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Purpose: A large number of false positives (FPs) generated by computer-aided detection (CAD)
schemes is likely to distract radiologists’ attention and decrease their interpretation efficiency. This
study aims to develop projection-based features which characterize true and false positives to
increase the specificity while maintaining high sensitivity in detecting colonic polyps.

Methods: In this study, two-dimensional projection images are obtained from each initial polyp
candidate or volume of interest, and features are extracted from both the gray and color projection
images to differentiate FPs from true positives. These projection features were tested to exclude
different types of FPs, such as haustral folds, rectal tubes, and residue stool using a database of 325
patient studies (from two different institutions), which includes 556 scans at supine and/or prone
positions with 347 polyps and masses sized from 5 to 60 mm. For comparison, several well-
established features were used to generate a baseline reference. The experimental evaluation was
conducted for large polyps (=10 mm) and medium-sized polyps (5-9 mm) separately.

Results: For large polyps, the additional usage of the projection features reduces the FP rate from
5.31 to 1.92 per scan at the comparable by-polyp sensitivity level of 93.1%. For medium-sized
polyps, the FP rate is reduced from 8.89 to 5.23 at the sensitivity level of 80.6%. The percentages
of FP reduction are 63.9% and 41.2% for the large and medium-sized polyps, respectively, without
sacrificing detection sensitivity.

Conclusions: The results have demonstrated that the new projection features can effectively reduce
the FPs and increase the detection specificity without sacrificing the sensitivity. CAD of colonic
polyps is supposed to help radiologists to improve their performance in interpreting computed
tomographic colonography images. © 2010 American Association of Physicists in Medicine.
[DOLI: 10.1118/1.3302833]
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I. INTRODUCTION mon occurrence of both cancer deaths and new cancer cases

in 2008 for both men and women in the United States. For-
According to the up-to-date statistics from American Cancer  tunately, early detection and removal of colonic polyps prior
Society (ACS)," colorectal cancer ranks the third most com- to their malignant transformation can effectively decrease the
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incidence of colon cancer’™ and, therefore, adequate time
interval screening is recommended for people over 50 yr old
by ACS." As a new minimally invasive screening technique,
computed tomographic colongraphy (CTC) or CT-based vir-
tual colonoscopy (VC) has shown several advantages over
the traditional optical colonoscopy (0C).> To improve the
performance of CTC in detecting polyps, computer-aided de-
tection of polyps (CADpolyp) has shown the potential of
being a second reader assisting physicians for finding polyps
in the colon.®™

Up to now, several research groups have developed vari-
ous CADpolyp schemes.'*%¢ Although some of these
schemes reported acceptable detection sensitivities, chal-
lenges still remain to hinder them from being used in clinical
p1‘actice.27’28 One of the challenges is the high detection rate
of false positives (FPs), which distracts the physicians’ atten-
tion during their image interpretation and lowers their per-
formance. Therefore, it is desirable to reduce the number of
FPs as much as possible without sacrificing the detection
sensitivity. Many previous works have been devoted to the
reduction in FPs in their CADpolyp schemes, which may be
generally classified into two strategies of (1) exploring new
features that can better distinguish FPs from true positives
(TPs); and (2) improving the performance of the classifiers
or introducing new ones. We mainly focus on the first strat-
egy in this study.

Shape-related features have been extensively reported in
the previous works, such as various orders of statistics of the
shape index and the curvedness,m_19 the mean curvature, and
sphericity ratio-based features,' etc. However, many colonic
objects, such as haustra fold, stool, and even the rectal tubes
(RTs), have a shape very similar to true polyps. The shape-
related features may fail to eliminate the polypoid FP find-
ings. Therefore, many researchers have devoted great effort
to extract the features from the CT density distribution in the
volume of interest (VOI), referred to as texture features. In-
tuitively, the mean and standard deviation of the CT densities
in the VOI were directly used to reduce FPs,l2’13 16-18,24,25
while Goktiirk er al.”® further evaluated them in several ran-
domly selected orthogonal triple planes. Higher order statis-
tics, such as the skewness and kurtosis, of the CT densities in
the VOI were pursued in Refs. 16 and 17. Lu et al” reported
their texture features, such as the energy, entropy, etc., de-
rived from the three-dimensional (3D) gray level co-
occurrence matrix and gray level gradient co-occurrence ma-
trix in the VOI. Suzuki et al. employed a 3D massive
training artificial neural network (MTANN) combined with a
predefined 3D Gaussian teaching volume to extract texture
features for the elimination of RT-induced FPs in Ref. 30,
and they further extended the method to include the mixture
of 3D MTANNS to address multiple types of FPs.!

Most of the texture analysis methods mentioned above
directly apply various orders of statistics of the image inten-
sity distribution in each VOI to differentiate FPs and TPs.
The difference of the CT densities of various material types
might be ignored by those “global” statistical measures in the
domain of the VOI. However, a local operation of projection
or weighted line integral32 through the VOI is expected to
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enhance the subtle difference, such that the internal distinct
distribution patterns of TP and FP findings (further explored
in Sec. IT A) could be utilized to differentiate FPs and TPs.
Therefore, in this study, we will explore several new features
extracted from the projected images from the VOI of each
initial polyp candidate (IPC).

The remainder of this paper is organized as follows. Sec-
tion II provides the detailed description of our feature extrac-
tion method. The performance evaluation and experimental
results are reported in Secs. III and IV. Finally, several con-
clusions are drawn in Sec. V through some discussions.

Il. METHODOLOGY
Il.LA. Motivation

Radiologists often look into the 2D display of CTC im-
ages, which actually depends on the CT attenuation values,
to decide whether a region of interest is a true polyp or not™
because there is an expectation that the CT density distribu-
tion would be visually different for TPs and FPs. In Fig. 1,
the histograms of five VOIs (retrieved manually with inclu-
sion of four neighboring slices of the concerned slice in the
figure for each VOI) are plotted in terms of the CT density
values. The plot from a polyp has a peak around 100 HU due
to the soft tissue core, while the plots from two stools have a
peak located over 300 HU because of the enhancement in the
tagging material. The ileocecal valve has a peak around —80
HU owing to the fat tissue. The VOI on the tube has a rela-
tively flat histogram, resulting in a flat peak around 180 HU,
where many pixels have densities less than —200 HU since
the tube is hollow and the VOI includes part of the hollow
area. Therefore, we can roughly claim that the CT density
distribution pattern is different between TPs and FPs, which
explains the reason why the existing texture features have the
capability of classifying TPs and FPs. However, most of the
existing texture features, such as the abovementioned various
orders of statistics of the CT densities, might overlook the
difference of the distribution patterns. For example, the
widely used feature of the mean of CT densities, a global
measure, of the VOI of the polyp or the tube in Fig. 1 is 1.7
or —10.5 HU, respectively. This difference depicted by their
histograms (peaked or flattened distribution) is very subtle
(i.e., 1.7 vs —10.5 HU over the variation in 100 HU) and is
less effective to classify FPs and TPs. Therefore, we try to
employ the weighted line integral (or projection), a local
operation, to enhance the difference of the CT density distri-
butions.

The usefulness of a single projection image, or so-called
electronic biopsy view or a “local” operation vs the “global
measure” of the existing texture features, through a suspi-
cious patch has been shown in Refs. 33 and 34. For example,
a typical polyp larger than 5 mm, including neoplastic and
non-neoplastic lesions, would have a uniform concentric ring
pattern, with a red core gradually changing to a blue outer
ring,3 * as shown with the center area and the enclosed ring in
Fig. 2(b). Other colonic objects, e.g., tagged or even un-
tagged stool, impacted diverticula, air bubble artifacts, etc.,
would have different color pattelrns.34 Actually, the color
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FIG. 1. The histograms (bottom figure (f)) of CT density distribution of five
VOIs, which are indicated by the closed curves in the above five pictures.
From (a) to (e), the objects are a polyp, two stools (i.e., the stool_1 and
stool_2 in (f)), an ileocecal valve, and a rectal tube.

translucent image is the result of an integral operation in the
viewing direction (i.e., the ray casting direction of the vol-
ume rendering3 %) with a color mapping scheme. With differ-
ent eye positions or viewing directions, different patterns
would be generated in the projected image, as shown in Fig.
2(d). These observations reveal that the images from the pro-
jection or weighted line integral provide specific information
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FiG. 2. A 10 mm pedunculated tubular adenoma in the ascending colon of a
62 yr old female, showing a typical translucent color signature. (a) The 3D
endoluminal view of the polyp. (b) Translucency display applied to the 3D
image in (a). (c) The 3D endoluminal view of the same polyp, but from
another direction. (d) Translucency display applied to the 3D image in (c).

of internal density distribution of a VOI and may serve as an
alternative way for texture feature extraction.

In this study, orthogonal projections along three optimal
directions (rather than a single arbitrary direction for better
description of texture feature) of each IPC are obtained, and
several effective features are extracted automatically from
the projected images to differentiate FPs and TPs. These
steps of extracting the projection features are incorporated
into the following CADpolyp scheme.

II.B. Overview of CADpolyp scheme

Before going to the details of our methods (to be pre-
sented in the following subsections), we outline the CAD-
polyp scheme in Fig. 3. Our previous methods®3%® were
used to generate the VOIs of IPCs. With the generated VOI,
we first set up the local reference frame (LRF), and then
apply two different projection schemes to obtain gray level
and color 2D projection images, based on which we extract
the new features. Finally, all the features are fed into the
well-known classifier of support vector machines
(SVMS)ZS’37 to classify the TPs and FPs. In this study, we

focus on the feature extraction part in Fig. 3.

Features extraction

i[Vorof |:_4
:|eachIPc

FiG. 3. Overview of our CADpolyp scheme.
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FIG. 4. Definition of the LRF for a polyp candidate. (a) The arrow along the
protruding direction represents the normal direction of the polyp candidate,
starting from a small ball centered at the centroid of the VOI of the polyp
candidate. The rectangle through the centroid of the VOI denotes the plane
perpendicular to the normal direction. (b) Extraction of the optimized 2D
frame (the dotted arrows) of a point set (the points mimicking the results of
projecting the VOI to the plane in (a)). The solid arrows represent an arbi-
trarily selected initial frame. (c) The resulted LRF of the polyp candidate in
(a). (d) The LRF of an IPC on a fold. (¢) The LRF of another 9 mm tubular
adenoma. Unlike the one in (a), this polyp has a large angle from the colon
wall.

II.C. LRF and subvolume of an IPC

To establish three optimally orthogonal directions for bet-
ter projections of a VOI, we first define a normal direction of
an IPC, along which the height of the candidate is measured.
By observation from Figs. 2(a) and 1(b), we notice that the
direction close to the normal of a polyp would be very mean-
ingful. Therefore, a LRF is set up for each IPC based on its
normal direction, as shown in Fig. 4. It might be difficult to
find the exact normal direction for each IPC because of the
large variation from case to case in practice. For simplicity,
we define the normal direction N as follows:

N(O)= = sip)ip) / s Sip), (1)
pieSeed(C) pieSeed(C)

where C represents the VOI of an IPC under consideration,
Seed(C) is the set of seed voxels of the IPC, and SI(p;) and
7i(p;) denote the shape index and the unit image gradient at
voxel p;. The details of seed voxels labeling, shape index,
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B
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FIG. 5. The sub-volume (the box) of a 10 mm pedunculated tubular ad-
enoma in Fig. 2(a).

and unit image gradient computation are given in Refs. 25
and 35. In Eq. (1), a larger shape index indicates that the
voxel is closer to the peak point of the polypoid shape and,
therefore, a higher weight should be put on the gradient at
that voxel. The arrow in Fig. 4(a) shows the normal direction
which is extracted from the polyp in Fig. 2(a).

Intuitively, the LRF for each IPC can originate from the
centroid of the extracted VOI [the small ball in Fig. 4(a)]. As
for the other two orthogonal directions, they are expected to
align with the local “ridge” if it exists. As shown in Fig. 4(d),
the arrow pointing to the right of the image is expected to
align with the ridge of the fold. Therefore, these two direc-
tions can be determined using the principal component
analysis (PCA).*® Along the normal direction, voxels in the
VOI are orthogonally projected onto the plane perpendicular
to it, as illustrated by the dots in Fig. 4(b). The x and y
coordinates of all the dots under an arbitrary 2D frame [the
solid arrows in Fig. 4(b)] are taken as two signals. As a
result, the eigenvectors of their covariance matrix are the
optimized orthogonal directions, along which the signals
vary maximally and minimally. As shown in Fig. 4(b), the
dotted arrow pointing to top-right of the image is the eigen-
vector with larger eigenvalue, and the dotted arrow pointing
to top-left of the image represents the one with smaller ei-
genvalue. For convenience, we refer to the three directions of
the LRF as axial, sagittal, and coronal directions. Figure 4(c)
illustrates the LRF of the 10 mm polyp in Fig. 2(a), which
stands vertically on the colon wall, while Fig. 4(e) shows the
LRF for a polyp with a tilted angle from the colon wall. The
results of some other IPCs can be seen in Fig. 9. Figure 4(d)
shows the LRF of an IPC on a fold.

To generate projected images, a subvolume is extracted
for each IPC, which is the bounding box of the VOI of each
IPC under the LRF. Figure 5 shows the subvolume of the
polyp in Fig. 2(a) with the box. Here we call the planes
perpendicular to the three directions as axial, sagittal, and
coronal planes, respectively, as shown in Fig. 5. The subvol-
umes of several IPCs including TPs and FPs are listed in the
second column of Fig. 9.
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FiG. 6. Illustration of the projection procedure. (a) The projection rays in
three directions (arrows) shoot through the 3D polypoid object, and are
collected on the three projection planes to form 2D projection images as
shown in Fig. 10. (b) Points are evenly sampled on each projection ray.

Typically, the subvolumes of TPs are in cubic shape due
to their round polypoid appearance. However, the subvol-
umes of some FPs, especially those due to long folds (as
shown in row 8 of Fig. 9) and rectal tubes (row 7 in Fig. 9),
have much larger size in one direction of the LRF. Therefore,
a morphological feature, named as axis-ratio, can be de-
signed as

AR =max(L,,L,,L.)/min(L,,L,L,), (2)

where L,, L,, and L, represent, respectively, the sizes of the
subvolume along the three directions of the LRF.

1.D. Acquisition of projection images

After the LRF is built for each IPC, projection images can
be easily acquired by projecting the VOI orthogonally onto
the axial, sagittal, and coronal planes, respectively, as illus-
trated by Fig. 6. During projection, the sampling interval of
each projection plane is set to be half of the voxel unit, and
the CT values at the sample points are linearly interpolated.
The generated 2D images on the axial, sagittal, and coronal
planes are referred as axial, sagittal, and coronal images,
respectively. The projected images of the polypoid object in
Fig. 6 are shown in Fig. 10.

To expose the internal structure of IPCs, we simulate the
ray casting technique33 with a weighted iterative integration
process along the projection ray as

ix+1)=(1=-o0,x+1))ix)+ox+1)i(x+1), (3)

where i varies among the red, green, blue model®® and white
color channels, and o represents the opacity value serving as
the weight. The subscripts d and s indicate the resulted des-
tination and incoming source colors in the iteration process.
Together with such a weighted line integral scheme, the dif-
ferences of CT density values of various material types are
explored with the transfer function in Ref. 34. To make a
self-contained presentation, we quote the plot of the transfer
function in Ref. 34 as Fig. 7. With the function, the green
and blue channels monotonically increased with the CT den-
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Fi1G. 7. Plot of the transfer function which was used for the projection im-
ages, where the solid, dash dotted, and dotted curves indicate the mapping of
the red, green, and blue channels. The white channel is shown with the
dashed curve, and the solid curve with diamonds plots the opacity values
according to attenuation (HU).

sities in the ranges of [—436, —16] HU (covering all the fat
tissue) and [—920, —128] HU (covering all the lumen), and
are zeroed elsewhere. The red and white channels are as-
signed nonzero values only for CT densities larger than —64
HU (including all the soft tissue and bone/tagging material)
and 200 HU (covering all the bone/tagging material), respec-
tively. The opacity varied in the range of [0, 0.35] as a piece-
wise linear function of the CT densities. As a result, a pro-
jection ray dominated by soft tissue, lumen, fat tissue, or
tagging material/bone will lead to a red, blue, green, or white
pixel, respectively, in the projection image.

Additionally, the CT densities along the projection ray are
simply accumulated and the accumulation results are normal-
ized to generate gray level images. Such gray projection im-
ages can be utilized to pursue the polypoid shape of TP find-
ings, as illustrated in Sec. II E.

After applying the MAP-EM segmentation algorithm,
we get the cleansed CTC volumes with the tagged materials

40,41

FIG. 8. The axial projection images (last two columns) of a 10 mm polyp
based on the original (upper row) and cleansed (bottom row) CTC images.
The arrows in the left column indicate the IPC findings.
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being removed. Column 1 in Fig. 8 shows the uncleansed
and cleansed axial slices around a TP finding. After applying
the above two projection schemes to the uncleansed and
cleansed CTC volume, the axial gray and color projection
images are shown in the right two columns in Fig. 8. As can
be seen, the MAP-EM segmentation algorithm removes the
residue materials and exposes the polypoid shape more con-
spicuous than the uncleansed one. Therefore, the highlighted
patch (to be described in Sec. ITE) in the gray axial image
from the cleansed volume appears more obvious than that
from the uncleansed volume. Similarly, the red core (to be
detailed in Sec. IIF) in the color axial image from the
cleansed volume appears more obvious as well. In this study,
we apply the two projection schemes to the cleansed vol-
umes. Figure 9 lists the projection images of several IPCs
including TP and FP findings. Based on these projection im-
ages, several effective features are derived from analysis of
TPs and FPs, as described in the following subsections.

Il.LE. Features based on gray projection
images

From three directions of LRF, the projected 2D gray im-
ages show characterizing patterns. Figure 10 illustrates the
three projection images of the polypoid object in Fig. 6. For
the axial image, on the rays around the central part of the
projection plane, there are more sample points having higher
intensities due to soft tissue than those around other parts,
where there are more lumen sample points. This leads to a
highlighted disklike patch (or simply highlighted patch) in
the center area of the image. As for the sagittal and coronal
images, rays going through the outer part (the peak) of the
polypoid object have less high intensity points than those
going through the base where the object is sitting on. There-
fore, a gray and a bright patch are visible in the images.
Furthermore, the gray patch often locates at the midtop in the
sagittal image and at the midright in the coronal image. The
bright patch usually locates at the bottom in the sagittal im-
age and at the left in the coronal one. Such pattern charac-
teristics can be observed in the gray images of polypoid IPCs
(rows 1-6 and 9 in Fig. 9), but are not available in the im-
ages of the FPs, e.g., the fold (row 8 in Fig. 9), and the rectal
tube (row 7 in Fig. 9). Based on the above observations, we
build up features from the three gray projected images.

Similar to Sec. II C above, the seed voxel set Seed(C) of
the VOI represents the peak of the polypoid shape, and the
projection of it, referred to as the seed patch in this paper,
usually locates inside the highlighted patch of the axial im-
age, as shown in Fig. 11(a). Therefore, starting from the seed
patch, the highlighted patch can be extracted by a conditional
dilation process

Pn+l=PnUN(Pn)7 (4)
where P, represents the highlighted patch at step n, and
N(P,) represents a set of pixels satisfying the following

equation:
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Fi. 9. Illustration of the projected gray and color images of several IPCs
(including FP and TP findings), where each row represents one IPC. Column
1 shows parts of the original axial, coronal, or sagittal CTC slices with the
arrow indicating the IPCs. The sub-volumes and LRFs are shown in column
2. Columns 3 to 5 show the corresponding gray images (the axial, sagittal,
and coronal images) of the IPCs. The last column shows the axial color
image generated by Eq. (3). True polyps in rows 1 to 3 are 10 (same as in
Fig. 2), 9, and 6 mm, respectively. FPs in rows 4 to 6 are three tagged stool,
while rows from 7 to 9 are a tube, a thickened fold, and a round ileocecal
valve.

N(P,)={plp € Ny(P,).p & P,, and I(p)

€ (8min : T(PO)»smax : T(PO))}’ (5)
where N,(P,) represents the four connected neighbors of P,,

I(p) is the image intensity at pixel p, and I(P,) is the mean
intensity of the seed patch (P,). Positive constants e,
<é&max put a limit such that only those new neighbors with

highlighted patch

(a (b) ©

Fic. 10. Illustration of the projection images of the 3D polypoid object in
Fig. 5, where the arrows indicate the characterizing patches. (a) The axial
image. (b) The sagittal image. (c) The coronal image.
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(© (d)

(e) ®

FiG. 11. Extraction of the patches in axial, sagittal, and coronal images of
the polyp in row 2 of Fig. 7. Pictures (a), (c), and (e) show the projections
of the seed voxel sets Seed(C), i.e., the patches imposed on the axial, sag-
ittal, and coronal images, respectively. Picture (b) shows the highlighted
patch (center area) in the axial image. Pictures (d) and (f) show the gray
patch (upper and right area) and bright patch (bottom and left area) in the
sagittal and coronal images.

similar intensities will be added to the patch. The patch in
Fig. 11(b) indicates the final highlighted patch of the polyp in
row 1 of Fig. 9.

The same conditional dilation process can be applied to
extract the light patches in sagittal and coronal images, re-
spectively. In addition, starting from the extracted gray
patches, Eq. (4) is applied again but with larger range of
constants €,,;, and &, to get the bright patches in the sag-
ittal and coronal images. The extracted gray and bright
patches of the polyp in row 1 of Fig. 9 are shown with the
patches in Figs. 11(d) and 11(f).

From the extracted patches, several features can be de-
rived to distinguish TPs from FPs. For example, in the axial
image, the highlighting ratio is defined by the ratio of the
mean intensity of the highlighted patch and its surrounding
area to depict how much the patch is highlighted. The larger
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FiG. 12. A graphical illustration of the disk-likeness of a highlighted patch
(the center area), where the circle is centered at the centroid of the patch.

the value is, the higher the possibility of the IPC will be a
true polyp. The surrounding area of the highlighted patch is
determined by dilating for a specific distance L, from it.
The morphological characteristic of the disklike high-
lighted patches of TPs is reflected by a feature called the
disk-likeness, denoted as DL(P) of patch P by

DL(P) = var(|{p|p e sector;}

), (6)

where |-| counts the number of elements in a set. As shown
in Fig. 12, centered at the centroid of the highlighted patch, a
circular area is split into n sectors. The number of pixels in
the highlighted patch is counted in each sector, and intu-
itively, a smaller variance of such numbers for all the sectors
would indicate that the patch is more similar to a round disk.
A larger sector number n would provide a more accurate
estimation.

In the sagittal/coronal images, the ratio of the mean inten-
sity of the gray patch and bright patch is reflected by a fea-
ture named as the lightness ratio. Additionally, as mentioned
above, the location of the gray and bright patches can also be
used to characterize TPs and, therefore, the normalized posi-
tions of the centroids of the gray and bright patches are cho-
sen as the corresponding features. Taking the gray patch of
the sagittal image as an example, we get two features POSf
and POS;}

POS¥(P)) = c,/L,,

POSJ(P;) =c,/L,, (7)

where ¢, and c, represent the coordinates of the centroid of
gray patch P;, and L, and L, are the sizes of the sagittal
image in the related directions.

It should be noted that the three gray images of the re-
sidual stool might be similar to those of the true polyps (as
shown in rows 4—6 in Fig. 9), which would impair the per-
formance of the features mentioned above. Fortunately, as
reported in Ref. 34, in the presence of tagged colonic mate-
rials, most FPs due to the residual stool could be eliminated
by the use of the translucency display. To further differentiate
the tagged colonic materials, we extract more features from
color projection images based on the color mapping scheme.
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FIG. 13. The three color projection images of the two IPCs in rows 1 (TP)
and 4 (stool FP) of Fig. 9, where the axial images are repeated here for
comparison purpose.

Il.F. Features based on color projection images

The color mapping scheme in Sec. Il D (Fig. 7) assigns
different values of the blue, green, red, and white channels
and of the opacity according to different CT density values
(indicating different tissue types). The two rows in Fig. 13
show all the three color images of a true polyp and a residual
stool, respectively, which are the same IPCs in rows 1 and 4
in Fig. 9. By visual inspection on the color distribution of the
two IPCs, it can be recognized that these two objects can be
characterized by the colors in the central area in the two axial
images (to be detailed in the following text). In the sagittal
and coronal images, the locations of the red and white areas
are essentially similar to the gray patches in the correspond-
ing gray projections. Therefore, we can use the axial color
images to extract characterizing features to further differen-
tiate FPs and TPs.

The last column in Fig. 9 shows the projected axial color
images of some IPCs. Typically, the dominant soft tissue
inside true polyps (rows 1 to 3 in Fig. 9) gives rise to red
cores, which are enclosed by blue rings due to the tissue-
lumen interface, in the axial projection images. As a major
challenge for any stool-tagging technique,42 the coated sur-
face of the polyp by the tagged colonic materials could cause
error in detection, and now it can lead to white color in the
projection. However, the soft tissues in the polyp would still
give rise to a red-dominant core in the color image, as shown
in the center area in row 1 column 6 in Fig. 9. The rows 4—6
in Fig. 9 show the typical patterns of tagged stool, which
give the white-dominant cores in the color image due to the
tagged material distribution all over the stool. This is also
evidenced by another stool in column 1 of Fig. 14. However,
the stool in column 2 of Fig. 14 is partly submerged in the
fluid and is less tagged compared to the fluid, and so the
white core is not available in the color image. Fortunately,
the red core is not available either. The color images in rows
7 and 8 in Fig. 9 show two other common FPs in CADpolyp
systems, i.e., a rectal tube and a fold. In addition, two other
examples of a fold and a tube are shown in columns 3 and 4
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.

FIG. 14. Color projection images (first row) of four IPCs, where each col-
umn represents one IPC. The second row shows the IPCs (indicated by the
arrows) from zoomed CTC axial/sagittal slices. Columns 1 and 2 are two
stool. One is a tagged adherent stool on a fold, another is partly submerged
in the fluid and is less tagged. Column 3 is a thickened fold without any
tagged material nearby and column 4 is a tube in another scan.

in Fig. 14. For these IPCs, the soft tissue and pseudosoft
tissue voxels in the fold and the tube lead to red patches in
their corresponding color images. Fortunately, such kinds of
IPCs can be excluded by their large axis-ratio values (de-
scribed in Sec. II C). The ileocecal valve mimics big polyps,
and is a common source of FPs both for radiologists’ inspec-
tion and CADpolyp systems. However, the characteristic fat
tissue in the valve leads to green pixels in the core area (row
9 column 6 of Fig. 9), and this color pattern is not available
in the color images of the true polyps.

Based on the above analysis of human perception on vari-
ous colors, we adopt the hue, saturation, intensity (HSI)
color model to represent the projected colors for the purpose
of better description of features. The HSI model has been
evidenced to closely correspond to the way of how human
eyes describe and interpret colors.”” The red-dominant core
in the color axial image is a meaningful signature of true
polyps against that of the stool, ileocecal valves, colon folds,
and rectal tubes, and is called “core area” from which fea-
tures will be extracted. Similar to the situation of extracting
the highlighted patch of the axial image in Sec. Il E above,
there are more sample points with CT densities of soft tissue
types and less sample points of lumen type on the projection
rays pass through the seed voxels in the VOI of each IPC as
compared to those rays through other parts of the VOI [as
shown in Fig. 6(a)]. Therefore, we take the highlighted patch
as the core area and describe the associated color pattern.
Typically, the red pixels in the red core of a true polyp will
distribute as a cluster around the center of the core area, thus
we design the weighted average

fn = E,Wi"i/zwi’

1 (x; = my) " +(y; = m,)?
w, = e (8)
i \/ETO' 202

to reflect the color distribution characteristics of the core
area, where i denotes the pixel in the core area and (x;,y;)
indicates its coordinates, and n represents the hue, saturation,
or the intensity at each pixel, and (m,,m,) is the center of the
core area. The parameter o in the weighting term w; is adap-
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FIG. 15. The size distribution of the 347 lesions in the CTC database.

tively estimated by the average of the standard deviation of
the x and y coordinates of the pixels in the core area. Theo-
retically, the combination of (fiue, fsawrations Jfintensity) Shall
fully reflect the dominant color of the core area. Therefore,
the combination, referred to as the dominant color in this
study, is directly used as a feature to characterize TPs and
FPs.

lll. DESIGN FOR PERFORMANCE EVALUATION
lIl.LA. CTC database

The performance of the extracted features was evaluated
on a CTC database of 325 patient studies, which included 66
from the University of Wisconsin Hospital and Clinics and
the rest from the publicly available WRAMC database at
http://imaging.nci.nih.gov (courtesy of Dr. Richard Choi),
Virtual Colonoscopy Center, Walter Reed Army Medical
Center, Washington, DC. In these cases, the colon cleansing
was performed with standard precolonoscopy or barium en-
ema bowel preparation. Single dose of 2% barium (250 ml)
and diatrizoate (60 ml) were given to tag residual stool and
fluid for the cases from the first institution, while 500 ml
barium and 120 ml of Gastrografin for those from the second
institution. For both institutions, multislice CT scanners
(Light Speed Ultra, GE Medical System, Milwaukee, WI)
were used in helical mode to collect data with collimations
of 1.25-5.0 mm, pitch of 1-2, reconstruction interval of
1.25-5.0 mm and the scanning protocol including modulated
mA s in the range of 50-200 and kVp in 120-140. Patients
from the second institution were scanned in both supine and
prone positions, while some of those from the first institution
were scanned at an additional lateral position. Among all of
these scans, some of them were inadequately distended or
some had severe artifacts and, therefore, were excluded from
the performance evaluation study. As a result, there were 556
scans altogether, of which 258 scans had polyps and the re-
maining 298 had no polyp. Assuming that one polyp in dif-
ferent scans was counted as different polyps, there were 347
clinically significant polyps and masses confirmed by both
OC and VC. The size distribution of the polyps and masses is
shown in Fig. 15, where 64% (222/347) of the polyps are
less than 10 mm. The evaluations were conducted in two
polyp size categories of clinical importance: =10 mm (125
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including, four masses larger than 30 mm) and between 5
and 9 mm (222). Polyps smaller than 5 mm were not con-
sidered in this study. For simplicity, the term polyp in the
following text refers to both polyp and mass.

I1l.B. Feature extraction

After IPCs were generated (details in IPC generation can
be found in Refs. 25 and 36), the LRF and the subvolume of
each IPC were extracted (as described in Sec. II C). From
each subvolume, the projection procedure described in Sec.
II D was conducted with two integration schemes to generate
the gray and color projection images, respectively.

By the use of Egs. (4) and (5), the highlighted patch in the
axial gray image was extracted with the parameters
(Emin»> Emax) to be set as (0.85, 1.15). That means if the inten-
sity of a neighboring pixel is larger than 85% but less than
115% of the mean intensity of the seed patch, the pixel
would be added into the highlighted patch; otherwise it
would not. Such a relatively narrow range will make sure
that the newly added pixels have similar intensities to that of
the original seed patch, which is believed to be part of the
highlighted patch. The resulted highlighted patch was then
expanded by 4 pixels with a dilation process to specify its
surrounding area. In our experiments, the feature of high-
lighting ratio has performed fairly well with L,=4, while it
would be hampered if dilated too much (such as 6 or more)
or too few (such as 1 or 2). The highlighting ratio was then
evaluated by the ratio of the mean intensities of the high-
lighted patch and its surrounding area. The morphological
character of the highlighted patch was measured by its disk-
likeness with the sector number to be 180 (as shown in Fig.
9). Similarly, to retrieve the light patches of the coronal and
sagittal gray images, (&min>Emax) Were set to be (0.85, 1.15),
but a broader range of (0.95, 2.85) was used to include
denser neighboring pixels for the bright patches.

The highlighted patch described above was directly used
to label the core area of the axial color image, based on
which we extracted the dominant color through Eq. (8). The
involved parameters in Eq. (8) were described in Sec. IT'F.

In summary, most of the new features are highly depen-
dent on the CT density distribution, i.e., they are a kind of
texture features. However, some features, such as the axis-
ratio, highlighting ratio, disk-likeness, and lightness ratio, are
associated with shape description (as seen in Sec. Il E). In
order to evaluate the performance of these new features, four
well-known existing features were used as the reference, in-
cluding two shape-related features [i.e., the mean of the
shape index mean (SI) and the variance of curvedness
[var(CV)]] and two texture-related features [i.e., the mean
mean(CT) and the variance var(CT) of the CT values].!” All
the features involved are listed in Table I below.

lll.C. Classification

After applying the initial candidate detection methods of
Refs. 25 and 36 on all the 556 scans, 11 047 IPCs were
generated, where all the 347 true polyps were successfully
detected. The features of Table I from these IPCs were fed
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TaBLE 1. The list of all features used in this study.

Features

Description

mean(SI), var(CV)
mean(CT), var(CT)
New features AR

Existing features

HR, DL

LRC, LRS

POSE(L), POSE(L), POSE(B), POSE(B); POSS(L),

POSS(L), POS(B), POS;(B)

f hue> f saturation» f intensity

Mean of the shape index and variance of the curvedness.
Mean and variances of the CT values.
The axis-ratio.
The highlighting ratio and disk-likeness from the axial
gray image.
The lightness ratios of the coronal and sagittal gray
images.
The normalized positions of the light and bright patches
in the coronal and sagittal images.
The three components of the dominant color of the core
area in the axial color image.

into an online-available package of SVM classifier.”” Two
modifications were made on classifier” as follows: (1) The
training goal was modified to minimize the number of FPs at
a specified detection sensitivity level of TPs, so that the clas-
sification potentials of different features can be investigated
through free-response receiver operating characteristic
(fROC) analysis; and (2) an adequate larger weight was ex-
hausted and assigned to TPs in the training samples to modu-
late the heavily imbalanced data sets (biasing toward FP
class since there are much more FPs than TPs). A tenfold
leave-one-out cross-validation was employed in SVM to
seek for an unbiased training process. The nonlinear radial
basis function (RBF) kernel was used in this study. There are
three parameters involved, the cost function value C, the
RBF kernel parameter 7y, and the weight w on TPs. The
optimal values of the three parameters were determined au-
tomatically by a 3D grid search method (a roughly exhaust-
ing process). More details can be seen in Ref. 25.

Samples were randomly selected to form independent
training and testing sets. To obtain more meaningful results,
the grouping process was conducted 25 times and, therefore,
led to 25 runs of the corresponding classification process.
Table II lists the distributions of samples and polyps in the
two sets in the 25 grouping processes.

In the performance evaluation of the extracted new fea-
tures, two experiments were conducted: (1) Only the four
existing features were used; and (2) all the 20 features of
Table I were input to the SVM classifier. In the 25 runs of the
classification process, the same training and testing sets men-
tioned above were used in the two experiments. The aver-
aged performance of each of the 25 runs of the two experi-
ments was plotted as the fROC curves for comparison
purpose. The detection sensitivity was quantitatively mea-
sured using the by-polyp sensitivity, and the FP rate was
quantified by the number of FPs per scan.

IV. RESULTS
IV.A. Overall performance

Figure 16 shows the fROC curves of the overall perfor-
mances from the two experiments on (1) polyps of size
=10 mm and (2) polyps of size 5-9 mm. In the figure, the
transparent rectangle at each operation point represents the
95% confidence intervals of the detection sensitivity (height
of the rectangle) and FP rate (width of the rectangle).

At the comparable sensitivity levels as indicated by the
black dots on the fROC curves in Fig. 16, the performance of
the two experiments is tabulated in Table III.

IV.B. False positive analysis

The analysis on the survived FPs in the two experiments
would help us understand the new features and provide clues
for further improvements. In the above evaluation process,
the two experiments were repeated 25 times on the two cat-
egories of polyps, respectively, i.e., the testing procedure of
each experiment was repeated 50 times on 50 testing sets
with about 406 sample series each. In a pair of corresponding
testing procedures of the two experiments, eight sample se-
ries shared by the two testing sets were randomly selected
and the FPs in the eight sample series passed the testing
procedure were collected. A sample series might be selected
multiple times in the selection process, and it was taken as a
different sample series and the resulted detection was ac-
counted as different detections too. Finally, 400 sample se-
ries were selected to undergo the testing procedures of the
two experiments. The final FPs were reviewed to figure out
their identities, such as tagged stool, haustra fold, etc., by the
use of a 3D navigation together with 2D review of the Via-
tronix V3D-Colon Module (Stony Brook, NY). The types of
FP findings are listed in Table IV, where the last column

TaBLE II. Data distribution in the training and testing sets.

Total scans =10 mm 5-9 mm
Training set 150 (*4) 40 (+10) 78 (+15)
Testing set 406 (=4) 85 (%10) 144 (%£15)
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FiG. 16. The fROC curves of the two experiments on two categories of
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indicates the percentage of different types of FPs reduced by
the use of the additional new features in the second experi-
ment. The term “ECC artifacts” is borrowed from Ref. 42,
which mainly refers to those FPs caused by the unremoved
fluid surface after the electronic colon cleansing (ECC) at the
interface of the three materials, i.e., the fluid, air, and colon
wall.

V. DISCUSSION AND CONCLUSION

The subtle difference of the CT density distribution inside
a polyp vs that in FPs can be enhanced in the projection
images. Previous studies have shown that true polyps would
have distinguishing patterns on projected 2D images against
those of other colonic objects such as folds, rectal tubes, and
tagged stool. Based on these observations, we have proposed
a LRF-based orthogonal projection procedure with two dif-
ferent mapping schemes to obtain the projection images.
From the projected images, we have extracted several char-
acteristic features to reduce FPs in order to increase the de-
tection specificity of our CADpolyp pipeline.

The innovation of this work lies in the operations of (1)
determining three optimal orthogonal directions (i.e., the
LRF) from each IPC; (2) employing two different projection
schemes to generate gray and color projection images; and
(3) designing 16 new features (listed in Table I) to reflect the
characteristic and distinctive patterns of TPs and FPs in the
projection images.

From the two experiments on a CTC database including
556 CTC scans with 347 OC-confirmed and VC-confirmed
polyps and masses, the presented new features performed

very well for both large (=10 mm) and medium-sized pol-
yps (5-9 mm), demonstrating their potential to remove FPs
caused by various types of sources. As shown by the fROC
curves in Fig. 16, the second experiment using all the fea-
tures consistently outperform the first one using only four
existing features at all sensitivity levels. For large polyps, the
additional usage of the new features reduces the FP rate from
5.312 to 1.915 per scan at the comparable by-polyp sensitiv-
ity level of 93.1%; for medium-sized polyps, the FP rate is
reduced from 8.890 to 5.231 at the sensitivity level of 80.6%.
The FP reduction percentages are 63.9% and 41.2%, respec-
tively, without sacrificing detection sensitivity (no loss of
TPs). A larger reduction percentage indicates that the new
features are more effective to identify the larger polyps than
the differentiation of the medium-sized polyps. This is ex-
pected because more steps along the line integral are con-
ducted in the projection process through a larger VOI of a
large polyp.

After investigating all the FPs in 400 sampled series (cov-
ering most of the scans in our database) survived from the
testing procedures in the first and the second experiments,
the types of these FP sources were analyzed in Sec. IV B. As
shown in Table IV, the number of FPs is reduced from 2540
in the first experiment (without using the new features) to
1050 in the second one (including the new features). Mul-
tiple types of FPs, especially those induced by rectal tubes
and ileocecal valves, are effectively removed with reduction
percentages of 93.6% and 68.8% for the two groups of pol-
yps with different sizes. The FP findings in the IPCs due to
folds, stool, and motion artifacts are removed more than 40%
by the use of the additional new features.

In Table IV, we notice that there is no FP finding due to
noncolonic objects, such as those in the small bowel or stom-
ach. This is benefited from our previously reported MAP-EM
soft image segmentation method combined with the nonco-
lonic objects removal strategies.41

As a matter of fact, the features from the projected gray
images, such as the highlighting ratio, the disk-likeness, and
the lightness ratio, share a common point with the MTANN
score in Refs. 30 and 31 in such a manner: If the CT density
distribution in the subvolume is closer to a 3D Gaussian
distribution, then a larger value will be assigned to both a
projection feature in this study and a MTANN score in Refs.
30 and 31, indicating a higher probability of a detection of
TP. However, the proposed line integral in this work reflects
directly the CT density distribution pattern. In addition, the
subtle change in CT densities due to tissue difference is fur-
ther considered and reflected by the new features from the
axial color image, where the usefulness of the new features
were evidenced by experienced radiologists’ visual

TaBLE III. Performance comparison of the two experiments.

First expt. (=10 mm) Second expt. (=10 mm) First expt. (5-9 mm) Second expt. (5-9 mm)

Sensitivity  0.931 (0.875-0.959)
FP rate 5.312 (5.110-5.540)

0.932 (0.905-0.981)
1.915 (1.805-2.055)

0.806 (0.731-0.856)
8.890 (8.590-9.350)

0.807 (0.771-0.856)
5.231 (4.881-5.441)
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Fic. 17. Some examples of FN and FP detections. Similar to Fig. 9, one row
represents one object. Rows 1 and 2 are two FNs, which are a 30 mm flat
mass and a 5 mm polyp on the fold. The last three rows are three FPs, where
rows 3 and 4 are two nontagged hard stool balls and the last row is a normal
polypoid bump on the fold.

assessment.”* Based on the visual assessment of the translu-
cency views in Ref. 34, we designed the characteristic fea-
tures in the axial color image according to the distinguishing
color distribution pattern of true polyps. Although the color
images in the other two (i.e., sagittal and coronal) directions
were not investigated in this study, we expect that useful
features would be extracted from these two projected images.
This is our next task along this research track.

Although the performance of the extracted new features is
quite encouraging, we realize that we still have FN and FP in
the CADpolyp outputs, as shown in Fig. 17. The flat lesion in
row 1 shows nonpolypoid shape, and its gray and color pro-
jections disagree with the analysis on the common true pol-
yps in Secs. II E and II F above. The small (5 mm) polyp in
row 2 lies on a fold, and its lack of the highlighted patch and
the large axis-ratio in the projected images cause a negative
detection. The two hard stool balls in rows 3 and 4 have
good polypoid shape and their gray projection images are
essentially the same as that of a typical polyp. Furthermore,

TaBLE IV. Types of the FP findings after the two experiments.

they are not tagged and have very similar CT density distri-
bution as that of true polyps. Therefore, the red cores in the
center area of the axial color images are also very obvious.
As aresult, they are classified as positive detections. The last
row is actually a normal polypoid bump on the fold. Its sub-
volume has a cubic shape, resulting in a small axis-ratio
measure. The conspicuous highlighted patch and red core in
the axial gray and color images causes the classifier to put it
into the category of positive detections. As seen in the litera-
ture of radiology, flat lesions and small polyps are the com-
mon sources of FNs* ¢ and nontagged stool is one of the
main sources of FPs.** To develop a reliable CADpolyp sys-
tem, further refinement of the proposed features should be
made to reduce the causes of these FNs and FPs. This is
another task of our research in the future.

During the experiments, we noticed that the accuracy of
the LRF (in Sec. III B) largely depends on the geometric
measures, such as the image gradients on the colon wall.
Therefore, the level set-based adaptive convolution method,
which was previously reported in Ref. 25, was employed to
ensure that the geometric computation is adaptive to the local
topology of the colon wall. However, it still remains a chal-
lenge of how to make the geometric computation adaptive to
the object scale (size) on the colon wall. Further investiga-
tion is needed to improve the accuracy of the geometric mea-
sures. The normal direction of a polyp (the axial direction of
LRF) in this study is essentially the same as the elevation
direction in Ref. 47 and has been used to measure the local
height map. In Ref. 47, the elevation direction was deter-
mined by an exhausted optimization process of maximizing
the concentric index. This strategy might have the ability to
improve the accuracy of the LRF.

In the evaluation, all the 20 features were directly stacked
together to form 20-dimensional feature vectors and then
were input into the SVM classifier. This may induce the
curse of dimensionality and deteriorate the performance of
the classifier.*® Selecting features has been a research topic
and will be our next task to improve the CADpolyp. For
example, we will employ the feature selection method of
stepwise regression49 to select most useful features to reduce
the dimension of feature vectors. The use of PCA-based fea-
ture selection is under pI‘OgI‘eSS.SO’Sl

As addressed by Sundaram et Cll.,26 it is difficult to com-

First expt. (existing features used only)

Second expt. (all the features applied)

Percentage Percentage Reduction percentage
Type of FP findings No. of occurrences (n=2847) (%) No. of occurrences (n=1312) (%) (%)
Prominent folds 737 25.9 426 32.5 42.2
Stool 726 25.5 429 32.7 40.9
Rectal tubes 675 23.7 43 33 93.6
Ileocecal valves 157 5.5 49 3.7 68.8
ECC artifacts 361 12.7 256 19.5 29.1
Motion artifacts 117 4.1 66 5.0 43.6
Others 74 2.6 43 33 41.9
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pare the performance of our features with that of other fea-
tures in previous studies, due to the lack of common data
sets, gold standards and the access to prior algorithms.
Therefore, we chose the four well-known and widely used
features (as described in Sec. I) to be the baseline reference.
We believe that the relative performances with and without
inclusion of the new projection features reflect the value or
potential of the new features for CADpolyp.
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