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Abstract

The recent success of genome-wide association studies (GWAS) is now followed by the challenge to determine how the
reported susceptibility variants mediate complex traits and diseases. Expression quantitative trait loci (eQTLs) have been
implicated in disease associations through overlaps between eQTLs and GWAS signals. However, the abundance of eQTLs
and the strong correlation structure (LD) in the genome make it likely that some of these overlaps are coincidental and not
driven by the same functional variants. In the present study, we propose an empirical methodology, which we call
Regulatory Trait Concordance (RTC) that accounts for local LD structure and integrates eQTLs and GWAS results in order to
reveal the subset of association signals that are due to cis eQTLs. We simulate genomic regions of various LD patterns with
both a single or two causal variants and show that our score outperforms SNP correlation metrics, be they statistical (r2) or
historical (D’). Following the observation of a significant abundance of regulatory signals among currently published GWAS
loci, we apply our method with the goal to prioritize relevant genes for each of the respective complex traits. We detect
several potential disease-causing regulatory effects, with a strong enrichment for immunity-related conditions, consistent
with the nature of the cell line tested (LCLs). Furthermore, we present an extension of the method in trans, where
interrogating the whole genome for downstream effects of the disease variant can be informative regarding its unknown
primary biological effect. We conclude that integrating cellular phenotype associations with organismal complex traits will
facilitate the biological interpretation of the genetic effects on these traits.
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Introduction

The biological interpretation of genome-wide association study

(GWAS) signals [1–5] is very challenging since most candidate loci

fall either in gene deserts or in regions with many equally plausible

causative genes. Following the concurrent progress in understand-

ing the genetic basis of regulatory variation [6–9], differential gene

expression has been proposed as a promising intermediate layer of

information [10] to aid this interpretation [11]. Most commonly,

interrogating the GWAS SNPs themselves for significant associ-

ations with gene expression [12–13] has been employed to explain

some of the GWAS results. However, the ubiquity of regulatory

variation throughout the human genome [6,14] makes coinciden-

tal overlaps of eQTLs and complex trait loci very likely. This

likelihood is a direct consequence of the correlation structure in

the genome (linkage disequilibrium - LD), which makes function-

ally unrelated variants statistically correlated.

As sample sizes increase, allowing the discovery of larger

numbers of eQTLs of smaller effect size and as the expression

experiments will be performed in a larger variety of tissues, we can

envisage that almost every gene will have an associated eQTL

under a certain condition. Consequently, the probability that any

of these will map to a genomic region where a GWAS SNP also

resides is very high. Therefore, it is important to emphasize that

while it is very tempting to infer potential causal mechanisms

based on such overlaps, this would be a naı̈ve inference in the

absence of additional supporting evidence for causality. In the long

run, this will not only be an issue for gene expression, but also for

any other cellular phenotype. Association studies for intermediate

phenotypes with possible relevance to complex traits are underway

and their results will overlap some of the GWAS signals. The

biological meaning of these overlaps will again need to be

evaluated in the context of the genome’s correlation structure.

It is not evident though how to model each genomic region with

overlapping association signals in the absence of information about

the history of the region. Accounting for the historical parameters

of a region under the coalescent, while desirable, is computation-

ally and practically not feasible since the human population history

is too complex to properly model and small deviations or slightly

incorrect assumptions could create false signals or reduce power.

In order to distinguish such accidental colocalizations [15–16]

from true sharing of causal variants, we propose here an empirical

methodology instead. This directly combines eQTL and GWAS

data while accounting for the LD of the region harbouring the

GWAS SNP. We demonstrate the value of the approach by

predicting the regulatory impact of several GWAS variants in cis
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and trans and we also show that the correlation strength (r2, D’)

between the GWAS SNP and the eQTL is not a sufficient

predictor of regulatory mediated disease effects.

Results

Current GWAS signals are enriched for regulatory
variants

To identify likely causal effects (not variants since we do not

have full sequencing data) associated with complex traits and

diseases we took advantage of published association data

catalogued in the NHGRI [17] database and gene expression

data generated in LCLs derived from HapMap 3 individuals (see

Methods). In this study, we limited the expression analysis to the

109 CEU individuals, as they are the closest in ancestry to the

majority of individuals in published GWAS studies. We used the

NHGRI database (accessed 02.03.09) to extract 976 GWAS SNPs

with minor allele frequency (MAF) .5% that were also genotyped

in the HapMap 3 CEU, thus allowing to test the exact GWAS

SNPs for associations with differential gene expression in LCLs. In

total we examined 17673 genes. In order to discover eQTLs, we

used Spearman Rank Correlation (SRC). This method [14]

captures the vast majority of associations discovered with standard

linear regression (LR) models, with the additional advantage that

it’s not affected by outliers and hence has more power and allows

direct comparison of nominal P-values. We looked for both

proximal (cis) and distal (trans) effects as follows: variants within

1Mb on either side of the transcription start site (TSS) of a gene

are considered to be acting in cis, while those at least 5 Mb

downstream or upstream of the TSS or on a different chromosome

are considered to be acting in trans.

In order to assess the overall impact of the currently known

GWAS SNPs on expression, we contrasted their cis and trans effects

to those of a random set of SNPs, representing the null. In a QQ

plot (Figure 1), we compare the distributions of the best cis and

trans association p-values per SNP for the 976 GWAS SNPs

(observed) to 1000 sets of most significant p-values of 976 random

SNPs each (expected). The 1000 random sets of 976 SNPs were

sampled to have identical MAF distribution to the GWAS SNPs.

In cis, we observe a much stronger regulatory signal in the GWAS

data compared to random (Figure 1). The significant difference

between the two becomes apparent above a 2log10(P-value) = 4.

In trans, we also detect a more significant regulatory signal for

GWAS SNPs compared to random, however not as strong as in

cis. This is to be expected given that the much greater statistical

space we’re exploring in trans limits the power to detect such

effects. Nevertheless, despite their confinement to one tissue type -

LCLs, these comparisons support the overall explanatory potential

of regulatory variation for the biological effects of GWAS variants.

As expected given the tissue nature, the phenotypes responsible for

this enrichment are immunity related (Figure 2).

Figure 1. Excess of regulatory variants among GWAS signals.
QQ plot depicting the excess of significant regulatory signal in GWAS
data (976 NHGRI SNPs). For both the cis and trans analyses, the
2log10(P-value) of the best associations per SNP are plotted. In red, the
distribution of these values for GWAS SNPs is compared to that of the
median of 1,000 sets of 976 random SNPs with same MAF distribution.
In black, the estimated upper limit of the 95% confidence interval is
plotted.
doi:10.1371/journal.pgen.1000895.g001

Author Summary

Genome-wide association studies have led to the identi-
fication of susceptibility loci for a variety of human
complex traits. What is still largely missing, however, is
the understanding of the biological context in which these
candidate variants act and of how they determine each
trait. Given the localization of many GWAS loci outside
coding regions and the important role of regulatory
variation in shaping phenotypic variance, gene expression
has been proposed as a plausible informative intermediate
phenotype. Here we show that for a subset of the currently
published GWAS this is indeed the case, by observing a
significant excess of regulatory variants among disease
loci. We propose an empirical methodology (regulatory
trait concordance—RTC) able to integrate expression and
disease data in order to detect causal regulatory effects.
We show that the RTC outperforms simple correlation
metrics under various simulated linkage disequilibrium
(LD) scenarios. Our method is able to recover previously
suspected causal regulatory effects from the literature and,
as expected given the nature of the tested tissue, an
overrepresentation of immunity-related candidates is
observed. As the number of available tissues will increase,
this prioritization approach will become even more useful
in understanding the implication of regulatory variants in
disease etiology.

Integration of eQTLs with GWAS Results
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RTC score to distinguish between causal effects and
coincidental overlaps

To identify the subset of causal effects from the regulatory

enrichment observed, we focused only on the genomic regions

harbouring either cis or trans eQTLs. We split the genome into

recombination hotspot intervals based on genome-wide estimates

of hotspot coordinates from McVean et.al. [18] Limiting the

search space for causal effects to these intervals is a reasonable

conventional approach, as few or no recombination events are

expected between the reported associated SNPs and the functional

variants they are tagging.

Given the abundance of cis eQTLs in the genome, mere interval

overlap in not sufficient to claim that a colocalized cis eQTL and a

GWAS SNP are tagging the same functional variant. However, if

the GWAS SNP and the eQTL do tag the same causal SNP, we

expect that removing the genetic effect of the GWAS SNP will

have a marked consequence on the eQTL association. Starting

from this hypothesis, we developed an empirical method to

uncover regulatory mediated associations with complex traits. For

all genes with a significant cis eQTL (0.05 permutation threshold

as defined in Stranger et.al. 2007, see Methods) in a given interval,

we create corrected phenotypes from the residuals of the standard

LR of the GWAS SNP against normalized expression values of the

gene for which we have an eQTL. The residuals capture the

remaining unexplained expression variance after the removal of

the GWAS SNP effect. We redo the SRC analysis with the pseudo

phenotype and retain the adjusted association P-value.

Depending on the internal LD structure of the hotspot interval,

the correlation between the GWAS SNP and the eQTL will vary,

hence so will the P-values after and before correction. One way to

assess the relevance of the GWAS SNP to the eQTL is to compare

its correction impact to that of all other SNPs in the interval. For

this purpose, we define a Regulatory Trait Concordance (RTC)

Score for each gene-GWAS SNP combination as follows, taking

into account the ranking of the correction with respect to all SNPs

in the interval (RankGWAS SNP) and the total number of tested

SNPs (NSNPs).

RTC~
NSNPs{RankGWAS SNP

NSNPs

The rank denotes the number of SNPs which when used

to correct the expression data, have a higher impact on the

eQTL (smaller adjusted P-value) than the GWAS SNP (i.e.

RankGWAS SNP = 0 if the GWAS SNP is the same as the eQTL

SNP, RankGWAS SNP = 1 if of all the SNPs in the interval, the

GWAS SNP has the largest impact on the eQTL). Given this, the

RTC Score will always be in the range (0,1], with values close to 1

indicating that the GWAS effect is the same as the eQTL effect.

RTC properties under different simulation scenarios
We investigated the properties and robustness of the RTC score

under the null hypothesis (H0: eQTL and GWAS are tagging two

different causal SNPs) and the alternative hypothesis (H1: same

causal SNP). For this purpose, we have simulated causal SNPs

(cSNP), eQTLs and dSNPs (see Methods) varying the LD levels

between them as well as the LD pattern of the hotspot interval

where they reside. We have then masked the cSNPs and calculated

the RTC score under these different LD scenarios for both

hypotheses.

The RTC score is uniformly distributed under the null, when

the simulated causal eQTL SNP (c-eQTL) and the causal disease

SNP (c-dSNP) are different (Figure 3, left panel).

Under the H1 on the other hand, the RTC score is right skewed,

with a clear enrichment for values close to 1 recovering the single

causal SNP effect (Figure 3, middle panel).

The simulations show that the complexity and variability of the

LD structure in the genome impede the simple use of correlation

metrics to infer shared causal effects.

The statistical correlation (r2) between the eQTL and the

dSNP is not on its own sufficient to predict whether they tag the

same cSNP (Figure 4). The RTC outperforms r2 as it is able to

recover causal effects even for low correlated pairs. The

historical correlation metric between eQTLs and dSNPs (D’)

is also not fully predictive of high RTC scores (Figure 5). We

observe from the H0 simulation results that D’ is not correlated

with RTC, meaning that when the eQTL and dSNP tag

different functional variants, the RTC score is not high just

because D’ is high. In addition, while high RTC scoring cases

cluster much tighter around high D’ values under the H1

compared to r2 previously, a high D’ is not sufficient to predict

causal effects. That is because it would be impossible to

distinguish causal from coincidental effects given a perfect

historical correlation scenario.

Finally, we investigated the effect of the overall LD pattern in

a region of interest on the RTC. For this purpose, we calculated

the median r2 of each hotspot interval and checked its

relationship to the RTC score under the null and alternative

hypothesis. It is expected that RTC will perform better in

intervals with overall low LD, where the correlation between the

eQTL and other non-disease SNPs will decay much faster,

making the correction for the dSNP stand out. However, we

confirm that the LD of the region does not determine high

scores by itself. Intervals of low LD where different c-eQTLs

and c-dSNPs reside have a uniform distribution of RTC scores

(Figure 6, left panel). As expected, we do observe from the H1

Figure 2. Cis regulatory enrichment stratified by immunity
relatedness. The 2log10(P-value) of the best associations per GWAS
SNPs and a set of random SNPs are plotted. As expected given the
tissue (LCLs), immunity related phenotypes are mainly responsible for
the enrichment.
doi:10.1371/journal.pgen.1000895.g002

Integration of eQTLs with GWAS Results
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simulations that we have most power in intervals with low

median r2 (Figure 6, right panel).

RTC scores when both traits are gene expression
As a positive control, we tested the method first on intervals

harbouring already identified regulatory associations. We used

published cis eQTLs (1023 permutation threshold) discovered in

the same tissue as the HapMap CEU eQTLs (LCLs) but derived

from an independent set of samples: 75 individuals of Western

European origin from the GenCord project [19]. In this

experiment, we considered the GenCord eQTLs as the

equivalent of GWAS SNPs and we limited our analysis to

intervals with cis eQTLs in both datasets. Furthermore, we

conditioned the associated genes for the same interval to be

identical in the two expression datasets, expecting thus a

common functional variant. As a result of this filtering, we tested

SNPs in 157 hotspot intervals, associated with differential

expression levels of 154 genes. As expected from the H1

simulations, the RTC Score distribution after correcting for the

GenCord eQTLs is right-skewed (Figure 3, right panel),

suggesting that the scoring method is sensitive to associations

tagging the same functional variant. We detect 33 SNP-probe

pairs with an RTC Score of 1 out of the total 185 tested pairs.

Given the marked difference in genotyping density between

HapMap and GenCord (,1.2 millionSNPs versus ,400,000

SNPs respectively) and our hypothesis that the 157 overlapping

Figure 3. RTC score distribution. The RTC score is uniformly distributed for simulated eQTLs and dSNPs tagging two different causal variants in
the same interval (left panel). The RTC Score is right-skewed for simulated eQTLs and dSNPs tagging the same functional variant (middle panel). The
RTC score is sensitive to associations tagging a common functional variant in non-simulated data, when the GWAS trait is gene expression (GenCord
LCL samples – right panel).
doi:10.1371/journal.pgen.1000895.g003

Figure 4. Properties of the RTC score when varying r2. Simulation results depicting the relationship between the RTC score and the r2 (eQTL,
dSNP) when they tag different causal SNPs (H0: left panel) versus one causal SNP (H1: right panel). The RTC increases as expected with increased r2

between the eQTL and the dSNP, but when tagging the same functional variant, various lower pairwise r2 combinations can determine a high RTC.
This makes r2 on its own insufficient to detect shared causal effects.
doi:10.1371/journal.pgen.1000895.g004

Integration of eQTLs with GWAS Results
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intervals share the same functional variant, we expect approx-

imately 3 times more perfect scoring cases (99 pairs with RTC

Score = 1) than what we observe, had individuals from both

datasets been equally densely genotyped. We use the degree of

sharing between the eQTLs in the two datasets to derive a

reasonable, yet conservative threshold: currently, 105 SNP-

probe pairs pass the 0.9 RTC threshold, making it thus a

suitable stringent cut-off for calling significant discoveries.

Figure 5. RTC score properties when varying D’. Simulation results depicting the relationship between the RTC score and the D’ (eQTL, dSNP)
when they tag different causal SNPs (H0: left panel) versus one causal SNP (H1: right panel). D’ is not correlated with RTC, therefore it will not
determine high scores on its own in the absence of a common functional variant. Under the H1, the majority of high RTC scoring pairs have high D’,
but in the case of a perfect historical correlation scenario, it’s impossible to distinguish causal from coincidental effects with D’ only.
doi:10.1371/journal.pgen.1000895.g005

Figure 6. RTC score properties when varying the median r2 of the hotspot interval. Simulation results depicting the relationship between
the RTC score and the local LD structure (median r2) under the null (different causal SNPs - left panel) and alternative hypothesis (same causal SNP -
right panel). Under H0, the RTC score is evenly distributed, therefore intervals with overall low LD will not determine high RTC scores. Under H1, the
RTC performs best in intervals with overall low LD, where the correlation between the eQTL and other non-disease SNPs decays much faster, making
the dSNP correction stand out.
doi:10.1371/journal.pgen.1000895.g006

Integration of eQTLs with GWAS Results
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Significant causal cis effects
We then applied the scoring method on the NHGRI GWAS

SNPs. The 976 common GWAS SNPs map to 784 hotspot

intervals. Of these, we focused the cis analysis on GWAS intervals

(N = 130) where at least one significant cis eQTL at a 0.05

permutation P-value threshold also resides (Dataset S1). For the

trans analysis, we ordered all 784 GWAS intervals by their most

significant trans eQTL and kept the topmost 50 intervals for

further examination (Dataset S2). Table 1 summarizes our most

confident cis results ordered by RTC Score. We detect SNP-gene

combinations passing the 0.9 threshold for 28 intervals out of the

130, twice as many than expected by chance (13 expected top 10%

scoring intervals under the uniform distribution). Our method

confirms prior results in the literature suggestive of disease effects

mediated through expression (ORMDL3 for asthma risk [13],

C8orf13 locus for lupus risk [20], SLC22A5 for Crohn’s disease

[12,21]). In addition, we detect several other yet unknown

candidate genes for a variety of conditions.

An interesting example of a novel cis regulatory mediated effect

is the one for Crohn’s disease with gene SLC38A3, member 3 of

the solute carrier family 38. Independent studies detected

significant Crohn’s associations of two SNPs in the same hotspot

interval on chromosome 3 (rs3197999 [12], a non-synonymous

SNP in gene MST1 and rs9858542 [1,22], a synonymous SNP in

nearby gene BSN). Suggestive literature evidence in addition to

the disease associated non-synonymous SNP made MST1 the

most attractive candidate gene out of the many present in that

region [23]. However, our data supports an additional regulatory

component underlying the susceptibility locus. For both GWAS

SNPs, SLC38A3 is the highest scoring candidate in the region

(RTC Score: 0.92). Interestingly, this is functionally similar to

another Crohn’s susceptibility gene SLC22A5 confirmed with our

method (RTC Score: 1.0) and also encoding a sodium dependent

multi-pass membrane protein (solute carrier family protein). The

observed direction of effect is the same for both genes (eQTLs

associate with low expression levels) as in previous expression

datasets [12] and suggests a possible involvement of this gene

family in the disease. This is in agreement with recent studies

reporting that disease causative genes are functionally more closely

related [24].

Overrepresentation of immunity-related results
The tissue under investigation is LCLs so we expect GWAS

signals of immunity related traits (comprising here autoimmune

disorders and diseases of the immune system e.g. AIDS

progression) to more likely show an overlap with eQTLs. In

order to evaluate the relevance of our results, we analyzed the

distributions of the best RTC Scores per GWAS SNP stratified

by the immunity relatedness of the complex trait they associate

with (Figure 7). We observe a significant overrepresentation of

high-scoring genes (. = 0.9) for immunity related traits

compared to non-immunity related ones (Fisher’s Exact Test,

P-value = 0.0125) [25]. This suggests that the scoring scheme

predicts regulatory effects of the relevant phenotypes. In

addition, we observed that for GWAS signals with RTC score

.0.9, only 10% of the nearest gene to the GWAS SNP was also

the eQTL gene. These however, correspond as expected to

instances when the eQTL gene is also the nearest gene to the

eQTL itself. If that is not the case, the inference of relevance of

a gene simply based on its proximity to the GWAS SNP is not

informative.

Trans effects
Even if the causal SNP is not cis-regulatory, using gene

expression to determine its downstream targets, coupled with

information about the biological pathways these targets act in

could help interpret the primary GWAS effect. We investigated

this hypothesis in the topmost 50 GWAS intervals ordered by

their trans eQTL significance. For each interval, we apply the

RTC Scoring scheme on the subset of genes in the whole genome

with a notable effect in trans (SRC nominal P-value ,1025).

These signals amount to a total of 552 genes. We obtain SNP-

gene combinations passing the 0.9 Score threshold for 24 of the

50 tested intervals (corresponding to a total of 85 genes). Six of

these intervals contain GWAS SNPs associated with immunity

related traits (Table 2). While not statistically significant -

Table 1. Candidate cis results.

GWAS SNP Complex Trait Gene RTC Chr

rs2064689 Crohn’s disease WDR78 1 1

rs3129934 Multiple sclerosis HLA-DRB1 1 6

rs2188962 Crohn’s disease SLC22A5 1 5

rs1015362 Burning and freckling TRPC4AP 1 20

rs2735839 Prostate cancer C19orf48 1 19

rs6830062 Height LCORL 1 4

rs2242330 Parkinsons disease TMPRSS11A 1 4

rs7498665 Body mass index,Weight EIF3CL 1 16

rs2872507 Crohn’s disease ZPBP2 0.99 17

rs255052 HDL cholesterol AGRP 0.99 16

rs4549631 Height TRMT11 0.98 6

rs9469220 Crohn’s disease ILMN_29412 0.98 6

rs11083846 Chronic lymphocytic leukemia SLC8A2 0.98 19

rs13277113 Systemic lupus erythematosus C8orf13 0.97 8

rs9272346 Type 1 diabetes HLA-DRB1 0.96 6

rs12324805 Body mass index STARD5 0.96 15

rs3764261 HDL cholesterol MT1H 0.96 16

rs3135388 Multiple sclerosis HLA-DRB5 0.96 6

rs3814219 Endothelial function traits FAM26B 0.95 10

rs12708716 Type 1 diabetes ILMN_32084 0.95 16

rs2269426 Plasma eosinophil count HLA-DRB1 0.95 6

rs10769908 Body mass index C11orf17 0.94 11

rs4130590 Bipolar disorder ILMN_17339 0.94 9

rs7216389 Asthma ORMDL3 0.94 17

rs3796619 Recombination rate (males) CRIPAK 0.93 4

rs1748195 Triglycerides DOCK7 0.93 1

rs2903692 Type 1 diabetes ILMN_32084 0.93 16

rs3197999 Crohn’s disease SLC38A3 0.92 3

rs9858542 Crohn’s disease SLC38A3 0.92 3

rs6441961 Celiac disease LIMD1 0.92 3

rs660895 Rheumatoid arthritis PSMB9 0.91 6

rs9652490 Essential tremor ILMN_111363 0.91 15

rs1397048 Hemostatic factors OR8H2 0.91 11

rs3825932 Type 1 diabetes CTSH 0.91 15

rs2395185 Ulcerative colitis ILMN_29412 0.9 6

Candidate genes (RTC Score . = 0.9) for cis regulatory mediated GWAS effects.
The higher the score, the more likely it is that the GWAS SNP and the eQTL for
the gene shown are tagging the same functional variant.
doi:10.1371/journal.pgen.1000895.t001

Integration of eQTLs with GWAS Results
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unsurprisingly given that we’re only testing a small subset of the

total GWAS intervals - these examples support the usefulness of

the trans approach. As hypothesized, for the same complex trait

associated SNP we can discover several potential candidate genes

in trans, throughout the genome. Some of these are biologically

plausible results and merit further investigation. However, many

trans candidates are hard to interpret at this stage given their

incomplete annotation and further functional studies will need to

be performed for validation.

RTC on GWAS data outperforms alternative correlation
metrics

The power to detect significant associations between genotyped

SNP proxies and a phenotype depends on the correlation between

those proxies and the functional variant [26]. Just like for the

simulated data, we tested whether the correlation between a

GWAS SNP and its colocalizing eQTL is sufficient for predicting a

shared causal effect. For both the cis and the trans analysis, we

observe that the r2 between the eQTL and the disease SNP is not a

direct predictor of the RTC Score, and in several cases we predict

that even pairs with low r2 are likely tagging the same functional

effect (Figure 8, top panel). The reason for this is that many of the

high scoring pairs with poor statistical correlation (low r2) are

actually historically correlated (D’ = 1). Nevertheless, D’ is not very

informative either (Figure 8, bottom panel), the main problem

here being that in regions with generally high D’ among many

SNPs, one cannot determine which of the pairs actually represents

a common functional variant.

Another metric of potential predictive value is the fraction of

eQTL variance explained by the dSNP. Figure 9 indicates the

relationship between the RTC score and the fraction of explained

variance at the eQTL left unexplained after the dSNP correction

(ratio of linear regression adjusted Rˆ2 after and before

correction). As expected given the definition of the RTC, the

highest density of good scoring results is registered for dSNPs that

explain most of the eQTL variance. However, RTC outperforms

the variance metric, scoring high even when that’s not the case

and thus making the setting of a threshold on the explained

variance not sufficiently informative either.

Discussion

To aid the functional interpretation of complex trait association

signals, we describe here an empirical methodology that directly

integrates eQTL and GWAS data while correcting for the local

correlation structure in the human genome. As regulatory variants

are pervasive throughout the genome, coincidental overlaps of

eQTLs and GWAS SNPs are very likely. Hence, current methods

that limit themselves to asking whether disease intervals also

harbour eQTLs are unreliable for distinguishing trait relevant

regulatory effects from other eQTLs. Our methodology addresses

and helps resolve this issue.

This approach is not limited to gene expression, but could be

generalized to any other phenotype. As new methods are developed

and larger cohorts become available, various intermediate cellular

phenotypes are interrogated via association studies with the hope to

find explanatory links between genotypic variation and complex trait

predisposition. However, the biological interpretation of these

discoveries will also be hardened by the presence of tight LD. It is

therefore necessary to evaluate them in a conservative manner,

correcting for the local correlation structure in each genomic interval

with overlapping association signals.

In this paper, we discover causal regulatory effects and their

affected candidate genes in cis and to some extent in trans by

assessing the impact on the expression phenotype of the removal of

the GWAS SNP effect. We compute a score (RTC) for each

individual genomic interval that assesses the likelihood that the

eQTL and the GWAS SNP are tagging the same functional

variant. By ranking the effect of the removal of the GWAS SNP in

Figure 7. Overrepresentation of immunity-related high-scoring cis signals. Distribution of best RTC Scores per GWAS SNP stratified by
immunity relatedness. Histogram contains results from the analysis of 130 hotspot intervals with colocalizing disease SNPs and cis eQTLs. We observe
a significant overrepresentation of high-scoring (RTC . = 0.9) candidate genes (black bars) for immunity related complex traits compared to non-
immunity related ones (grey bars) (Fisher’s Exact Test, P-value = 0.0125).
doi:10.1371/journal.pgen.1000895.g007
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comparison to the outcome for any other SNP in the region and

by accounting for the number of SNPs tested, we produce a score

comparable across intervals. We evaluate the performance of the

score in various simulated LD scenarios and we present its

robustness by its expected uniform distribution when the eQTL

and GWAS SNP are tagging different functional variants. In

comparison, we investigate how well do current SNP correlation

metrics (r2, D’) perform on their own. We show that the LD

between the GWAS SNP and its colocalizing eQTL is not a good

predictor of a shared functional effect. This is very important

especially since most of the current replication and follow-up

studies only focus on variants highly correlated (r2.0.8) with the

initial discoveries. It is important to stress at this point that neither

the eQTL nor the GWAS SNP is likely the causal variant.

Therefore, what really matters is not the statistical correlation

between two proxies but the correlation between each of the

Table 2. Candidate trans results.

GWAS SNP Complex Trait Genes RTC SNP Chr Genes Chr

rs2251746 Serum IgE levels SLC25A18 0.99 1 22

rs983332 Response to TNF antagonists RGS16, IGSF3 0.97 1 1

rs983332 Response to TNF antagonists C17orf58 0.97 1 17

rs653178 Celiac disease PAX8, DOK1 1 12 2

rs17696736 Type 1 diabetes PAX8, DOK1 0.98 12 2

rs2542151 Crohn’s,Type 1 diabetes MMP12 1 18 11

rs2542151 Crohn’s,Type 1 diabetes SLC39A4, PSD3, AHNAK2,
FAM108B1, CYP2S1, CLEC7A

0.97 18 8, 8, 14, 9, 19, 12

rs2542151 Crohn’s,Type 1 diabetes LENEP 0.91 18 1

rs3134792 Psoriasis ADRA2C 1 6 4

rs3134792 Psoriasis DPEP1, ARHGEF3 0.99 6 16, 3

rs1265181 Psoriasis POU5F1P1 0.96 6 8

rs1265181 Psoriasis DPEP1 0.95 6 16

rs1265181 Psoriasis CYP4F8, ADRA2C 0.94 6 19, 4

rs1265181 Psoriasis RGS9 0.92 6 17

rs2395185 Ulcerative colitis B4GALT2, ASB5 0.97 6 1, 4

rs2395185 Ulcerative colitis STK32A 0.94 6 5

rs2395185 Ulcerative colitis OXT 0.93 6 20

rs2395185 Ulcerative colitis CSRP3 0.92 6 11

rs2395185 Ulcerative colitis LGALS4 0.91 6 19

rs3135388 Multiple sclerosis LIMS1 0.95 6 2

rs477515 Inflammatory bowel disease B4GALT2 1 6 1

rs477515 Inflammatory bowel disease ASB5 0.99 6 4

rs477515 Inflammatory bowel disease STK32A 0.95 6 5

rs477515 Inflammatory bowel disease OXT 0.94 6 20

rs477515 Inflammatory bowel disease CSRP3 0.93 6 11

rs477515 Inflammatory bowel disease DCHS2 0.91 6 4

rs477515 Inflammatory bowel disease LGALS4 0.9 6 19

rs615672 Rheumatoid arthritis DCHS2 0.99 6 4

rs6457617 Rheumatoid arthritis SMARCD3 0.95 6 7

rs6457620 Rheumatoid arthritis SMARCD3 0.95 6 7

rs660895 Rheumatoid arthritis RETSAT 0.99 6 2

rs660895 Rheumatoid arthritis CALCR 0.98 6 7

rs9268877 Ulcerative colitis LIMS1 0.97 6 2

rs9268877 Ulcerative colitis B4GALT2 0.94 6 1

rs9268877 Ulcerative colitis ASB5 0.91 6 4

rs9272346 Type 1 diabetes LIMS1 0.97 6 2

rs9272346 Type 1 diabetes WHDC1L1 0.94 6 15

rs9272346 Type 1 diabetes ASB5 0.93 6 4

rs9272346 Type 1 diabetes SEMA6D, OXT, B4GALT2 0.92 6 15, 20, 1

Candidate trans genes likely involved in the same biological pathways, relevant to the GWAS SNPs. Signals relating to the same hotspot interval separated by a
horizontal line. Table contains only the confident results (RTC Score . = 0.9) for the 6 immunity related intervals.
doi:10.1371/journal.pgen.1000895.t002
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proxies and the causal variant, whose frequency is unknown. In

any case, no obvious combination of LD measures can substitute

the RTC scoring scheme and we thus conclude that many

interesting candidate genes would be missed if one were to rely

solely on correlation-based approaches.

In this paper, we also explore the explanatory potential of

regulatory variation given the currently published GWAS data.

We observe a significant overrepresentation of eQTLs among

GWAS SNPs, especially affecting genes in cis. Long-range trans

effects are also present but less prevalent, possibly due to lower

power to detect such associations. As expected given the tissue the

expression data was measured in (LCLs), we observe a significant

abundance of cis regulatory causal effects for immunity related

traits. Our result reinforces the necessity to expand the tissue

diversity [27–28] of genome-wide expression studies in order to

facilitate such discoveries for a wider range of human conditions.

By applying the RTC method on the NHGRI GWAS SNPs, we are

able to confirm previously suspected regulatory mediated disease effects

and discover novel candidate genes affected by GWAS SNPs. We

provide a list of follow-up candidate genes affected in cis and in

addition, we show the utility of genome-wide expression data

irrespective of the nature of the primary SNP effect by predicting

clusters of genes affected in trans. The individual examination of the

candidates prioritized with our approach will undoubtedly assist the

biological interpretation of the ever-increasing list of GWAS signals. As

associations with more intermediate cellular phenotypes will be

reported, the integration of all these signals will be crucial for

understanding the biology of complex traits.

Methods

Gene expression measurements
RNA levels were measured in lymphoblastoid cell lines (LCLs)

derived from the HapMap 3 individuals using a whole-genome

expression array (Illumina Sentrix WG-6, Version 2) as previously

described [14]. Each sample had two technical replicates. We analyzed

here only expression data from the CEU, a HapMap 3 population of

109 unrelated individuals of Northern European ancestry. The

mapping of Illumina probes to unique Ensembl gene IDs resulted in

21,811 probes corresponding to 17,673 autosomal genes available for

association analysis. 1,186,075 SNPs (MAF .5%) genotyped in the

same individuals were used in the eQTL analysis.

Post-experimental normalization of gene expression data
The log2 transformed raw intensity values were normalized as

follows: quantile normalization of sample replicates (two intensity

values per Illumina probe) followed by median normalization

across all individuals.

Genome-wide association study (GWAS) results
All SNPs from the catalogue of genome-wide association studies

maintained by the National Human Genome Research Institute

Figure 8. The RTC method compared to standard LD measurements in the observed data. Neither r2 nor D’ between the eQTL and the
GWAS SNP are direct predictors of a high RTC Score. Highlighted here are the results from the cis and trans analyses. We obtain high scoring results
(RTC Scores . = 0.8 in blue) for cases with a high correlation between the disease SNP and the eQTL as expected, but also for pairs with low statistical
correlation (r2 – top panel). As shown in the bottom panel, many of these high scoring pairs are historically correlated (D’ = 1), but so are many more
by chance. Additionally, we can detect high scoring pairs with low D’ as well. Hence, no obvious combination of the two LD measures can predict a
high RTC Score.
doi:10.1371/journal.pgen.1000895.g008
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(NHGRI www.genome.gov/26525384) and published by

02.03.2009 were downloaded. Of these, only the 976 unique

common variants (MAF .5%) genotyped in the HapMap 3 CEU

samples were kept for analysis.

Genotype-gene expression associations and multiple
testing correction

Associations between SNP genotypes and normalized expres-

sion values were conducted using Spearman Rank Correlation

(SRC). For the cis analysis, we considered only SNPs within a 1MB

window from the TSS of genes, while in trans we test all SNPs

further than 5MB away from the gene’s TSS and all SNP-gene

pairs on different chromosomes. We assess the statistical

significance of the cis associations using permutations as previously

described [7,14]. We call a cis eQTL significant if the nominal

association P-value is greater than the 0.01 tail of the minimal P-

value distribution resulting from the SNP’s associations with

10,000 permuted sets of expression values for each gene.

Recombination hotspot interval mapping
We mapped all common autosomal CEU HapMap 3 SNPs

(1,186,075 SNPs) to recombination hotspot intervals as defined by

McVean et.al. [18] For the cis analysis we selected the 130 hotspot

intervals where at least one significant cis eQTL and a GWAS

SNP colocalize while for the trans, we analyzed a subset of 50 of the

total 784 unique intervals (where the 976 GWAS SNPs map to).

These are the topmost intervals ordered by their most significant

trans eQTL (nominal SRC P-value).

QQ plots of the abundance of regulatory signal in GWAS
SNPs

For both the cis and trans GWAS analysis, the best P-value

associations per SNP were stored. The set of the most significant

P-values of the 976 GWAS SNPs was compared to 1000 sets of

most significant P-values of 976 random SNPs. The 1000 random

sets of 976 SNPs each were conditioned to have the same MAF

distribution as the 976 GWAS set.

The QQ plot showing the abundance of regulatory signal in

GWAS data is the median QQ plot of 1000 (GWAS, random

SNPs) comparisons. It shows the distribution of the 2log10

quantile values of the GWAS best associations (observed) versus

the median of the corresponding 1000 2log10 quantile values

from each of the 1000 random SNP sets (expected). In order to

assess the significance of the observed versus expected median QQ

plot, we superimpose the upper limit of the 95% confidence

interval. This is calculated from the sorted 0.95 quantiles of 10000

pairs of 976 random SNPs each.

Scoring scheme for determining causal regulatory effects
We assess the likelihood of a shared functional effect between a

GWAS SNP and an eQTL by quantifying the change in the

statistical significance of the eQTL after correcting for the genetic

effect of the GWAS SNP. We redo the SRC association of the

eQTL genotype with the residuals from the standard LR of the

‘‘corrected-for’’ SNP against normalized expression values. We

account for the LD structure in each hotspot interval separately by

ranking (RankGWAS SNP) the impact on the eQTL (quantified by

the adjusted association P-value after correction) of the GWAS

SNP correction to that of correcting for all other SNPs in the same

interval. By taking into account the total number of SNPs in the

interval (NSNPs), we can compare this ranking across different

genes and intervals. For this purpose we define the regulatory trait

concordance (RTC) Score ranked below ranging from 0 to 1, with

values closer to 1 indicating causal regulatory effects.

RTC~
NSNPs{RankGWAS SNP

NSNPs

Simulations of different causal SNPs (H0) and same causal
SNP (H1) scenarios

We investigate the properties of the RTC score with respect to

different correlation metrics under the null hypothesis (H0: eQTL

and dSNP tag different functional variants) and the alternative

hypothesis (H1: eQTL and dSNP tag the same functional variant).

We use the HapMap3 CEU cis eQTLs (315 genes at 1023

permutation threshold) to create a list of causal SNPs (cSNP). For

the H0, we call these cSNPs causal eQTL SNPs (c-eQTL). For

each c-eQTL, we sample a different causal disease SNP (c-dSNP)

from the same interval, with the requirement that its MAF comes

from a distribution identical to that of the 976 NHGRI GWAS

SNPs. Subsequently, we sample up to five eQTL-dSNP pairs per

interval where the eQTLs and dSNPs are the topmost correlated

(r2) SNPs with the c-eQTL and the c-dSNP respectively. After

sampling, we exclude cases where the eQTL and dSNP are

identical, as these contradict the H0..c-eQTL-c-dSNP-eQTL-

dSNP quartets mapping to 287 unique hotspot intervals were

sampled and tested under H0.

Under the H1, we sample up to five eQTL-dSNP pairs for each

hotspot interval harbouring a cSNP as follows: the eQTLs are

chosen as the top most significant SNPs per eQTL gene -

excluding the cSNP; the dSNPs are randomly sampled from the

same hotspot interval such that the r2 between each of them and

the cSNP is in the range [0.5,0.9]. At any stage of the 5-step

iteration per cSNP, the dSNP must be different from the cSNP

and the eQTLs sampled up to that point. cSNP-eQTL-dSNP trios

Figure 9. The fraction of eQTL variance explained away by the
dSNP versus the RTC score. We contrast the LR adjusted R2 at the
eQTL after and before correction of the dSNP and observe that while
most high scoring pairs correspond to cases of lowest variance left
unexplained, other interesting cases would be missed solely by using
an arbitrary variance threshold.
doi:10.1371/journal.pgen.1000895.g009
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mapping to 290 unique hotspot intervals throughout the genome

were sampled and tested under the H1.

We use the LD values (r2) of all pairwise SNP combinations per

interval to calculate the median r2, an estimate of the LD extent

per region.

GenCord eQTLs as GWAS SNPs
To perform a control experiment where the trait is gene

expression, we used cis eQTLs (1023 P-value permutation

threshold) detected in LCLs derived from 75 unrelated individuals

of Western European origin from the GenCord project [19].

Hotspot intervals (N = 157) where both a HapMap and a

GenCord eQTL associating with the same Ensembl gene reside

were analysed with the RTC Scoring scheme.

Supporting Information

Dataset S1 Cis analysis RTC results. Candidate cis regulatory

effects as ranked by the RTC. No score filtering.
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Dataset S2 Trans analysis RTC results. Candidate trans

regulatory effects as ranked by the RTC in 50 genomic intervals.

No score filtering.

Found at: doi:10.1371/journal.pgen.1000895.s002 (0.30 MB
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