-
tors (37, 52, 73, 103, 168). A comparative study in a porcine
model showed that both VEGF and bFGF are equally effective
in the promotion of myocardial angiogenesis (53) and may be
delivered together to have their combined effects in blood
vessel formation and maturation (102). During most of the
preclinical studies, the delivery of bFGF and VEGF to the
heart, either singly or in conjunction with other growth fac-
tors, resulted in significant collateral formation and well-
preserved left ventricle function (53, 102). However, a few
exceptional reports wherein lack of histologic evidence for
improved angiogenesis, or even in the presence of histologic
evidence for angiogenesis was seen, no preservation of left
ventricle function was observed after angiogenic gene therapy
(10, 72).

VEGF, a heparin-binding glycoprotein having specific re-
ceptors on the endothelial cells, is an inducer of vascular per-
meability and plays an essential role in angiogenesis (23).
VEGF165 and VEGF121 are the most efficient stimulants of an-

giogenesis and have been widely studied for preclinical and
clinical applications (92). Conversely, bFGF is a member of a
large FGF family that is structurally related to heparin-binding
growth factors (59). bFGF has the ability to induce endothelial
cell proliferation and migration and has been extensively
studied in myocardial angiogenesis and protection (15, 44, 78).
Both VEGF and bFGF activate the Erk-1=2 pathway via the
canonic Grb2–SOS–Ras pathway (87, 133). Various delivery
vectors have been used to achieve their transgene over-
expression in the ischemic heart; these include naked plasmid
(47, 73, 110), adenoviral vector (37, 104, 168), adenoassociated
viral vector (24), and nonviral vectors (17, 171).

Clinical studies. Encouraged by the preclinical study re-
sults, angiogenic gene therapy has advanced to clinical trials
(28). A number of phase I studies were reported, focused
mainly on protein administration of VEGF or FGF (70, 119, 126,
139, 151). Moreover, these studies were performed as an ad-
junct procedure with conventional coronary-revascularization
methods (126, 129). Since the reporting of phase I studies, a few
phase II trials have begun (34, 35, 46, 48, 68). However, these
studies have failed to reveal any substantial benefit from
the treatment, and similar improvement was observed in the
treated and untreated patients. The failure to achieve thera-
peutic benefits was attributed to the short biologic half-life of
the growth-factor proteins, which sent a reminder to the re-
searchers to develop some alternative modalities for mainte-
nance of optimal serum level of the angiogenic growth factors
for a desired therapeutic response. A gene-delivery approach
in this regard was expected to make a difference and involved
the delivery of naked-plasmid DNA encoding for angiogenic
growth factor (80, 152), their viral vector constructs (34, 46,
119), or their plasmid complex with nonviral vectors (17, 171).
Whereas the viral-vector delivery of a growth factor gene gave
symptomatic relief, the nonviral vector method was less effi-
cient because of low transfection efficiency.

Alternatively, intramyocardial VEGF gene transfer has been
combined with granulocyte colony-stimulating factor (GCSF)-
induced stem cell mobilization (118). The strategy was aimed
to enhance the availability of stem and progenitor cells in the
peripheral circulation to promote their participation in the
angiogenic cascade. However, the strategy failed to bring any
noticeable improvement in the therapeutic outcome. The pri-
mary concern with therapeutic angiogenesis is the growth of
new blood vessels in the nontargeted tissues, which may
precipitate various pathologies and lead to the exacerbation of
the disease condition (54, 132). A localized and targeted de-
livery of the recombinant growth factor or the relevant gene
delivery may help in alleviating the associated risks.

The other concern is that most of the potent angiogenic
factors, such as VEGF, are found closely related to tumor
genesis (100). The approach of therapeutic angiogenesis
therefore needs further refinement in methodologic and pro-
cedural aspects to become safer and more effective before its
adoption in routine clinical application.

The Novel Approach of Cellular Angiogenesis

Preclinical studies in both small- and large-animal models
have confirmed that the transplantation of autologous BMSCs
or their purified subpopulations restores regional blood flow
by angiogenesis, reduces infarction size and fibrosis, im-
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proves regional wall thickness, and enhances the contractile
function of the left ventricle wall through myogenesis. Besides
myogenic differentiation, SkMs also release multiple growth
factors, especially under ischemic stress, which act in a para-
crine fashion and recruit resident cardiac stem cells and stem
and progenitor cells from peripheral circulation with con-
tributory effects on myocardial regeneration and angiogene-
sis (156). Thus, significantly improved regional and global
heart function was noted.

Transplantation of BMSCs can induce both angiogenesis
and myogenesis (24, 41, 67, 141). This ability of the BMSCs has
been attributed to the subpopulation of cells in the bone
marrow with inherent cytokine-producing potential (94).
These growth factors and cytokines, after their release, act in a
paracrine fashion to induce functional improvement through
angiomyogenesis (141).

Angiogenesis has also been achieved by implantation of
endothelial and endothelial progenitor cells (125, 141, 147),
adipose-derived stem cells (88, 153), embryonic stem cells
(122), and umbilical cord–derived stem cells (50, 82). The
preclinical results have also been extrapolated into clinical
studies with the aim of achieving angiogenesis from the en-
grafted cells (42, 148). Unlike other studies that use the whole
unselected mononuclear cell fraction of bone marrow cells,
the AC133þ subpopulation of the mononuclear cells was
purified and used for transplantation. The rationale for the
use of purified AC133þ cells was to avoid injection of large
number of leukocytes and their progenitors, which have
limited plasticity, and the presence of which in large numbers
may give rise to an unwanted inflammatory response at the
site of the graft. A total of 1�106 cells was injected at 10 sites
(0.2 ml per injection site). All patients survived the procedure
without any complications (135, 136).

Stem cell transplantation has also been combined with
growth-factor administration to achieve their combined effect
in terms of myocardial regeneration and angiogenesis (116,
124). We are the first to exploit the concept of preconditioning
to promote stem cell survival and engraftment in the infarcted
heart (101). Since the pioneering work of Murry et al. (96), the
cytoprotective effects of ischemic preconditioning have been
repeatedly shown in the heart as well as in cells. The same
results have been duplicated by pharmacologic treatment with
preconditioning mimetics (2, 142). We extrapolated these re-
sults to stem cell therapy and observed that preconditioning of
SkMs enhanced their resistance to oxidant stress in vitro (101).
The preconditioned cells showed enhanced proliferation as
compared with the non-preconditioned cells (Fig. 1). Besides
improvement of cell survival, we observed that SkMs and
MSCs preconditioned by diazoxide treatment were able to
release copious amounts of cytokines and growth factors at the
site of the cell graft. The paracrine factors acted locally in a
paracrine fashion and were not released into systemic circu-
lation because the cells were transplanted by intramyocardial
injection and therefore did not pose any systemic threat. Fur-
thermore, preconditioned cells showed improved angiomyo-
genic potential. Immunostaining of the histologic tissue
sections of the heart for myosin heavy chain (slow isoform)
showed extensive myogenesis at the site of the cell graft (Fig. 2).
Double-fluorescent immunostaining of the infarcted rat heart
for von Willebrand factor VIII and smooth muscle actin
showed significantly higher blood-vessel density in pre-
conditioned cell-transplanted hearts as compared with non-
preconditioned cell-transplanted hearts (Fig. 3). These are
significant results and have great clinical relevance because of
the proven safety and effectiveness of both stem and progen-
itor cells and of preconditioning mimetics as monotherapies.

FIG. 1. Confocal images of the infarcted rat
heart histologic sections 7 days after transplan-
tation of the preconditioned SkMs. The cells
were labeled with cell-tracker dye PKH26 (A;
red). The tissue sections were immunostained for
Ki67 expression, a marker for cell proliferation (B;
green). The nuclei were visualized with DAPI
staining (C; blue). (D) The merged image. The
number of Ki67þ cells (white arrows) was signifi-
cantly higher in the preconditioned cell-engrafted
hearts as compared with the non-preconditioned
cell-transplanted hearts ( p< 0.001) (original
magnification, �630). (For interpretation of the
references to color in this figure legend, the reader
is referred to the web version of this article at
www.liebertonline.com=ars).
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Combining Angiogenic Gene Therapy with Stem Cell
Transplantation

Transplantation of genetically engineered cells is an attrac-
tive option to combine stem cell therapy with angiogenesis and

represents a leap forward from the past strategies in achieving
the desired outcome of myoangiogenesis (155). Cells from
various sources having different characteristics have been used
as the delivery vehicles of exogenous angiogenic gene transfer
to the heart (45, 55, 85, 103, 122, 168). With the encouraging

FIG. 2. Confocal images of the rat heart-
tissue section at 6 weeks after transplanta-
tion of SkMs labeled with PKH26 cell
tracker dye (A; red). The histologic sections
were immunostained for myosin heavy chain
(slow-isoform) expression (B; cyan). The nu-
clei were visualized with DAPI staining (C;
blue). (D) Merged image showing extensive
myogenic differentiation of the transplanted
cells in the infarcted myocardium (original
magnification, �630). (For interpretation of
the references to color in this figure legend,
the reader is referred to the web version of this
article at www.liebertonline.com=ars).

FIG. 3. Fluorescent photomicrographs of the
infarcted rat heart at 6 weeks after engraftment
of diazoxide-preconditioned SkMs labeled
with PKH26 (red; A). The tissue sections were
double immunostained for von Willebrand fac-
tor VIII (green; B) and smooth muscle actin
(blue; C). (D) Merged image showed extensive
angiogenic response; the majority of the blood
vessels formed were mature, as indicated by
their positivity for smooth muscle actin (magni-
fication, �400). (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article at
www.liebertonline.com=ars).
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results from the heart cell therapy in experimental animal
models and in patients, combining angiogenesis with cell
transplantation has multiple advantages. The potential ad-
vantage of this technique is to create a reservoir of myogenic
cells that would differentiate to achieve a myogenic phenotype
and be established as a part of the myocardial tissue. Con-
comitantly, these cells provide a localized and sustained source
of growth factors to initiate neovascularization after one-time
administration. Furthermore, this would alleviate host in-
flammatory and immune responses, which are the potential
disadvantage of direct adenoviral vector administration. This
will have a salutary effect on the survival of the donor cells in
early stages after transplantation and a subsequent alleviation
of myocardial ischemia due to improved regional blood flow.
Earlier after engraftment, the donor stem and progenitor cells
are greatly stressed by the in vitro manipulations, engraftment
procedure, and by post-engraftment exposure to the micro-
environment of the infarcted heart, which initiates a vicious
cycle of cell apoptosis (38, 51). The overexpression of angio-
genic growth-factor proteins initiates survival signaling in
the donor stem and progenitor cells, promoting their post-
engraftment survival (165). Additionally, these stem and pro-
genitor cells release growth factors that act in paracrine fashion
and have cytoprotective effects on stem and progenitor cells
themselves and on the host cardiomyocytes. The coronary
microvessel dilation achieved by the effect of the growth fac-
tors at the site of cell engraftment enhances the regional blood
flow, thus alleviating local ischemia. Indeed, the myogenic
transdifferentiation of donor cells will generate a muscle-fiber
scaffold that will prevent a vicious cycle of left ventricular
remodeling and will restore left ventricle diastolic function (5).
Induction of angiogenesis may further improve the efficacy of
cellular cardiomyoplasty. To achieve these effects independent
of angiogenesis, the genetically modified stem cells must be in
a progressive state of growth-factor expression at the time of
implantation. A combined stem cell and gene therapy ap-
proach, therefore, will be a step forward to concomitantly
achieving cytoprotection, angiogenesis, and myogenesis, the
areas of research currently being probed as 21st-century re-
medial measures for the failing heart.

One critical aspect in stem cell–based gene delivery that
requires special consideration is the duration of the transgene
overexpression after engraftment into the infarcted heart. As
the shorter time duration of overexpression may hinder the
achievement of the desired outcome, longer and persistent
overexpression of potent growth factors may also lead to
undesired and deleterious effects. Depending on the mode of
gene transfer into cells, gene expression has been reported to
persist from a few days (with most of the nonviral vectors) to 5
weeks (109), 3 months (65), 7 months (our unpublished data),
and for up to a year (111). Lee et al. (74) reported angioma
formation in the nonischemic murine myocardium after
VEGF expression from retrovirally transduced SkMs trans-
plantation. We have already shown that SkMs transduced
with lac-z reporter gene are capable of persistent expression of
the transgene on a longer-term basis in the host myocardium
(our unpublished data).

SkMs as angiogenic gene-delivery vehicles

With a few exceptions (103), the cells used as the carriers of
transgene to the heart are inherently myogenic, and SkMs, in

this regard, have been extensively studied for their ability as
therapeutic gene-delivery vehicles to different organs, in-
cluding the heart (37, 138). SkMs have been purified from
various species, including mouse, rat, rabbit, sheep, pig, and
human, and characterized for their potential to improve the
deteriorating heart function and attenuation of left ventricular
remodeling after myocardial infarction.

The practicality and effectiveness of SkMs as a vehicle for ex
vivo delivery of therapeutic genes has also been well docu-
mented (25, 107). The pioneering contribution of Kho et al. (65)
highlighted the ability of SkMs to deliver TGF-b to the myo-
cardium (65). The authors observed regions of enhanced
neovascularization in and around the area of cell graft. Rinch
et al. (117) reported genetically engineered SkMs carrying FGF2

delivery for revascularization in a model of acute skin-flap
ischemia. Similar reports have also been published for angio-
genic gene delivery to the myocardium by using SkMs
(138, 167). We determined the effect of ex vivo human VEGF165

gene transfer to the heart in a porcine heart model. SkMs were
transduced with replication-deficient adenoviral and retrovi-
ral vectors carrying human VEGF165 and lac-z genes, respec-
tively (37). The transduced human SkMs were characterized
for VEGF overexpression in vitro and were evaluated for their
engraftment potential and human VEGF165 expression in the
infarcted myocardium. We observed increased neovascular-
ization after transduced SkMs transplantation. This was a
continuation of the natural endogenous compensatory re-
sponse. The significantly improved perfusion in the periinfarct
region was attributed to the enhanced cellularity of that area
that better supported the formation of new blood vessels.

In another study, we also delivered angiopoietin-1 to the
infarcted heart in a rodent heart model and observed that
angiopoietin, which is generally considered the maturation
factor, has the ability to initiate angiogenic response on its
own (170).

Despite these positive results, formation of a stable and
functional blood vessel involves interplay between several
pro- and antiangiogenic factors and vascular modulators,
which stimulate vessel sprouting and remodeling through a
coordinated targeting of various cells (11). Therefore, single
angiogenic factor administration may be insufficient and
sometimes may lead to the formation of morphologically and
functionally inefficient blood vessels. In addition, uncon-
trolled and upregulated expression of a single growth factor
may cause complications (74, 127). To address this issue, we
reported the first bicistronic vector co-overexpressing two of
the main players of the angiogenic cascade, VEGF and an-
giopoietin-1 (169). Angiopoietin-1 efficiently increases an-
giogenesis in conjunction with VEGF released intrinsically in
the infracted myocardium. The presence of angiopoietin-1
ensures leak-resistant, mature, stable, and functioning blood
vessels with smooth muscle cell covering (130, 140). The bi-
cistronic vector was used for transduction of human SkMs,
which were later transplanted into a porcine myocardial in-
farction model to achieve angiomyogenesis. Double fluores-
cent immunostaining for von Willebrand factor VIII and
smooth muscle actin showed that at 6 weeks after human
SkMs transplantation, a significant increase occurred in blood
vessel density in the bicistronic vector–treated SkMs group as
compared with control groups. At 12 weeks, blood vessel
density improved further, with a concomitantly enhanced
maturity index. More than 93% of blood vessels were mature
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(with smooth muscle cell covering) in the bicistronic vector–
treated SkMs group as compared with 86% at 6 weeks, thus
indicating slow but progressive maturation of the newly
formed capillary network due to the synergistic influence of
human VEGF165 and angiopoietin-1.

As discussed earlier, regardless of their low transfection
efficiency and short-term expression, the use of a nonviral
gene-delivery system is safe and flexible in terms of the
plasmid DNA size that can be delivered (38). We have suc-
cessfully designed a polyethyleneimine (PEI)-based nano-
particle system for transfection of human SkMs for VEGF165

overexpression (171). PEI has a cationic nature, a strong DNA-
compaction capacity, effective DNA protection, and an in-
trinsic endosomolytic activity that contributes to superior
gene-transfection efficiency (81). We achieved more than 11%
transfection efficiency of SkMs and peak level expression
(25 ng=ml) on day 4 to 6 after transfection. In vivo studies in a
rodent heart model of myocardial infarction showed higher
blood vessel density and regional blood flow (milliliters per
minute per gram) in the left ventricle in the transfected cell–
transplanted group of animals as compared with the control
group. Our results clearly signify the safety and effectiveness
of nanoparticle-based nonviral vectors for gene delivery to the
heart.

In another interesting study, we used nonviral liposome-
mediated delivery of SDF-1a into SkMs, which were later
transplanted in a rodent heart model of acute myocardial in-
farction (21). Our working hypothesis was to develop an SDF-
1a gradient in favor of the infarcted heart, which may trigger
BMSCs mobilization because of SDF-1a=CXCR4 ligand=
receptor interaction. We observed enhanced mobilization
of BMSCs to the heart, which resulted in improved an
angiogenic response in the SDF-1a-overexpressing SkMs–
transplanted heart as compared with nontransfected SkMs–
transplanted hearts. Put together, these studies clearly signify
the potential of SkMs as transgene-delivery vehicles for the
infarcted heart.

BMSCs as the angiogenic gene-delivery vehicles

Besides SkMs, BMSCs have been successfully studied for
transgene delivery to the infarcted heart (55, 84). In a recent
report, Matsumoto et al. (85) showed that cell transplantation
using VEGF-expressing MSCs could enhance the cardiopro-
tective effects of MSCs, followed by angiogenesis effects in
salvaging host myocardium. These results indicate a key role
for the transplantation of VEGF-expressing MSCs as a strat-
egy for cellular cardiomyoplasty after myocardial infarction.
Kawamoto et al. (60) demonstrated the superiority of com-
bining human VEGF therapy together with cytokine-induced
BMSCs mobilization in terms of neovascularization and
heart-function improvement as compared with monotherapy
(60). Similarly, a combination of hepatocyte growth factor
(HGF) gene transfer and neonatal rat cardiomyocyte trans-
plantation had more potent therapeutic efficacy in a model
of rat myocardial infarction as compared with either of the
single treatments (93). These favorable outcomes support the
hypothesis that progenitor cells play a key role in human
VEGF-induced local tissue revascularization and that the
combination of bone marrow mobilization and gene therapy
can achieve superior therapeutic neovascularization. In an
attempt to examine intramyocardial delivery of genetically

modified MSCs overexpressing VEGF, we combined phar-
macologic mobilization of BMSCs from their bone marrow
niches (160). By tagging intramyocardially transplanted and
mobilized BMSCs with two different fluorescent dyes, we
studied the fate of these cells in the infarcted myocardium.
Our rationale was that the combined therapeutic consequence
of intramyocardially delivered BMSCs and local expression of
human VEGF165 would be amplified by increasing the supply
of circulating progenitor cells via pharmacologic mobilization
and elevated serum levels of granulocyte colony-stimulating
factor (GCSF) and stem cell factor (SCF). We observed sig-
nificantly higher angiogenic response in animal heart that
received ex vivo delivered human VEGF165 along with phar-
macologic mobilization therapy as compared with animals
with either of the treatments as monotherapy. Yau et al. (167)
attempted a multimodal-therapy approach with ex vivo de-
livery of VEGF and bFGF gene delivery (167). Their results
showed a synergistic effect of their multimodal approach in
terms of angiogenesis and regional blood-flow improvement.

Besides using SkMs, we extensively studied MSCs as
transgene carriers, and our results clearly showed that MSCs
are equally efficient and effective in therapeutic gene delivery
to the heart (55).

In a recent study, we showed that angiogenic gene delivery
can be combined with the overexpression of Akt. The ratio-
nale of our study was to ensure maximal cell survival and
enhanced angiogenesis in the infarcted heart. Akt occupies a
central position in survival signaling, and its transgene
overexpression in the heart has been shown to result in low
collagen deposition and attenuated infarct-size expansion
(79, 84). Keeping in consideration an emerging role for
angiopoietin-1 in angiogenesis and a central role for Akt
downstream of angiopoietin-1 in cell-survival signaling, we
hypothesized that these two molecules together form an op-
timal combination of transgenes for simultaneous expression
to achieve successful engraftment of stem cells and increased
angiogenesis. Our results showed that doubly transduced
cells for angiopoietin-1 and Akt overexpression (Fig. 4) were
significantly more resistant to ischemic stress in vitro and
survived and engrafted better in the infarcted rat heart as
compared with the cells with the control MSCs. Moreover, an
increased myocardial angiogenic response was stable until 3
months of observation (38). All these results signify that the
combined gene- and cell-therapy approach has many ad-
vantages and may be a superior strategy for myocardial re-
generation as compared with either of the two strategies
alone.

Concluding Remarks

Heart-cell therapy and angiogenic gene therapy have al-
ways been considered to be strategies in competition with
each other. With the level of progress made in both of these
approaches and with the realization of their strengths and
weaknesses, it would be prudent to combine both these ap-
proaches and develop a consensus approach to exploit the
better aspects of the two approaches. Any such development
will help to expedite their establishment for routine clinical
applications and lead to better prognosis (87). One, however,
should be careful in extrapolating the optimal conditions set
for cell engraftment and gene therapy as monotherapies, be-
cause gene-modified cells will behave absolutely differently as
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compared with the nontransduced stem cells. The combined-
therapy approach will require that the factors that affect the
performance and effectiveness of each of these approaches
should be reoptimized. For example, in heart-cell therapy, the
general consensus is that the outcome of the procedure is di-
rectly related with the number of transplanted stem and
progenitor cells (109). However, this statement require re-
phrasing when genetically modified stem and progenitor cells
would be transplanted in the heart because of their ability to
express copious amounts of growth factors. The gene ex-
pression in the cells may be controlled by insertion of reg-
ulatable promoters, which would be sensitive to the lack of
oxygen and nutrients in the ischemic myocardial environ-
ment. Such manipulation would help in controlling an un-
bridled transgene overexpression after engraftment of the
cells, thus addressing the safety concerns regarding the new
arrangement. The development of an optimal nonviral vector
will further address the safety concerns. The cells can be
transduced to overexpress multiple genes for a multimodal-
therapy approach and to achieve a synergism between dif-
ferent growth factors in conjunction with stem cell engraft-
ment to maximize their interplay for an angiomyogenic
response (167).
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