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Abstract

On the basis of strong evidence from animal studies, numerous clinical trials of cardiac repair with adult bone
marrow-derived cells (BMC) have been completed. These relatively smaller studies employed different BMC
types with highly variable numbers, routes, and timings of transplantation, and included patients with acute
myocardial infarction (MI), chronic ischemic heart disease (IHD), as well as ischemic cardiomyopathy. Although
the outcomes have been predictably disparate, analysis of pooled data indicates that BMC therapy in patients
with acute MI and chronic IHD results in modest improvements in left ventricular function and infarct scar size
without any increase in untoward effects. However, the precise mechanisms underlying these benefits remain to
be ascertained, and the specific advantages of one BMC type over another remain to be determined. The long-term
benefit and safety issues with different BMC types are currently being evaluated critically in larger randomized
controlled trials with a view to applying this novel therapeutic strategy to broader patient populations. The
purpose of this review is to summarize the available clinical evidence regarding the efficacy and safety of
therapeutic cardiac repair with different types of adult BMCs, and to discuss the key variables that need opti-
mization to further enhance the benefits of BMC therapy. Antioxid. Redox Signal. 11, 1865–1882.

Introduction

Approximately 16 million patients suffer from coro-
nary artery disease in the United States alone, with

920,000 episodes of acute myocardial infarction (MI) occur-
ring annually (84). The loss of myocardial tissue during MI
results in scar formation, progressive remodeling of the left
ventricle (LV), and development of ischemic cardiomyopathy
(ICM) (80); and commensurate with the above prevalence of
ischemic heart disease (IHD), *5.3 million patients suffer
from heart failure in the United States alone (84). Because of
the enormity of the clinical problem and the poor prognosis, a
number of medical as well as interventional and surgical ap-
proaches have been formulated over the years to alleviate the
manifestations and halt the progression of ICM. Although
these conventional therapeutic strategies ameliorate the
symptoms of heart failure, they fail to reconstitute dead
myocardium with functional new cardiomyocytes and ves-

sels, ultimately failing to improve in any major way the
overall prognosis of patients with heart failure.

In the incessant scientific pursuit to improve outcomes in
patients with acute MI and heart failure, a new approach has
gained vigorous momentum in recent years—myocardial
repair with cell therapy. Studies from numerous laboratories
have shown that therapy with adult stem=progenitor cells
can improve LV function, reduce infarct size, and attenuate
LV remodeling in animal models of MI and cardiomyopathy.
As the mechanisms underlying these benefits of cell therapy
continue to unfold, the impressive phenomenological evi-
dence has generated tremendous enthusiasm among clini-
cians toward translating cell therapy for cardiac repair into
clinical practice. As a result, a number of clinical studies
primarily using various types of adult bone marrow-derived
cells (BMCs) have already been completed and several larger
randomized controlled trials (RCTs) are currently in prog-
ress.
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The ‘first generation’ cell therapy trials employed diverse
BMC populations injected via different routes or mobilized at
variable time periods after acute MI and=or percutaneous
coronary intervention (PCI) in patients with acute MI, chronic
IHD, and ischemic heart failure (1, 2, 95). Moreover, these
studies utilized heterogeneous methodology to assess differ-
ent facets of outcome after relatively short follow-up duration,
and often did not report all of the important safety parameters
(1). Because of these differences in study design, the results
have also been predictably disparate, and the appropriateness
of conducting cell therapy trials in humans continues to be
questioned. The analysis of pooled data from these smaller
trials, however, reveals that BMC therapy in patients with
acute MI and chronic IHD is indeed associated with modest
improvements in LV function and remodeling (1, 36, 56, 62).
Following a summary of data from the controlled clinical trials
with different types of BMCs, this review will focus on the
evidence emerging from meta-analyses of pooled data from
these trials, and the variables that need optimizing in order to
improve the outcomes of BMC therapy for myocardial repair.

Controlled Clinical Trials of BMC Therapy
for Cardiac Repair

The bone marrow in adults is a complex organ that harbors
numerous types of mature and immature hematopoietic and
nonhematopoietic cells. Consistent with the notion that vari-
ous adult organs harbor tissue-specific progenitors that give
rise to cells with adult phenotypes continuously or following
organ damage, stem=progenitor cells with the potential to
repair diverse tissues have been well described in the bone
marrow. These include the hematopoietic stem cells (96),
mesenchymal stem cells (MSCs) (83), endothelial progenitor
cells (EPCs) (4, 103), side population cells (31), multipotent
adult progenitor cells (38), and the very small embryonic-like
stem cells (VSELs) (49, 109, 110), among others. Because of the
relatively greater concentration of stem=progenitor cells, the
easy availability, and the efficacy in animal models, numerous
clinical trials have already examined the utility of BMCs for
myocardial repair in humans (1, 95). Although several earlier
trials did not include a control group, a majority of the recent
ones compared outcomes in BMC-treated patients with con-
trols who received optimal conventional treatment without
cell therapy. Tables 1 and 2 summarize results from controlled
clinical trials that examined the feasibility, efficacy, and safety
of therapy with various adult BMC populations for cardiac
repair in humans. These trials utilized BMCs harvested di-
rectly from the bone marrow or the peripheral blood with or
without culture or preservation in vitro, and may be divided
into several categories based on the cell type (Tables 1 and 2).

Bone marrow mononuclear cells

Bone marrow mononuclear cells (BMMNCs) represent a
heterogeneous cell population that contains hematopoietic
and nonhematopoietic cells with diverse phenotypes.
BMMNCs are generally isolated from total BMCs by density
gradient centrifugation, which allows separation of BMMNCs
relatively easily and quickly. In the first controlled study by
Strauer et al. (97), intracoronary injection of autologous
BMMNCs improved regional contractility and myocardial
perfusion, reduced LV end-systolic volume (LVESV), and re-
duced infarct size in patients with acute MI. The global LV

ejection fraction (EF) did not improve significantly. Since then,
at least 12 cohort studies or RCTs of BMMNC therapy in pa-
tients with acute MI, ICM, or chronic IHD with anginal
symptoms have been reported (7, 29, 34, 41, 58, 63, 64, 67, 76–
78, 90, 98, 102). However, aside from the differences in patient
characteristics, the route of cell transplantation, the number of
transplanted BMMNCs, as well as the timing of BMC injection
after acute MI or PCI were considerably different among these
studies. Importantly, despite this heterogeneity in study de-
sign, all of these studies except one (58) reported improve-
ments in one or more parameters of LV contractility, anatomy,
and perfusion, including global LVEF, regional wall motion,
LVESV, infarct size, and viability. Additional parameters that
have been reported to improve with BMMNC therapy include
anginal symptoms, exercise capacity, and the New York Heart
Association (NYHA) functional class (78, 102).

Besides modest improvements in various outcome pa-
rameters, BMMNC therapy offers several other advantages.
As mentioned above, BMMNCs are relatively easy to procure
in large numbers and do not require complex culture condi-
tions. Moreover, BMMNC therapy has been shown to be ef-
ficacious via the intracoronary route (90, 97), as well as
transepicardial (34, 67) and transendocardial (78, 102) routes.
Also, BMMNC therapy has been effective not only in patients
with acute MI (29, 90, 97), but also in patients with chronic
IHD (98, 102), and ischemic cardiomyopathy (7, 78). Finally,
despite these diverse patient subsets and modes of delivery,
no significant adverse effect of BMMNC therapy has been
reported in the controlled clinical trials.

Unfractionated BMCs

Relatively unfractionated BMCs have been used via the
intracoronary route in at least three RCTs thus far (37, 66, 87,
92, 106). In the first RCT of BMC therapy in humans, Wollert
et al. (106) reported significant improvement in global LVEF
and regional wall motion in the periinfarct area in BMC-
treated patients after 6 months of follow-up. However, after 18
months, the differences in LVEF and other outcome parame-
ters between control and BMC-treated patients were no longer
significant (66). Further analysis revealed an accelerated re-
covery of global LV function in cell-treated patients (66),
which was presumably responsible for the early differences
in outcomes. Although these observations suggest that the
apparent early benefits of BMC therapy merely reflect a has-
tened recovery following acute MI likely due to a transient
paracrine phenomenon, a more sustained nature of improve-
ment in diastolic parameters in these same patients (66) points
to a larger spectrum of benefits afforded by BMC therapy.
Importantly, despite the injection of a large number of BMCs,
no tumors, myocardial calcification, or other forms of cancer
were noted during the 18 months of follow-up in the BOOST
study (66). In the study by Janssens et al. (37), no significant
improvement in global LVEF, wall motion, or anatomic pa-
rameters were noted despite a reduction in infarct size; while
BMC therapy was associated with improvements in several
functional and anatomical parameters in the study by Ruan
et al. (87). The above differences in outcomes certainly call for
larger RCTs investigating not only the duration of effects with
multiple end-points in humans, but also studies in animal
models elucidating the mechanistic underpinnings of BMC
treatment effects.
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AC133þ BMCs

AC133þ BMCs exhibit both hematopoietic and endothelial
differentiation potential and therefore, may represent a sub-
population suitable for inducing angiogenesis (13, 75). In
the study by Bartunek et al. (10), intracoronary delivery of
AC133þ BMCs improved global LVEF and regional wall
motion, and reduced infarct size in cell-treated patients com-
pared with baseline. However, spontaneous and inducible VT
was noted in two cell-treated patients and a higher rate of in-
stent restenosis was observed in the cell-treated group during
follow-up (10). Meticulous analysis of coronary luminal ste-
nosis during follow-up further revealed greater luminal nar-
rowing in nonstented regions in the infarct-related artery in
cell-treated patients (61), indicating a greater risk of athero-
genesis with this specific subset of BMCs.

Mesenchymal stem cells

Bone marrow-derived MSCs are the multipotent precur-
sors of various nonhematopoietic lineages and possess the
ability to differentiate into adipose, bone, cartilage, skeletal
muscle, neural, and other phenotypes (81, 83). Several studies
have also documented the ability of MSCs to differentiate
into cardiomyocytes in vitro and following transplantation
into the infarcted myocardium in vivo (33, 60, 82). Moreover,
MSCs are suitable for preemptive harvest, rapid expansion
in vitro, and prolonged storage for future use, perhaps as an
off-the-shelf product. Despite these advantages, concerns
have been raised regarding the intracoronary route of MSC
transplantation based on the observations by Vulliet et al.
(104), who noted microinfarction and fibrosis following
intracoronary delivery of relatively large MSCs in healthy
dogs. However, in humans, intracoronary injection of a large
number of bone marrow-derived MSCs resulted in im-
provement in global LVEF and regional wall motion, and
reduction in infarct size, LVESV, as well as LVEDV in pa-
tients with acute MI (17). In a subsequent trial, intracoronary
injection of culture-expanded MSCs in patients with ICM
improved myocardial perfusion, improved exercise tolerance
and NYHA class in treated patients (16). In contrast, in the
study by Katritsis et al. (42), which included patients with
acute as well as old MI and injected relatively small number
(2–4 million) of MSCs, no significant improvement in global
LVEF, LVESV or LVEDV was noted following intracoronary
MSC transplantation despite improved myocardial perfusion
and viability. In view of the above, the efficacy and safety of
MSC therapy in patients with acute MI are currently being
evaluated in larger RCTs.

Mobilized progenitor cells

It is well known that the peripheral blood also contains
different types of bone marrow-derived primitive cells (15, 93,
103, 105). Although their precise function and dynamics re-
main unclear, these progenitors can home to various organs
under physiologic circumstances as well as in response to
tissue injury, and induce tissue repair via differentiation into
tissue-specific lineages and other mechanisms. In addition,
specific cytokines are able to mobilize large numbers of pro-
genitors into the circulation with minimal adverse effects (53).
The use of mobilized progenitors harvested from the pe-
ripheral blood via apheresis thus obviates the aspiration of

bone marrow in patients already incapacitated with MI or
heart failure.

Circulating progenitor cells. In the TOPCARE-AMI trial
(6, 14, 89), in addition to BMMNCs, the investigators also uti-
lized circulating progenitor cells (CPCs) with endothelial char-
acteristics harvested from patients’ peripheral blood followed
by expansion ex vivo. CPCs were injected via the intracoronary
route in patients with acute MI and after 4 months, global LVEF
increased and LVESV decreased in BMMNC- as well as CPC-
treated patients compared with baseline. MRI studies after 1
year of follow-up showed improved LVEF, reduced infarct
size, and attenuation of LV hypertrophy in these patients (89).
Importantly, the overall benefits noted in CPC-treated patients
were similar to those observed in BMMNC-treated patients. In
a subsequent RCT (7), these investigators examined the efficacy
of CPCs and BMMNCs in patients with previous MI, dys-
functional LV segments, and an open infarct-related artery.
Although BMMNC therapy improved global LVEF and re-
gional wall motion in these patients, no such benefit was noted
in CPC-treated patients (7). In contrast, in an earlier RCT by
Erbs et al. (24), intracoronary CPC injection in patients with
IHD and chronic total occlusion of coronary artery reduced
infarct size, improved regional wall motion and global LVEF,
decreased the number of hibernating myocardial segments,
and increased coronary flow reserve. These results (24)
suggest that the benefits of late reperfusion may be enhanced
by concomitant CPC therapy, which improves myocardial
perfusion=metabolism mismatch in these patients (45).
However, the role of myocardial milieu (acutely infarcted
versus remodeled myocardium) as a determinant of out-
comes following CPC transplantation needs to be examined
in future clinical trials.

Peripheral blood stem cells. Several other RCTs and co-
hort studies have utilized peripheral blood-derived stem cells
(PBSCs) (18, 39, 40, 55) or mononuclear cells (PBMNCs) (101)
for myocardial repair with or without prior therapy with
granulocyte colony-stimulating factor (G-CSF) for BMC mo-
bilization. In the first RCT by Kang et al. (39), intracoronary
injection of G-CSF-mobilized PBSCs resulted in a high rate of
in-stent restenosis, and despite early suggestions of im-
provement in LV function and perfusion, this trial was stop-
ped prematurely due to safety concerns. In a subsequent RCT
from these investigators (40), deployment of drug-eluting
stents along with PBSC transplantation via the intracoronary
route improved global LVEF, decreased LVESV, reduced in-
farct size, and improved coronary flow reserve in patients
with acute MI. However, in patients with ICM, PBSC therapy
failed to improve function and remodeling despite improved
coronary flow reserve (40). In conjunction with observations
from studies with CPCs (7, 24), differential outcomes in the
acute versus chronic setting (40) indicate that the myocardial
environment is an important variable in cell-based cardiac
repair.

Improvements in LV functional and structural parameters
were also observed in studies by Li et al. (55) and Tatsumi et al.
(101), who injected PBSCs and PBMNCs, respectively, via the
intracoronary route in patients with acute MI. In contrast,
intracoronary delivery of mobilized PBSCs in patients with
acute MI failed to confer additional benefits over those
achieved with standard therapy in the study by Choi et al. (18),
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who enrolled a relatively small number of cell-treated pa-
tients. In view of these differences in outcomes, and in view of
the risk of in-stent restenosis, the true utility of PB-derived
unfractionated cell therapy remains to be carefully delineated
in larger RCTs.

CD34þ cells. CD34þ cells in the peripheral blood exhibit
angiogenic properties and are therefore eminently suitable for
the induction of therapeutic angiogenesis in the myocardium
(5, 43). In a recent phase I=IIa randomized double-blind con-
trolled trial (57), Losordo et al. transplanted peripheral blood-
derived autologous CD34þ cells via the transendocardial route
under electromechanical mapping (EMM) guidance in pa-
tients with refractory angina. After 3 months, cell-treated pa-
tients exhibited trends toward reduced angina frequency,
reduced nitroglycerin usage, improved exercise time, and
improvement in Canadian Cardiovascular Society (CCS) class
(57). Adverse events were distributed similarly in cell-treated
and control patients. Although preliminary, these data sup-
port the feasibility and safety of intramyocardial transplanta-
tion of CD34þ cells and suggest a beneficial role of such
intervention in patients with intractable angina.

Beneficial Effects of BMC Therapy:
Analysis of Pooled Data

As is true for any novel treatment strategy, the earlier
studies were primarily designed to assess the safety and effi-
cacy of therapy with specific BMC populations. Consequently,
these studies enrolled relatively small number of patients each
and were sometimes not powered to provide conclusive an-
swers. It is therefore not surprising that results from these trials
have often been discordant (1, 85). Since analysis of pooled
data offers an excellent means to generate statistically sound
conclusions that were unattainable from data in individual
studies (51, 68), several meta-analyses of data from clinical
trials of BMC therapy have been performed in the recent past
(1, 36, 56, 62). Despite the above advantage, meta-analyses are
often dependent on reported data and are susceptible to in-
terpretation issues, especially with subgroup analysis. How-
ever, while meta-analysis cannot substitute large RCTs, they
can effectively provide valid rationale for future RCTs and by
identifying specific caveats, guide the formulation of future
trials. In this regard, it is important to note that although each
meta-analysis of BMC trials included somewhat different sets
of studies, the results of these meta-analyses (1, 36, 56, 62) have
been generally concordant and show an overall beneficial
impact of BMC therapy on cardiac function and structure in
patients with acute MI as well as chronic IHD.

Global LV systolic function

The effect of cell transplantation on global LV systolic
function and=or regional wall motion was examined in nearly
all clinical trials of BMC therapy. Global LVEF is perhaps the
most important parameter for any reparative strategy because
of its well-known relationship with prognosis in patients with
heart failure and major cardiovascular outcomes (19, 88).
Because definitive conclusions could not be reached from
these smaller individual studies, we performed a compre-
hensive meta-analysis that included a total of 18 RCTs and
cohort studies (a total of 999 patients) of BMC therapy for
cardiac repair (1). Our results showed a 3.7% greater increase

in LVEF over baseline in BMC-treated patients compared with
controls, and the results were similar when data from RCTs
and cohort studies were analyzed separately (1). The analysis
of interaction indicated similar efficacy of BMC therapy in
improving LVEF in patients with acute MI, as well as chronic
IHD. However, when data from studies that injected less than
80 million BMCs (the median value) were compared with
those from studies with greater number of BMCs, no signifi-
cant impact of cell number on the improvement in LVEF was
noted. Similarly, no significant interaction was noted based on
the timing (<5 days vs. 5–30 days after acute MI=PCI) of BMC
injection (1).

Although the numbers and types of studies included
were somewhat different in each, several other meta-analyses
have reached similar conclusions regarding the beneficial
effects of BMC therapy on LVEF (36, 56, 62). In the meta-
analysis by Hristov et al. (36), which included five RCTs (a
total of 482 patients) of BMC therapy in patients with acute
MI, the improvement in LVEF during follow-up was 4.21%
greater in BMC-treated patients compared with controls. In
the meta-analysis by Lipinski et al. (56), which included 10
controlled trials (a total of 698 patients) of BMC therapy in
patients with acute MI, cell transplantation was associated
with a 3% greater increase in LVEF compared with controls.
The meta-analysis of 13 RCTs (a total of 811 patients) in pa-
tients with acute MI by Martin–Rendon et al. (62) also showed
a 2.99% greater improvement in LVEF in BMC-treated pa-
tients. Therefore, despite the differences in characteristics
of included studies, concordant results from all of the meta-
analyses show that BMC therapy is associated with a
modestly (2.99–4.21%) greater improvement in LVEF com-
pared with optimal standard treatment alone (1, 36, 56, 62).
Although enhanced contractility in the viable LV segments
may also play a role, this improvement in global LVEF may
directly result from improved wall motion in the infarct
territory, which was observed in several studies. Since the
precise mechanistic bases of improvement in global LVEF
in humans remain largely unknown, systematic and accu-
rate determination of regional LV wall motion in larger
RCTs can potentially provide valuable information re-
garding the true efficacy of BMC therapy in repairing the
infarcted myocardium.

LV end-systolic volume

Since a smaller LVESV in the absence of any significant
change in LVEDV reflects greater EF, LVESV appropriately
serves as a surrogate indicator of global LV systolic perfor-
mance. A number of studies of BMC therapy assessed LVESV
at baseline and during follow-up, albeit with different meth-
ods. In our meta-analysis (1), which included patients with
acute MI as well as chronic ischemic heart disease, the reduc-
tion in LVESV was greater by 4.8 ml in BMC-treated patients
compared with controls. Although no significant treatment
interaction was observed, this benefit was more pronounced in
patients with acute MI, and also when BMCs were injected<5
days after MI or PCI (1). Consistent with these results, greater
improvement in LVESV was also noted in BMC-treated pa-
tients in the meta-analysis by Lipinski et al. (�7.4 ml) (56) and
Martin–Rendon et al. (�4.74 ml) (62). Importantly, despite a
trend in one meta-analysis (56), reduction in LVEDV was
generally not significant in BMC-treated patients in these
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meta-analyses (1, 56, 62). Therefore, the reduction in LVESV
may be interpreted as a valid additional indicator of the effi-
cacy of BMC therapy in improving global LV systolic function.

Infarct scar size

A reduction in infarct size with cell therapy has been re-
ported in a number of animal studies. However, the assessment
of infarct size in humans in vivo is difficult and the accuracy
varies considerably between techniques. In our meta-analysis
(1), which included infarct size data from nine studies, a 5.5%
greater reduction in infarct size at follow-up was noted in
BMC-treated patients compared with controls. Although this
benefit was observed in patients with acute MI as well as
chronic IHD, the extent of scar size reduction was more pro-
nounced when BMCs were transplanted between 5–30 days
after acute MI=PCI compared with transplantation within
5 days (1). In subsequent meta-analyses by Lipinski et al. (56)
and Martin–Rendon et al. (62), which were restricted to RCTs
and patients with acute MI only, infarct size reduction was
greater in BMC-treated patients by 5.6% and 3.5%, respectively.

Since direct histopathological correlation is not possible in
humans, the precise mechanism of scar size reduction remains
speculative. The results from studies in animals indicate that
BMCs can indeed differentiate into cardiomyocytes (21, 33, 73,
74), however, the extent of new myocyte formation remains
highly controversial (8, 69, 73, 86). Other potential mecha-
nisms via which BMC therapy may reduce scar size include
salvage of native cardiomyocytes (30, 47) or generation of new
myocytes via the activation of tissue-resident cardiac pro-
genitors (12, 20). Irrespective of the mechanism, that BMC
therapy can effectively reduce myocardial scar size is an im-
portant observation from a clinical standpoint because a re-
duction in scar size is likely to impact remodeling favorably
with the attendant benefits (79, 80). Aside from the functional
improvement, other potential benefits stemming from supe-
rior remodeling in terms of LV hypertrophy, diastolic func-
tion, and arrhythmia therefore need to be assessed critically
during longer follow-up.

LV end-diastolic volume

Following the loss of myocytes during MI, the infarct wall
becomes thinner and the LVEDV gradually increases with
progressive remodeling (79, 80). The LVEDV is therefore
considered an important parameter of LV remodeling and
was examined in several BMC trials. In our meta-analysis (1),
which included patients with acute MI as well as chronic IHD,
BMC therapy was not associated with any significant change
in LVEDV compared with controls. When we compared
changes in LVEDV in trials in which BMCs were injected <5
days after MI with those with a 5–30 day interval, no signif-
icant difference in change in LVEDV based on the time of
injection was observed (1). However, in the meta-analysis by
Lipinski et al. (56), which included trials with BMC therapy
within 14 days after acute MI, BMC treatment was associated
with a trend toward reduction in LVEDV. Since LV re-
modeling gradually progresses over time, it is conceivable
that transplantation of BMCs early after acute MI is likely to
be more effective in preventing the progression of remodel-
ing. Future studies need to be conducted to assess the impact
of BMC therapy as a function of the time interval between
acute MI and BMC transplantation.

Patient symptoms and functional class

Since the initial clinical trials primarily evaluated efficacy
and safety, the end-points were generally limited to the as-
sessment of LV function and anatomy. Although improve-
ment in patient symptoms was recognized in several of these
studies (16, 57, 78, 102), analysis of pooled data could not be
performed because too few studies included each specific
end-point. Nonetheless, from a therapeutic standpoint, im-
provement in patient symptoms and effort tolerance are
highly important indicators of the overall efficacy of infarct
repair. In the study by Strauer et al. (98) intracoronary injec-
tion of BMMNCs improved VO2max. In the study by Perin
et al. (78), transendocardial injection of BMMNCs reduced
angina frequency, increased exercise capacity, and improved
NYHA class in BMC-treated patients, and these benefits were
sustained at least until 12 months. Similar improvement in
exercise time and functional class with transendocardial
BMMNC therapy was also noted in the PROTECT-CAD trial
(102). Intracoronary MSC therapy in the study by Chen et al.
(16) also resulted in improved exercise tolerance and NYHA
class, indicating that the symptomatic benefits are not re-
stricted to a specific type of BMC or patient characteristics.
Finally, in the study by Losordo et al. (57), transendocardial
injection of CD34þ cells in patients with refractory angina
showed a trend toward reduced angina frequency, nitro-
glycerin usage, CCS class, and exercise time in cell-treated
patients. Together, these results (16, 57, 78, 98, 102) suggest
that the benefits of BMC therapy extend well beyond LV
function and remodeling, and a comprehensive assessment of
patient symptoms and quality of life parameters in future
trials may reveal heretofore underappreciated benefits of
BMC therapy impacting critical components of the overall
therapeutic goal.

Adverse Effects of BMC Therapy

Every medical and surgical therapeutic strategy comes
with variable degrees of inherent risks, and the goal therefore
is to optimize the treatment regimen so that the benefits are
maximized and adverse effects are reduced to a minimum. In
this regard, nearly all of the reports of BMC trials have in-
cluded safety data and although the reporting has often been
incomplete, meta-analyses of these outcomes indicate that
BMC therapy does not pose risks beyond those associated
with conventional therapy (1, 56, 62).

Major adverse cardiovascular events

Although ‘major adverse cardiovascular events’ (MACE) is
considered an important component of assessment of safety
of any therapeutic regimen, its definition remains somewhat
variable (46), and only a few BMC trials reported MACE in
a comprehensive fashion. However, in meta-analyses per-
formed thus far, the incidence of mortality, recurrent MI,
stroke, or hospitalization due to exacerbation of congestive
heart failure was similar in BMC-treated and control patients
(1, 56, 62).

Arrhythmia

Sustained ventricular tachycardia (VT) has been reported
following intramyocardial transplantation of skeletal myo-
blasts (32, 65), which are unable to connect electrically to the
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neighboring myocytes (3, 52). In contrast, BMMNC-derived
myocytes express connexin 43 following differentiation in
vitro (26, 27, 54). After myocardial transplantation or homing
in animal models in vivo, BMC-derived cardiomyocytes have
been shown to express N-cadherin and connexin 43 (21, 73,
86), which are necessary for establishing mechanical and
electrical connection, respectively. Consistent with these ob-
servations, despite the diversity in BMC types, routes, and
doses, no increased incidence of arrhythmia in BMC-treated
patients was observed in meta-analyses of studies that in-
cluded patients with acute MI as well as chronic IHD (1, 36, 56,
62). Nonetheless, in light of the arrhythmogenicity noted with
skeletal myoblasts (32, 65), it is imperative that the ar-
rhythmogenic potential of BMCs is monitored closely in fu-
ture clinical trials.

In-stent restenosis

Although intramyocardial injection obviates this problem,
in-stent restenosis is an important consideration when BMCs
are injected via the intracoronary route. Restenosis is multi-
factorial in etiology and involves activation of smooth muscle
cells in the arterial wall, along with neointimal thickening (11).
Several growth factors are also known to play critical roles in
restenosis (11), and although coronary stenting eliminates
elastic recoil and remodeling, it accentuates neointimal hy-
perplasia. Although the results of meta-analyses (1, 56, 62) that
included trials with several types of BMCs did not reveal an
overall increased incidence of restenosis in BMC-treated pa-
tients, a higher rate of in-stent restenosis has been reported
with intracoronary injection of G-CSF-mobilized peripheral
blood cells (39) and AC133þ progenitors (10). In this regard,
Schober et al. (94) reported a significant correlation between a
greater number of circulating CD34þ cells following elective
stenting and a higher rate of restenosis in patients with coro-
nary artery disease. Since specific types of BMCs express
growth factor systems (100) and are able to differentiate into
smooth muscle cells as well as endothelial cells (73, 107), the
above observations suggest that the rate of in-stent restenosis
may potentially depend critically on the phenotype of injected
cells, especially the adhesion molecule expression profile. Ir-
respective of the inciting factors, the clinical implications of
restenosis and de novo atherogenesis mandates a careful
quantitative monitoring of these potential complications of
BMC therapy in future clinical trials of myocardial repair.

Optimizing the Variables

As discussed above, the collective results from the con-
trolled clinical trials completed thus far indicate that BMC
transplantation is indeed associated with modest improve-
ments in several parameters of LV function and structure with
no significant increase in untoward effects (1, 36, 56, 62).
Nonetheless, because of the mixed nature of outcomes from
these inherently heterogeneous trials, the utility of BMC
therapy in myocardial repair continues to generate contro-
versy, and several key issues remain to be addressed in order
to achieve superior myocardial repair.

Finding the ideal BMC

Unfortunately, very few clinical trials have systematically
compared the outcomes of therapy with even two BMC types.

In our meta-analysis (1), no significant interaction was ob-
served when results from trials that used BMMNCs were
compared with those from MSC and CPC trials. Ideally, the
optimal BMC for cardiac repair should exhibit several im-
portant properties. First, irrespective of the underlying
mechanism, transplantation of this BMC should improve
cardiac function and structure in a reproducible fashion.
Second, the adverse effects of therapy should be minimal. The
transplanted BMCs should not give rise to teratomas or other
neoplastic lesions in vivo, and intracoronary delivery should
not trigger cellular hyperplasia involving the arterial wall
causing restenosis or de novo atheromatous lesions. Third,
these BMCs should preferably be able to differentiate into
both cardiomyocytes and vascular cells, so that not only new
contractile units are formed, but blood supply to these newly
formed myocytes is also established. Fourth, the ideal cell
should be able to migrate across the vessel wall and home into
the myocardium. The expression of various adhesion mole-
cules and CXCR4 may identify BMCs with this capability.
This will greatly improve efficacy of cell delivery via the in-
tracoronary route, and improve retention of cells following
intramyocardial delivery. Finally, these BMCs should be easy
to harvest in a timely fashion, and be suitable for long-term
storage and use at a future time-point. Although several types
of BMCs have been utilized in clinical trials, each with
somewhat distinct attributes, the ideal BMC that fulfills all of
these criteria remains to be identified in future basic and
clinical studies.

Utilizing the most efficacious route

Although intracoronary (7, 10, 16, 17, 29, 37, 40, 55, 64, 87,
90, 97, 98, 101, 106), transepicardial (34, 67), as well as trans-
endocardial (57, 78, 102) routes have all been used success-
fully for BMC delivery in humans, each route may offer
specific advantages based on patient characteristics, the clin-
ical scenario, and the BMC type. In the setting of an acute
MI, or in patients with significant coronary artery disease
undergoing PCI, BMCs have been injected effectively in the
coronary artery following PCI or during an elective cathe-
terization. However, the ability of BMCs to migrate across the
vascular barrier is an important consideration with this route,
and BMCs that express CXCR4 (for example, VSELs (22, 49))
and other adhesion molecules may be better suited for this
mode of delivery. In this regard, Hofmann et al. (35) reported
greater myocardial retention of CD34þ BMCs compared with
unselected BMCs following intracoronary delivery at 5–10
days after PCI following acute MI. In the setting of chronic
IHD, intracoronary delivery of CPCs in patients with re-
vascularized chronic total occlusion (24) and BMMNCs in
patients with old MI (7, 98) have also resulted in improved LV
function. These results suggest that intracoronary route of cell
delivery may be utilized even when myocardial microvas-
cular damage is absent and myocardial inflammation has
largely subsided.

As an effective alternative, transepicardial injection offers
considerable convenience in patients undergoing CABG.
With the transendocardial delivery method, the use of an
EMM system enables the identification of the scar area and
precise cell injection. However, the use of a transendocardial
route may potentially be limited by the availability of this
system. Nonetheless, the intramyocardial (transepicardial or
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transendocardial) route of BMC delivery offers several dis-
tinct advantages. First, even large cells can be injected without
causing vascular obstruction. This is an important consider-
ation because intracoronary delivery of MSCs in dogs has
been reported to cause microinfarction (104). Second, in-
tramyocardial injection eliminates the issues of restenosis and
increased atheroma formation. Importantly, intracoronary
injection of circulating AC133þ progenitors (10) and G-CSF-
mobilized PBSCs (39) have both been associated with a higher
rate of restenosis. Finally, the EMM-guided delivery method
offers precision in site-directed injection of BMCs (57, 78). In
our meta-analysis (1), an effective comparison between dif-
ferent routes could not be performed because of the paucity
of clinical trials with the intramyocardial route. However,
the above considerations suggest that a careful selection
of the delivery method based on patient characteristics and
the type of BMC may potentially enhance the outcomes of
BMC therapy.

Determining the optimal BMC number

Quantitative data from animal as well as human studies
indicate that only a small fraction of injected cells is retained
within the myocardium (9, 23, 35, 41). Apart from cell wash-
out, a large number of transplanted cells are also lost via cell
death in the hostile inflammatory milieu (99, 108). Thus, it
only seems logical that injecting a larger number of cells
would help achieve superior cardiac repair. Accordingly,
several clinical trials have utilized a large number of BMCs
(17, 18, 40, 101, 106), and in our meta-analysis (1), the number
of transplanted BMCs ranged from 2 to 60,000 million BMCs.
However, when outcomes from studies that used less than
the median of 80 million BMCs were compared with those
from studies that used more, there was no significant dif-
ference in outcomes based on BMC numbers (1). In a subse-
quent meta-analysis restricted to patients with acute MI alone,
the improvement in LVEF was noted only with transplanta-
tion of >100 million BMCs (62). Consistent with this obser-
vation, in the study by Meluzin et al. (63, 64), sustained
improvement in LVEF was noted only in patients who re-
ceived a greater number of BMMNCs, indicating a possible
dose-response relationship. Interestingly, in a study in mice
(44), intramyocardial injection of CD34þ cell enriched frac-
tion yielded superior results compared with unfractionated
BMMNCs, and although a high dose of BMMNCs afforded
benefits, the incidence of intramyocardial hemorrhage in-
creased. In our laboratory, intramyocardial injection of only
10,000 CD45- VSELs after acute MI in mice resulted in im-
provement in LV function and structure, while a 10-fold
greater number of CD45þ hematopoietic stem cells failed to
confer reparative benefits (22). These data from animal studies
(22, 44) indicate that injecting a larger number of cells, espe-
cially via the intramyocardial route, may not always yield
superior results, and the outcomes may critically depend on
the specific BMC type. Thus, dose-response studies with lar-
ger number of patients with specific clinical conditions will be
necessary to determine the optimal number of BMCs for
myocardial repair.

Selecting the optimal time

For relatively subacute conditions, including chronic IHD
and ICM, BMC therapy may be synchronized with a planned

PCI or CABG procedure. However, the issue of timing is
particularly critical for BMC delivery in patients with acute
MI. Although BMC transplantation after acute MI in humans
has been efficacious over a rather wide time-range (1, 36, 56,
62), perhaps greater benefits can be achieved with BMC de-
livery during an optimal timeframe after MI. Conceivably, the
increased expression of adhesion molecules (50) and che-
moattractants (48) in the infarcted as well as the viable myo-
cardium may improve BMC retention. However, delivery of
BMCs during the peak of inflammation shortly after MI may
also cause excessive cell death. As an important yet second-
ary consideration, cell delivery immediately following PCI in
the setting of an acute MI necessitates ready availability of
BMCs. In our meta-analysis (1), injection of BMCs within the
5-to 30-day window after acute MI=PCI resulted in greater
infarct size reduction and the interaction tended to be signif-
icant ( p¼ 0.10). Although we did not observe any significant
interaction of timing with regard to LVEF (1), Martin–Rendon
et al. (62) noted a greater improvement in LVEF when BMCs
were injected >7 days after acute MI. Since the inflammatory
reaction persists for a prolonged period of time after acute MI
(28, 71), specific information from animal models regarding
the kinetics of BMC retention, survival, and differentiation
following transplantation at different intervals after MI will be
particularly helpful toward the design of future BMC trials in
humans.

Tailoring cell therapy for specific patient populations

The collective results from various important trials suggest
that patient characteristics are also important determinants of
outcomes of cells therapy. While it seems prudent to apply
BMC therapy at an earlier time-point after the ischemic cell
death and before the remodeling is complete, data from ani-
mal models indicate that cell therapy can also improve out-
comes in the setting of established cardiomyopathy (70, 72).
Although millions of patients with heart failure may poten-
tially benefit from effective BMC therapy, relatively fewer
patients with advanced cardiomyopathy have been enrolled
in clinical trials thus far. In our meta-analysis (1), the repara-
tive benefits were comparable in patients with acute MI and
chronic IHD, and no significant difference was observed in
interaction analyses based on the disease entity. Importantly,
BMC therapy was associated with enhanced regional wall
motion in patients with ICM in several studies (7, 24, 34, 67),
perhaps indicating the formation of new myocytes and=or
preventing the demise of native myocytes via paracrine
mechanisms. However, scant information exists regarding the
retention, survival, and differentiation of injected cells in hu-
mans, and conceivably the myocardial environment (acutely
inflamed versus remodeled myocardium) may influence these
variables in a cell-specific manner. Consistent with this no-
tion, in the TOPCARE-CHD trial, BMMNC therapy but not
CPC therapy was able to improve outcome variables in pa-
tients with chronic IHD (7). In contrast, in the study by Erbs
et al. (24, 45), CPC injection was effective in improving both
global and regional wall motion in patients with chronic total
occlusion. Importantly, compared with the TOPCARE-CHD
study (7), Erbs et al. (24) injected nearly threefold greater
number of CPCs (22� 11 vs. 69� 14 million) within a shorter
time window following MI (77� 76 vs. 7.5� 2.9 months). In
light of these observations (7, 24), it will be important to
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identify whether a specific BMC type is more suitable for
cardiac repair in patients with ICM and to examine whether
the reparative efficacy is dependent on the chronicity of
myocardial pathology.

Conclusions

Myocardial repair with cell therapy remains the ‘holy grail’
of regenerative cardiology, and the safety and efficacy of BMC
therapy for cardiac repair have rapidly been evaluated in
numerous clinical trials. Despite the heterogeneity in patient
population, BMC type, number, route, and timing of BMC
transplantation in these smaller trials, meta-analyses of
pooled data indicate that BMC therapy modestly improves
LV function and structure in patients with acute MI as well
as chronic IHD. Based on their easy availability in large
numbers, applicability via different routes, phenotypic plas-
ticity, and efficacy in diverse patient populations, BMCs in
general appear to be well suited for myocardial repair in
humans. Although these meta-analyses also suggest an ex-
cellent safety profile, long-term safety remains to be deter-
mined in RCTs with longer follow-up duration and uniform
reporting of adverse events. Moreover, in order to identify
the optimal BMC type, the comparative efficacy and safety
profiles of specific BMC subsets need to be characterized via
direct comparison. A synergistic collaboration between the
basic and clinical scientists will be critical for further optimi-
zation of BMC number, route, and timing with a view to
achieving optimal cardiac repair with minimal adverse effects.
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