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Purpose: Pulmonary arterial hypertension �PAH� is a progressive vascular disease that results in
high mortality and morbidity in sickle cell disease �SCD� patients. PAH diagnosis is invasive via
right heart catheterization, but manual measurements of the main pulmonary artery �PA� diameters
from computed tomography �CT� have shown promise as noninvasive surrogate marker of PAH.
The authors propose a semiautomated computer-assisted diagnostic �CAD� tool to quantify the
main PA size from pulmonary CT angiography �CTA�.
Methods: A follow-up retrospective study investigated the potential of CT and image analysis to
quantify the presence of PAH secondary to SCD based on PA size. The authors segmented the main
pulmonary arteries using a combination of fast marching level sets and geodesic active contours
from smoothed pulmonary CTA images of 20 SCD patients with proven PAH by right heart cath-
eterization and 20 matched negative controls. From the PA segmentation, a Euclidean distance map
was calculated and an algorithm based on fast marching methods was used to compute subvoxel
precise centerlines of the PA trunk �PT� and main left/right PA �PM�. Maximum distentions of PT
and PM were automatically quantified using the centerline and validated with manual measure-
ments from two observers.
Results: The pulmonary trunk and main were significantly larger �p�0.001� in PAH/SCD patients
�33.73�3.92 mm for PT and 25.17�2.90 for PM� than controls �27.03�2.94 mm for PT and
20.62�3.06 for PM�. The discrepancy was qualitatively improved when vessels’ diameters were
normalized by body surface area �p�0.001�. The validation of the method showed high correlation
�mean R=0.9 for PT and R=0.91 for PM� and Bland–Altman agreement �0.4�3.6 mm for PT and
0.5�2.9 mm for PM� between CAD and manual measurements. Quantification errors were com-
parable to intraobserver and interobserver variability. CAD measurements between two different
users were robust and reproducible with correlations of R=0.99 for both PT and PM and Bland–
Altman agreements of −0.13�1.33 mm for PT and −0.08�0.84 mm for PM.
Conclusion: Results suggest that the semiautomated quantification of pulmonary artery has suffi-
cient accuracy and reproducibility for clinical use. CT with image processing and extraction of PA
biomarkers show great potential as a surrogate indicator for diagnosis or quantification of PAH, and
could be an important tool for drug discovery and noninvasive clinical surveillance. © 2010
American Association of Physicists in Medicine. �DOI: 10.1118/1.3355892�
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I. INTRODUCTION

Sickle cell disease �SCD� is an inherited hemoglobin disor-
der characterized by abnormal sickle-shaped red blood cells.
The disease manifests itself through a variety of pulmonary
complications, such as reduced blood flow and increased risk
of thromboembolism within the pulmonary vessels.1,2 More-
over, cardiovascular findings in SCD patients often include
chronically elevated pulmonary artery pressures, which re-
sult in pulmonary arterial hypertension �PAH�.3 Recent stud-
ies in SCD have associated PAH with high mortality and
morbidity in SCD patients; roughly 75% of SCD patients
develop PAH around the time of death.4 Approximately 1/3
of adult SCD patients present signs of PAH,5,6 often mani-
fested by the remodeling of the pulmonary vasculature, in-
cluding pruning or tapering of the blood vessels �large arte-
rial trunk and abrupt transition from large to small arteries�,
ultimately leading to heart failure.

Today, right heart catheterization is the gold standard for
the diagnosis and hemodynamic assessment of PAH, but it is
invasive. Previous studies have investigated the role of medi-
cal imaging for noninvasive diagnosis and assessment of
PAH.7–16 These studies showed that manual measurements of
main pulmonary artery �PA� size from chest radiography and
computed tomography �CT� correlate well with PA pressures.
Error and reproducibility analyses were not reported in the
majority of these studies.7,9–15 Recently, Revel, et al.17 retro-
spectively analyzed electrocardiographic-gated CT angiogra-
phy �CTA� scans and found that the distensibility of the right
pulmonary artery had good predictive value for PAH. While
interobserver agreement showed good reproducibility, the ac-
curacy of their method may be limited due to dependence on
slice location, as measurements were manually performed in
two-dimensional �2D� projection images. In general, manual
measurements of PA are costly in time and effort, particu-
larly for large data sets, often nonreproducible, and their 2D
nature does not account for the 3D morphology and orienta-
tion of PA. These limitations present in earlier work motivate
the need for accurate and reproducible analysis of pulmonary
vessels using computer-aided diagnostic �CAD� tools for
noninvasive assessment of vascular diseases, such as PAH.
Medical imaging systems for pulmonary vasculature may
also facilitate surgical planning, drug discovery and delivery,
prognosis, and acute management of vascular disease.1

The segmentation of PA can be challenging due to its
complicated vasculature, variable shape, motion artifacts,
and proximity to other blood vessels that may hamper the
vessel extraction. Extensive literature for the extraction of
curvilinear structures and blood vessels in medical images
exists18–27 and a wide range of segmentation techniques have
been used, notably including phase congruency,18 morpho-
logical operations,20,23 region-growing,25 model-based
techniques,26 fuzzy logic,22 snakes,24 image enhancement,27

eigendecomposition,21 and an edge-radius-symmetry
transform.19

Recent work has been presented toward the computer-
based analysis of the pulmonary artery, but the examples that

28–40
use computed tomography �CT� are not numerous.
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Within these techniques, the segmentation methodology in-
cluded thresholding,30 region-growing and front-propagation
methods,29,35,40 mathematical morphology,33 multiscale
filtering,37,38 fuzzy methods,28,32,36 and deformable models.40

However, many of these techniques are ad hoc in practice.
Moreover, these previous attempts were limited to vessel
segmentation within the lungs and focused on pulmonary
emboli and nodule detection in the pulmonary vascular tree.
In conjunction with clinical studies on PAH development, the
region of interest in our study is the main PA outside the
lungs, which includes the pulmonary trunk �PT�, and main
left PA and main right PA, addressed as pulmonary main
�PM�. Although segmental branches were sometimes seg-
mented, they were not specifically analyzed.

Relevant work to our study was proposed by Sebbe et
al.41,42 who segmented the main PA from contrast-enhanced
CT using a slice-marching algorithm based on fast marching
techniques. In addition to slice-marching, an a priori ana-
tomical knowledge model based on a set of 3D parametric
curves was registered to a target image in order to preserve
vessel boundaries and eliminate leakage into nearby vessels,
such as the aorta and vena cava. However, because their
model of three-dimensional �3D� curves and set of reference
points were created from a single patient, it did not fully
address the variability in PA sizes and shapes, especially im-
portant in quantification of PAH. In our study, PA sizes vary
dramatically between control and SCD/PAH patients. Indeed,
a large training database may be required to establish a ro-
bust model and library that can be applied to patient images.
Kitasaka et al.43 also employed an a priori model of blood
vessels based on B-splines to extract the aorta and PA from
noncontrast chest CT. Extraction of the PA, however, suffers
from undersegmentation and low accuracy when compared
to manual segmentations. Finally, Lombaert et al.44 used a
multilevel banded graph cut method to segment PA from CT
data. However, their results focused on the speed and effi-
ciency of the method without addressing the accuracy of the
segmentation.

In this paper, we present a semiautomated tool to analyze
pulmonary CTA, which uses level sets and geodesic active
contours to segment the main PA. Once the vessel is seg-
mented, its centerline is extracted using fast marching meth-
ods to create a map of diameter size along the length of the
PA. The centerline algorithm allows a subvoxel precise mea-
surement of the maximum diameters of the pulmonary trunk
and pulmonary main. The CAD tool is then employed to
retrospectively investigate the link between PA distention
and diagnosis of pulmonary hypertension in sickle cell dis-
ease. This application establishes a computer-aided quantifi-
cation of PAH in SCD patients and could facilitate better
understanding of the pathophysiology and hemodynamics of
PAH in SCD, and how to better care for these patients.

II. METHODS

II.A. Data and materials

Forty-eight pulmonary CTA studies were analyzed: 20

from patients with sickle cell anemia and related PAH rang-
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ing from mild to severe forms �proven by right heart cath-
eterization�; 20 from randomly selected patients without
SCD or PAH as negative controls; and eight from randomly
selected patients used for the training of parameters and not
included in the statistical analysis. Scans with marked sub-
optimal enhancement in the arteries specifically noted in the
radiological report were excluded. Controls were matched to
cases on the basis of age and gender. Controls that had a
primary diagnosis of lung pathology were not included in the
study.

All pulmonary CTA data were collected using GE Light-
speed Ultra �GE Healthcare, Milwaukee, WI�, Philips
Mx8000 IDT 16 and Brilliance 64 �Philips Medical Systems,
Cleveland, OH�, and Siemens Definition �Siemens Medical
Solutions, Malvern, PA�. CTA images were acquired at a
fixed tube voltage of 120 kVp. Tube current varied between
250 and 400 mA s. ISOVUE contrast agent was delivered at
a rate of 4–5 cc/s. Image resolution ranged from 0.63 to 0.88
mm in the axial view and 1–1.25 mm in slice thickness.

To validate the segmentation algorithm, two observers
manually measured the diameters of the pulmonary trunk
and the right and left pulmonary main for all cases. Observ-
ers were research interns trained to perform PA measure-
ments by a board-certified experienced radiologist. Each ob-
server was blinded to the patient diagnosis and the other
available measurements. From CTA data, the images were
searched axially for the maximum distension along the pul-
monary trunk and the main left/right pulmonary arteries.
Vessel geometry was accounted by taking measurements at
the maximum distension, perpendicular to the long axis of
the corresponding vessel �PT or PM�. Since only the en-
hanced regions were considered, measurements reflect the
distension of the arterial lumen and do not include vessel
wall thickness. The measurements were repeated once more
in a blinded manner after three weeks by one of the observ-
ers. For CAD measurements, two users independently placed
seed points to initialize the segmentation of the pulmonary
artery and measure its size. In comparing the manual mea-
surements between the same observer and between different
observers, we use the terms intraobserver and interobserver,
respectively. In comparing the CAD-derived diameter mea-
surements between both users/observers, we use the term
inter-CAD user.

Pearson correlation coefficients were calculated between
matched variables and paired Student’s t-tests were used to
assess significance �95% confidence level� given the normal
distribution of data. Comparisons were also assessed using
the method of Bland and Altman.45 Unless otherwise indi-
cated, data are presented as mean�standard deviation.

The implementation of the technique used Visual C++
8.0 �Microsoft Corporation, Redmond, WA�, OpenGL �SGI,
Freemont, CA�, and the Insight Segmentation and Registra-
tion Toolkit—ITK 2.8 �National Library of Medicine, Be-
thesda, MD�.

II.B. Segmentation

Figure 1 summarizes the main steps involved in the seg-

mentation algorithm. The method is applied to 3D data; the
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term image used in the manuscript refers to a 3D volume.
First, CTA data were smoothed using anisotropic diffusion to
enhance the homogeneity of thoracic structures and ensure
boundary preservation. The classic Perona–Malik anisotropy
model was employed.46 During the diffusion process,
smoother versions of the image �I� were computed itera-
tively. I� is the result of the convolution of I with a Gaussian
of standard deviation �. The resulting image �Is� provided
stable edges over a large number of iterations �t� given that
their gradient was larger than c.46

�tIs = div� 1
�1 + ���I��/c�2

. �I� . �1�

The second stage of the method is the segmentation of
pulmonary arteries, and this approach used a combination of
fast marching and geodesic active contour level sets.47,48

Level sets are surfaces that expand or contract, split or merge
in the direction orthonormal to the surface. Their definition
allows level sets to be adapted to the image conditions and
by using knowledge of shape, curvature, and edge to seg-
ment incomplete data.

A fast marching level set was used to initialize the
segmentation.47 The fast marching method assumed that the
surface can only expand starting from the seed points pro-
vided by the user. Three seeds were placed in the pulmonary
trunk at the level of the primary bifurcation, and in the right
and left pulmonary main arteries, before the secondary bifur-
cation, as seen in Fig. 2�a�. The seed points also determined
that the segmentation was bound to the area of interest that
included the PA trunk and left and right main arteries. The
speed of expansion from the seed points were constant and
along the surface normal �n��. The first segmentation given by
the fast marching level set was If.

dIf

dt
+ n�Ie � If = 0. �2�

The smoothed CT scan �Is� provided the feature image,
while the sigmoid of the gradient of Is supplied an edge

FIG. 1. Flowchart of the main steps involved in the segmentation and quan-
tification of the main pulmonary artery.
image �or speed function� Ie.
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Ie = 1 −
1

1 + exp	−
�Is − �� + ��

3�� − �� 
 . �3�

The values of � and � were estimated empirically from
the training data using the 3D gradient image �Is. These
values were calculated over the entire training set after elimi-
nating outliers, and then used for the segmentation of patient
and control images �test set�. � was estimated as the mini-
mum gradient magnitude along the vessel boundaries. � was
estimated as the mean gradient magnitude inside the vessel.
In practice, the value of � should be greater than � to ensure
that the propagation front expands rapidly from the seeds and
slows down as it arrives near the edges. Using independent
training and test sets, we ensured that the parameter estima-
tion was not overfitted to the test data.

A better-adapted level set based on geodesic active con-
tours �GAC� was used to refine the fast marching
segmentation.48 In deformable models, there are two types of
forces that govern the evolution of the active contour: The
internal forces within the surface, which keep the model
smooth during the deformation, and the external forces from
the image data, which attract the model toward edges. To
initialize the model, we used the fast marching segmentation
as input image �zero-level� into the geodesic active contour
Ig. The weights w1 and w2 in Eq. �3� control, respectively, the
speed s and attraction to edges; k represents the curvature. w1

and w2 were determined empirically from the training set.
The semiautomatic estimations of the size of vessels from
training data were compared to manual measurements on the
same data set; the optimal combination of weights �that pro-
vided the highest correlation between measurements� was
subsequently used to segment the patient and control data

FIG. 2. The segmentation of pulmonary artery exemplified in a patient �top�
and a matching control �bottom�. �a� User-defined seed points placed in the
trunk and pulmonary main initiate the segmentation; �b� the image was
smoothed using anisotropic diffusion; �c� gradient map of smoothed image;
�d� a sigmoid filter provides an edge image for �e� the fast marching level set
segmentation; �f� the final 3D segmentation refined by geodesic active con-
tours. For simplification, seed points are shown in the same axial slice, but
they can be placed independently of each other.
�test set�.
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dIg

dt
= Ie�w1s + k���Ig� + w2 � Ie � Ig, �4�

Ig,t=0 = If . �5�

II.C. Skeletonization

The method used to automatically calculate the arterial
distention consisted of two steps: �i� Calculate the Euclidean
distance map for the arteries, and �ii� compute the centerline
of the vessels.49 From the level set segmentation, the sub-
voxel accurate Euclidean distance transform was computed
in multiple passes using linear interpolation at the boundary
voxels to determine the distance to the boundary followed by
an algorithm similar to the Saito–Toriwaki distance trans-
form method.50 The first pass was along the x-axis of the
segmentation data set, where the voxels were traversed in
scanline order. All subsequent voxels inside the artery were
assigned values that incremented the previous scanline voxel
value by the x-spacing. Upon completion, the scanline was
again traversed in the opposite direction, now incrementally
computing distance from the opposite boundary’s zero-
crossing. The minimum of the forward and backward scan-
line passes was assigned to each voxel. Next, the data set
was traversed in y-axis scanline order. For each voxel in the
scanline, the true Euclidean distance cannot be larger than
the distance recorded in the x-axis pass. For each buffer entry
in the range ��x-distance�, the distance between the bound-
ary intersection point and the circle center was computed
using the Pythagorean theorem. The value assigned in the
distance data set at the current voxel was the minimum of all
of these computed distances and the previously assigned
x-distance at the current voxel. The arteries were processed
in the same way by repeating this procedure with the mini-
mum distance from the xy-plane �xy-distance� and the dis-
tances assigned at the voxels within the sphere of radius
��xy-distance�.

To compute the 3D centerline, a subvoxel accurate skel-
etonization was used.49 The calculated Euclidean distance
transform was used as a speed image in the fast marching
propagation. The fast marching method is an efficient way to
numerically evaluate the solution to the Eikonal equation

��T�F = 1, with T = 0 on � , �6�

where T is the arrival function, F is the speed of evolution
function, and � is the initial isosurface at time zero. The
algorithm processed the voxels in a sorted order based on
increasing values of T, while maintaining the candidates in a
heap. This causes the algorithm to require a computation
time of O�n log�n��. The implementation used in this paper
is a discretization of the Eikonal equation

max�Di,j,k
−x ,0�2 + min�Di,j,k

+x ,0�2 + max�Di,j,k
−y ,0�2

+ min�Di,j,k
+y ,0�2 + max�Di,j,k

−z ,0�2 + min�Di,j,k
+z ,0�2

= Fi,j,k
−2 , �7�

−x +x
where Di,j,k ,0 and Di,j,k ,0 are values resulting from back-
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ward and forward difference calculations at point �i , j ,k�,
respectively.

By solving the minimum-cost path problem, the path
C�t� : �0,��→Rn that minimizes the cumulative cost, from
the start point S to the end point E in Rn was calculated.
When the cost was solely a function of the position x� in the
object domain, the minimum cumulative cost was defined as

T�x̄� = min Csx�
0

L

H�C�t��dt , �8�

where Csx is the set of all paths from S to x�, L is the distance
from E to S along C, and H is the cost function. The solution
for T also satisfied the Eikonal equation with F�x��=1 /H�x��.
By using the distance field, a new cost function was calcu-
lated such that a minimum cost path exists between two
points on the centerline,

H�x�� = �d�x��
D

�2

, �9�

where d�x�� is the distance value at position x� and D is the
maximum value in the distance field data set.

The resulting cost function was used as a speed image in
the fast marching method propagation starting at the point
with the largest distance from the boundary of the arteries,
the global maximum point of the distance field. The fast
marching method propagation had been augmented to calcu-
late the geodesic distance from the starting point in addition
to the time that was required for the propagation front to pass
each point in the arteries’ segmentation, the time crossing
map. The furthest geodesic point resulting from this fast
marching method propagation was used as a start point of the
centerline. The gradient descent method was used on the
time crossing map.51 The remaining points of the centerline
were determined by taking subvoxel steps along the path of
the gradient descent. This process was repeated for each
branch of the skeleton, but rather than using the single point
of the global maximum distance from the object’s boundary
as the start point for the augmented fast marching method, all
points in the previously calculated branches were used as
start points along with the original distance field. The method
results in separate centerlines for the pulmonary trunk and
pulmonary main vessels. From the centerline and distance
transform, the maximum distension of the arteries at each
step in the subvoxel accurate centerline was determined from
the values stored at the skeleton locations in the distance
transform field. The measurements are perpendicular to the
centerline and do not depend on the location of the PA bifur-
cation.

III. RESULTS

III.A. Segmentation and quantification

Figure 2 shows an example of the segmentation steps em-
ployed by the algorithm, from the smoothed CTA image and
seed-selection, computation of image features, and continu-
ing with a first estimate of PA by fast marching level sets and

the final segmentation of PA by geodesic active contours. As
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shown in the images, other vessel structures with similar
intensities, such as the aorta and vena cava, were avoided in
the segmentation.

The segmentation parameters were estimated using train-
ing data. To compute the sigmoid, values of �=9 and �=7
were used. For GAC, w1 and w2 were 20 and 10, respec-
tively. The skeletonization is exemplified in Fig. 3, along
with the quantification of PA distension using Euclidean dis-
tance maps and centerlines of subvoxel precision. A distance
heat map is shown alongside the centerline extraction.

III.B. Observer and CAD performances

Tables I and II present comparative statistical analyses for
the measurements of the maximum diameters of PT and PM:
Intraobserver, interobserver, manual �observer� vs CAD mea-
surements, and inter-CAD user variability.

III.B.1. Manual intraobserver and interobserver
agreement

Correlations for intraobserver measurements of PT and
PM showed high association between repeated manual mea-
surements. However, there was significant difference �p
=0.02� between the first and second measurements of PT for
observer 1 and in repeated measurements of both PT �p
=0.05� and PM �p=0.02� for observer 2. Bland–Altman
plots for intraobserver and interobserver measurements are
shown in Fig. 4 with submillimeter mean agreements for
both PT and PM. However, the 95% limits of agreement
varied between comparisons. For observer 1 measurements,
they were approximately 6.4 mm for PT and 5.4 mm for PM.
Intravariability for observer 2 showed wider limits of agree-
ment of approximately 9.8 mm for PT and 7.9 mm for PM.

There were no significant interobserver variability in mea-
suring both PT and PM. Bland–Altman analysis �Fig. 4�
showed the 95% limits of agreement spanning 8.1 mm for
PT and 5.7 mm for PM.

III.B.2. Observer-CAD agreement

There were no significant differences between observer 1
and CAD measurements for PT and PM, or observer 2 and
CAD PM measurements. The only significant difference oc-

FIG. 3. Centerline extraction in �a� patient and �b� matched control: �left�
The 3D skeletons for the segmented PA; �center� the distance maps of the
segmented arteries; �right� the map of vessel distensions along the
centerline.
curred in the estimations of PT by observer 2 and CAD �p
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=0.05�. Bland–Altman analysis �Fig. 5� showed for both ob-
servers that mean differences between the two methods were
below 1 mm. There was a slight tendency of the CAD system
to undersegment the vessels. The 95% limits of agreements
for PT were 7.1 mm for observer 1 and CAD and 9.8 mm
observer 2 and CAD. For PM, the limits of agreements were
5.8 mm for observer 1 and CAD and 6.2 mm observer 2 and
CAD. Observer-CAD variability was comparable to the in-
terobserver and intraobserver performances with no signifi-
cant difference �p	0.1�.

The locations of the manual and CAD measurements were
compared. The mean differences in the slice locations for PT
and PM were 1.16�1 and 1.34�1.31 mm, respectively,
with a slice thickness varying between 1 and 1.25 mm. These
differences were not significant �p=0.15 for PT and p
=0.11 for PM�.

III.B.3. Semiautomated inter-CAD user agreement

Inter-CAD measurements of PT and PM �Fig. 6� showed
mean and 95% limits of agreement of −0.13�1.33 and
−0.08�0.84, respectively. Compared to the intraobserver
and interobserver differences, inter-CAD variability was sig-
nificantly smaller �p�0.001�.

TABLE I. Statistical analysis for the segmentation of the pulmonary trunk
comparing manual observer and CAD measurements. Pearson correlation
coefficients, absolute differences between measurements, and p-values of
the paired t-tests are shown. Data were normally distributed.

Pulmonary trunk

p-valueCorrelation
Difference

�mm�

Intraobserver 1 0.94 1.29�1.12 0.02
Intraobserver 2 0.88 2.11�1.53 0.05
Interobserver 0.92 1.53�1.4 0.2
Observer 1-CAD 0.93 1.48�1.09 0.1
Observer 2-CAD 0.88 2.17�1.49 0.05
Inter-CAD user 0.99 0.38�0.57 0.9

TABLE II. Statistical analysis for the segmentation of the pulmonary main
comparing manual observer and CAD measurements. Pearson correlation
coefficients, absolute differences between measurements, and p-values of
the paired t-tests are shown. Data were normally distributed.

Pulmonary main

p-valueCorrelation
Difference

�mm�

Intraobserver 1 0.93 1.06�0.88 0.6
Intraobserver 2 0.87 1.56�1.47 0.02
Interobserver 0.92 1.25�0.86 0.8
Observer 1-CAD 0.92 1.13�1.05 0.06
Observer 2-CAD 0.91 1.26�0.91 0.9
Inter-CAD user 0.99 0.19�0.39 0.2
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III.C. PA size and PAH

Box plots in Fig. 7 show size comparisons of PT and PM
in controls and patients. PT and PM were significantly larger
�p�0.001� in diameter in SCD patients with PAH as com-
pared to controls. The maximum distension of PT of SCD
patients was 33.73�3.92 mm, while that of controls was
27.03�2.94 mm. The maximum diameter along the PM of
SCD patients was 25.17�2.90 mm, while that of controls
was 20.62�3.06 mm.

To address the variation in body vascularization and PA
size with patient size, the PA diameters were normalized to
the value of the body surface area �BSA� which was calcu-
lated using the formula of DuBois and DuBois.52 The box
plots in Figs. 7�c� and 7�d� show that PA diameters normal-
ized by BSA were significantly different in controls and SCD
patients �p�0.001 for both PT and PM�. A qualitative analy-
sis of Fig. 7 suggests that BSA normalization improves the
separation between SCD patients and controls.

IV. DISCUSSION

In recent years, pulmonary CTA has become the imaging
stethoscope and window into pulmonary diseases. The pro-
cedure is minimally invasive and results in high spatial res-
olution images of pulmonary vasculature. CTA may be par-
ticularly attractive to investigate PAH, given that the
diagnosis of PAH currently relies on invasive right heart
catheterization. Image processing has the potential to support
and extend the interpretation of CTA data and offer a stan-
dardized, semiautomated, robust, and reproducible analysis.

In this study, a semiautomated CAD tool was developed
to segment the main PA from CTA images. The segmentation
of the artery allowed extracting a subvoxel precise centerline
to quantify the PA size. The use of an implicit representation
of object boundaries by the segmentation and skeletonization
methods allowed active contours to cover the complex struc-
ture of PA, without making topological assumptions. Figure
8 exemplifies the heterogeneity of vessel morphology in six
cases.

Results of the CAD tool were accurate and robust on a
database of normal and pathological pulmonary cases ac-
quired using different CT scanners, at different resolutions.
Similar variability between CAD-observers and interobserv-
ers and intraobservers �p	0.1� suggests that the semiauto-
mated quantifications of PA are clinically relevant. More-
over, there was a significant improvement in measurement
reproducibility �p�0.001� when two users performed CAD
measurements of PA compared to manual interobserver and
intraobserver performances, suggesting potential for en-
hanced standardization and uniformity.

Bland–Altman analyses with data from manual segmenta-
tions showed that the CAD tool accurately measured maxi-
mum distension in the pulmonary trunk and pulmonary main
with little systematic bias. In general, CAD-derived diam-
eters slightly underestimated �mean�0.8 mm� manual mea-
surements of PT, while CAD measurements of PM showed
no single relationship with manual measurements from two

observers �mean�0.5 mm�. The 95% limits of agreement
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between CAD and manual measurements were comparable
to the standard deviation of PA diameters. In a clinical con-
text, deviations of this magnitude are comparable to interob-
server and intraobserver performances and unlikely to affect
the diagnosis of PAH in SCD patients.

To examine the possible causes of clinically important
variations in manual observer and CAD performances, the
radiological reports and CTA scans of the outliers on the
Bland–Altman plots were analyzed. In the majority of cases,
discrepancies were due to reduced image quality from pa-
tient obesity �with poor definition of PT boundaries� or mo-
tion and imaging artifacts. Motion artifacts mainly affected
the trunk manual measurements, while beam hardening
originating from the vena cava interfered with manual mea-
surements of the right PM diameter. An additional cause for
interobserver variability was the fact that observers did not
measure maximum PA distension at the same slice/location
or orientation. Factors that promoted outliers included un-
usual twisting and bending of the arteries. Outliers in the

FIG. 4. Bland–Altman plots comparing intraobserver for �a� observer 1 and �
�left� and pulmonary main �right�. In each plot, the differences �in mm� are p
Dashed lines represent the mean difference of the two methods, and the 95
inter-CAD user analyses were attributed mainly to variations
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in user-input seed placements, particularly in the trunk. How-
ever, maximum inter-CAD user errors were 2.7 mm for PT
and 1.5 mm for PM.

The PA skeletonization was robust to atypical errors in the
vessel segmentation, which can suffer from leakage due to
suboptimal enhancement, motion artifacts, or poor vessel
edge definition. The computation of the centerline allowed it
to follow the longest vasculature in the region defined by the
user-placed seeds, in this case the main pulmonary artery.
Figure 9 exemplifies a poorly segmented artery with a cor-
rectly estimated centerline.

In this retrospective study of secondary PAH in SCD pa-
tients, we investigated the role of CAD measurements of PA
sizes at the pulmonary trunk and pulmonary main for the
assessment of PAH. SCD patients had significantly larger PA
diameters compared to matched controls �p�0.001�. The
separation between patients and controls was qualitatively
improved when PA diameters were adjusted for body surface

server 2, and �c� interobserver variability in measuring the pulmonary trunk
against average measurements �in mm� of the corresponding two methods.

its of agreement ��1.96 SD�. The solid line is the zero baseline.
b� ob
lotted
% lim
area �p�0.001�.
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CAD-measured mean diameters of PT/PM were 27/20.6
and 33.7/25.1 for normal and hypertensive patients, respec-
tively, and in agreement with PA lumen diameters observed
in previous reports using CT images.8–12,16,17 Table III pre-
sents comparative measurements of PA distensions between
our study and previous reports for normal and PAH patients.
However, these studies on CT-based PA assessment in PAH
relied exclusively on manual measurements, which are often
unreliable and irreproducible. Manual measurements of ar-
tery size are subjective, based on slice location and vessel
orientation, and typically do not fully account for the 3D
structure of the artery, as they use 2D projection views. Fig-
ure 10 illustrates that a small shift along the centerline can
induce errors larger than 20% in quantifying PT and PM.

FIG. 5. Bland–Altman plots comparing �a� observer 1 vs CAD and �b� ob
pulmonary main �right�. In each plot, the differences �in mm� are plotted ag
lines represent the mean difference of the two methods, and the 95% limits

FIG. 6. Bland–Altman plots comparing inter-CAD user variability in measur
differences �in mm� are plotted against average measurements �in mm� of th

two methods, and the 95% limits of agreement ��1.96 SD�. The solid line is the
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We proposed an objective, robust, and reproducible
method to measure PA diameters to minimize measuring
variability and clinical subjectivity in PAH. The technique
has several advantages over previous computer-assisted
methods of PA segmentation.41–44 Adding a subvoxel precise
centerline extraction to the segmentation, we were able to
accurately quantify the PA distension. The initialization of
the method is simple, robust to user-input variation, and the
use of multiple seed points sped up the segmentation. Our
technique generally avoided leakage into similar-intensity
vessels, such as encountered in Ref. 41 prior to the addition
of model-driven active contours.42 Furthermore, the center-
line computation was not hampered by leakage, in the few
cases where segmentation errors occurred.

r 2 vs CAD variability in measurement of the pulmonary trunk �left� and
average measurements �in mm� of the corresponding two methods. Dashed
reement ��1.96 SD�. The solid line is the zero baseline.

t of the pulmonary trunk �left� and pulmonary main �right�. In each plot, the
responding two methods. Dashed lines represent the mean difference of the
serve
ainst
of ag
emen
e cor
zero baseline.
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Our method was validated on 40 cases, whereas Refs. 43
and 42 constructed their models from only three and six CT
images, respectively. Error analysis of our CAD tool also
showed accurate and reproducible segmentations with maxi-
mum errors in the measurement of diameters of 6 mm for PT
and 4 mm for PM. This is in contrast to Ref. 43 where the PA
was undersegmented, and the maxima of the minimum dis-
tances between manual and automated methods ranged from
8.2 voxels at a resolution of 0.625
0.625
2.0 mm3 to as
high as 23.3 voxels at a resolution of 0.625
0.625

1.0 mm3. Finally, no prior assumptions to blood vessel
morphology were made in our work, which suggests that this
method would be applicable beyond our immediate patient
data set.

Possible sources of error in our analysis could be related
to the abnormal control population, due to the lack of CTA
scans of healthy volunteers. Our control cases were selected

FIG. 7. Box plots for control vs patient data. �a� The maximum diameter of
to controls. �b� The largest diameter of the pulmonary main vessels was s
separation between patients and controls was also remarked after normaliza

FIG. 8. Reconstructed pulmonary arteries from six cases show the variability
in structure among patients �top row� and controls �bottom row�. All images
are presented at the same scale. PT indicates the pulmonary trunk, while

RPM and LPM the right and left pulmonary main.
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from patients with CTA data without pulmonary pathology as
a primary diagnosis, but the exact incidence of pulmonary
pathology in these control patients undergoing CTA is unde-
fined. Nevertheless, statistical analysis showed significant
difference between our patient and control populations.

The change in blood flow patterns and pruning of the
pulmonary artery will also be analyzed for further discrimi-
nation between SCD patients and controls for a more com-
prehensive analysis of the relationships of imaging biomark-
ers to the degree of PAH. Porcine models are currently being
studied for prospective validation of the relationship between
PA size, pulsatility, and pulmonary hemodynamics. The use
of cardiac-gated CT-pulmonary angiography in the porcine
models could help study heart function during onset of PAH.
These studies may also be useful in analyzing multiple the-

ulmonary trunk was significantly larger in the patient population compared
cantly larger in the patient population compared to controls. A significant
o BSA for both �c� PT and �d� PM.

FIG. 9. Example of an atypical segmentation error in a patient pulmonary
artery �left�. Portions of nearby vessels �e.g., ascending aorta� were cap-
tured. However, the centerline skeletonization around the PA junction was
not affected by the segmentation leakage and correctly computed the maxi-
mum distension in the trunk and pulmonary main �right�. PT indicates the
the p
ignifi
pulmonary trunk, while RPM and LPM the right and left pulmonary main.
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oretical imaging features which could have hemodynamic
correlates, such as vessel elasticity or quantification of vas-
cular pruning.

V. CONCLUSION

A semiautomatic tool is presented using CT angiography
for the CAD of PAH in SCD. Level sets were adopted for the
segmentation and skeletonization of the main PA. Error
analysis between manual and automated measurements
showed in qualitative and quantitative fashion that our
method resulted in robust, accurate, and reproducible mea-
surements of maximum distension in the pulmonary trunk
and main left and right pulmonary arteries. The CAD find-

TABLE III. Comparative measurements of pulmonary artery distensions at
the trunk and pulmonary main between our semiautomated study and pre-
vious manual reports �Refs. 8–12, 14–16, and 53�.

Pulmonary trunk Pulmonary main

Normal
�mm�

PAH
�mm�

Normal
�mm�

PAH
�mm�

Our study 27 33.7 20.6 25.1
Edwards, et al.a 27.2 33.2 ¯ ¯

Grubstein, et al.b ¯ 35.5 ¯ 26.3
Heinrich, et al.c ¯ 39 ¯ ¯

Karazincir, et al.d 26.6 ¯ ¯ ¯

Kuriyama, et al.e 24.2 33.2 20.9 28.8
Sanal, et al.f ¯ 	28.6 ¯ ¯

Tan, et al.g 27.2 35 19 25
Haimovici, et al.h 28 33 21 25
Guthaner, et al.i 27.2 ¯ 15–25 25–38

aReference 8.
bReference 9.
cReference 10.
dReference 11.
eReference 12.
fReference 14.
gReference 15.
hReference 16.
iReference 53.

FIG. 10. Heat map along the centerline demonstrates how diameter measure-
ments can vary around the regions of maximum distension. The variations

can be as large as 20%–25% of the vessel size.
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ings indicated a link between measurements of PA size and
SCD-associated PAH, with SCD patients having significantly
larger trunk and main diameters than controls. In conclusion,
CT with image processing shows great potential as a surro-
gate indicator of pulmonary arterial hypertension in sickle
cell disease and could be an important tool for noninvasive
clinical surveillance.
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