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Abstract

The regulation of translation and mRNA degradation in eukaryotic cells involves the formation of cytoplasmic mRNP
granules referred to as P-bodies and stress granules. The yeast Pbp1 protein and its mammalian ortholog, Ataxin-2, localize
to stress granules and promote their formation. In Saccharomyces cerevisiae, Pbp1 also interacts with the Pab1, Lsm12, Pbp4,
and Dhh1 proteins. In this work, we determined whether these Pbp1 interacting proteins also accumulated in stress
granules and/or could affect their formation. These experiments revealed the following observations. First, the Lsm12, Pbp4,
and Dhh1 proteins all accumulate in stress granules, whereas only the Dhh1 protein is a constitutive P-body component.
Second, deletion or over-expression of the Pbp4 and Lsm12 proteins did not dramatically affect the formation of stress
granules or P-bodies. In contrast, Pbp1 and Dhh1 over-expression inhibits cell growth, and for Dhh1, leads to the
accumulation of stress granules. Finally, a strain lacking the Pab1 protein was reduced at forming stress granules, although
they could still be detected. This indicates that Pab1 affects, but is not absolutely required for, stress granule formation.
These observations offer new insight into the function of stress granule components with roles in stress granule assembly
and mRNP regulation.
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Introduction

An important part of the cellular response to stress or

environmental stimuli is the modulation of cytoplasmic mRNA

translation and degradation, which allows for substantial changes

in the population of pre-existing mRNAs. One aspect of this

process in eukaryotic cells is the remodeling of translating mRNAs

into non-translating mRNPs that accumulate in cytoplasmic foci

known as P-bodies and stress granules to allow for storage and

decay of mRNA. P-bodies are present in low numbers under

normal cellular conditions and in elevated numbers following

inhibition of translation initiation and/or many environmental

stresses [reviewed in 1,2]. Stress granules arise when translation

initiation is strongly inhibited, such as during different environ-

mental stresses or drug-induced translational repression, and

contain translationally inactive mRNA and translation initiation

factors [3]. Understanding the composition and formation of these

two granules will provide insight into how mRNA fate is controlled

during stress and during normal growth.

While the function of these large aggregates is not entirely known,

their composition provides some clues as to their roles. P-bodies

contain mRNA decay factors, including Dcp1/2 (decapping

enzyme), Xrn1 (exonuclease), Pat1, Dhh1 and Scd6 (activators of

decapping and repressors of translation), and Lsm1-7 and Edc3

(activators of decapping) [1]. Additionally, mammalian P-bodies

contain components involved in miRNA silencing [1]. P-bodies also

contain mRNA decay fragments, suggesting that mRNA decapping

and 59 to 39 exonucleolytic decay can occur at these sites, although

large P-bodies are not required for normal mRNA decapping in

yeast [1,4]. The composition of stress granules is different than that

of P-bodies, suggesting that the two granules have different functions

in the mRNA lifecycle. Stress granules contain translation initiation

components and a diverse array of mRNA binding proteins, but the

exact composition can vary depending upon the stress [5–12]. For

example, during glucose deprivation, stress granules in yeast, also

referred to as EGP-bodies, contain eIF4G, eIF4E, Pab1, Pub1,

Ngr1, and Pbp1 [7,8]. However, during heat shock in yeast, similar

stress granules form that additionally contain eIF3, a hallmark

factor in mammalian stress granules [9]. Mammalian and yeast

stress granules have both been shown to contain mRNA [5,7,10].

The change in composition of stress granules, which is dependent

upon the nature of the stress, might be explained by different stresses

causing different rate-limiting steps in the assembly of translation

initiation complexes [8,9,12].

Though P-bodies and stress granules have distinct compositions,

they do not function and exist entirely separate from each other.

The two granules are often juxtaposed to one another following

treatment with arsenite in mammalian cells [3,13,14], or co-

localized with each other at early time points following glucose

deprivation in yeast [8]. In addition, the same species of mRNA

localizes to both P-bodies and stress granules, suggesting that

mRNA may transition between the two foci [3,7]. Many mRNP
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components, such as mammalian Rck/p54, Xrn1, and eIF4E, can

be present in both granules [3,8,12,14]. Understanding how

mRNA and specific proteins transition between these two granules

may provide important information for further understanding the

function of these granules and their effects on mRNA.

Recent studies in both yeast and mammalian cells implicate a role

for Pbp1 (Pab1-binding protein) and Ataxin-2 (mammalian ortholog

of Ppb1), in the assembly of stress granules, with some additional

effects on mammalian P-bodies. Deletion of Pbp1 in yeast or siRNA

knockdown of Ataxin-2 in mammalian cells leads to significant

decreases in stress granule formation under glucose deprivation or

arsenite treatment, respectively [8,11]. In the same cells, P-body

formation is not affected. Over-expression of Ataxin-2 in mamma-

lian cells decreases P-body number in the absence of stress [11],

indicating that Ataxin-2 may promote the transition of mRNPs out

of P-bodies. These results suggest that Pbp1 and its interacting

proteins may localize to and play roles in stress granule assembly.

Pbp1 interacts with several interesting proteins with possible

roles in the control of cytoplasmic mRNA function. Pbp1 was

identified by an interaction with the C-terminal domain of Pab1,

and was found to exist with both the translating and non-

translating pools of mRNA [15,16]. Pbp1 also interacts with the

Pbp4 and Lsm12 proteins, and these three proteins all associate

with the translation machinery [17,18]. Moreover, a physical

interaction between Pbp1 and Dhh1 has been demonstrated by a

protein-fragment complementation assay, as well as a physical

Figure 1. Lsm12 and Pbp4 localize to stress granules. GFP-tagged Lsm12 and Pbp4 were assessed for their ability to form granules that co-localize
with either Edc3-mCherry, a P-body marker, or with Pub1-mCherry, a stress granule marker, following ten minutes of glucose deprivation stress.
doi:10.1371/journal.pone.0010006.g001
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interaction between Dhh1 and Lsm12 [19]. Given this set of

interactions, we were interested in whether these factors could

localize to stress granules and P-bodies, and in examining if the

Pbp4, Lsm12, and Pab1 proteins played important roles in

cytoplasmic RNA granule formation.

Our data suggests that the Pbp1 interacting factors, Pbp4 and

Lsm12, can accumulate in stress granules, whereas Dhh1

accumulates in both P-bodies and stress granules, similar to its

mammalian ortholog, Rck. Loss of Pbp4 and Lsm12, or their

over-expression, did not significantly affect stress granule

formation, P-body formation, or cell growth. Contrary to this,

over-expression of Pbp1, Dhh1, and Pab1 caused growth

inhibition. Pbp1 over-expression triggered abnormal Pab1

aggregation, and Dhh1 over-expression triggered Pab1 stress

granule formation. Interestingly, Pab1 also had an effect on stress

granule formation, but only in some genetic backgrounds,

suggesting Pab1 has a role in stress granule formation but is

not absolutely required.

Results

Pbp4 and Lsm12 are novel stress granule components
Pbp1 and its mammalian ortholog, Ataxin-2, accumulate in stress

granules upon glucose deprivation or arsenite stress, respectively

[8,11]. In budding yeast, Pbp1 forms a complex with Pbp4 and

Lsm12 and all factors associate with ribosomes [18]. These results

suggest that Pbp1, Pbp4, and Lsm12 could possibly form a complex

localizing in and affecting stress granule formation. To examine this

possibility, we utilized chromosomally integrated GFP-tagged

versions of Pbp4 and Lsm12 to see if they accumulated in stress

granules or P-bodies as judged by co-localization between the GFP-

marked protein and either Pub1-mCherry (stress granule marker) or

Edc3-mCherry (P-body marker) during glucose deprivation (as

described in materials and methods).

Under normal conditions, Pbp4 and Lsm12 were diffuse in the

cytoplasm, but following glucose deprivation stress, both accumu-

lated in foci that co-localized with Pub1-mCherry, suggesting that

Figure 2. Dhh1 localizes to both P-bodies and stress granules following glucose deprivation stress. (A) A strain harboring a Dhh1-GFP
integration was transformed with a plasmid containing Edc3-mCherry and Pab1-CFP and assayed for GFP co-localization with mCherry and/or CFP
upon glucose deprivation. (B) A closer view of three sample cells, labeled accordingly in A, is shown. Dhh1 co-localized with Edc3-mCherry (gold
arrows), Pab1-CFP (purple arrows), and both Edc3-mCherry and Pab1-CFP (white arrows). Dhh1 was also found in independent foci (green arrows).
doi:10.1371/journal.pone.0010006.g002
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they are stress granule components (Figure 1). We define stress

granules as foci that 1) are not present in the absence of stress, 2) are

induced upon treatment with stress, and 3) contain factors widely

accepted as stress granule factors in both the yeast and mammalian

fields [12]. Some Pbp4 and Lsm12 foci co-localized with the P-body

marker (Edc3), but many Pbp4 and Lsm12 foci were clearly distinct

from P-bodies (Figure 1). This is consistent with previous reports

that show some co-localization between P-bodies and stress granules

in yeast [8,9]. We interpret these observations to indicate that Pbp4

and Lsm12 can accumulate in stress granules.

Dhh1, a P-body component, can also localize to stress
granules in yeast

Several observations suggested to us that Dhh1 might also

accumulate in yeast stress granules, although it had previously only

been described as a P-body component [20]. First, the mammalian

ortholog of Dhh1, Rck, can accumulate in stress granules following

increasing durations of arsenite stress in mammalian cells [8,14].

Second, Dhh1 interacts with Pbp1 and Lsm12, both of which are

now known to localize to stress granules, by two-hybrid and

protein-fragment complementation assays [11,19]. To examine if

Dhh1 could also accumulate in stress granules as well as P-bodies,

we utilized a triple fluorescent protein system where Edc3-

mCherry (P-body marker) and Pab1-CFP (stress granule marker)

were expressed from a plasmid in a wild-type strain containing a

chromosomally integrated Dhh1-GFP.

Following glucose deprivation stress, we observed Dhh1

concentrated in clear cytoplasmic foci. The majority of these foci

(73%) co-localized with Edc3, which is consistent with Dhh1 being

a component of P-bodies [20]. A subset of the foci containing Edc3

and Dhh1 (27% of the total) also co-localized with Pab1 (Figure 2,

white arrows), which is consistent with previous observations that

stress granules and P-bodies in yeast can overlap [8,9]. We

interpret these observations to indicate that the majority of the

Dhh1 foci observed during glucose deprivation are P-bodies.

Strikingly, we also observed a smaller percentage of Dhh1 foci

that co-localized with Pab1 stress granules in the absence of Edc3

(14%; Figure 2, purple arrows). This indicates that while Dhh1 is

predominantly in P-bodies, Dhh1 can also localize to stress

granules. This is similar to what is seen in mammalian cells with

the Dhh1 ortholog, Rck [8,14].

To our surprise, we also saw some Dhh1 foci that were

independent of both Pab1 and Edc3 (13%; Figure 2, green

arrows). We do not yet know the identity of these Dhh1 only foci,

but one possibility is that they represent P-bodies where Edc3 is

predominantly replaced by Scd6, which interacts with Dhh1 in a

similar and exclusive manner to Edc3 [21].

Figure 3. Lsm12 and Pbp4 are not required for stress granule formation. lsm12D, pbp4D, and wild-type strains were transformed with a
plasmid containing Edc3-mCherry (P-body marker) and Pab1-GFP (stress granule marker) and assessed for the ability to form either granule following
ten minutes of glucose deprivation stress. (SGs denotes stress granules; PBs denotes P-bodies.)
doi:10.1371/journal.pone.0010006.g003
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Lsm12, Pbp4, and Pab1 are not required for stress
granule formation

Given that the Lsm12 and Pbp4 proteins interact with Pbp1

and localize to stress granules, and that Pbp1 can affect stress

granule formation [8], we wanted to determine if these proteins

affected stress granule and/or P-body formation. To examine this

issue, we transformed lsm12D and pbp4D strains with a plasmid

expressing Pab1-GFP (stress granule marker) and Edc3-mCherry

(P-body marker), and examined the formation of stress granules

and P-bodies during glucose deprivation. We observed that

strains lacking Lsm12 and Pbp4 were still able to form stress

granules and P-bodies, although the stress granules formed at

slightly reduced levels compared to wild-type (Figure 3). This

indicates that these proteins are not required for stress granule

formation.

We also examined if Pab1 was required for stress granule

formation. PAB1 is an essential gene in Saccharomyces cerevisiae and

therefore to examine the role of Pab1, we utilized two strains that

contain bypass suppressors of PAB1. The first strain is the pab1D
spb2D strain, where defects in 60S subunit biogenesis lead to

suppression of pab1D [22]. The second strain is the pab1D pat1-2

strain, which carries a nonsense mutation in the PAT1 gene and

thereby suppresses the pab1D lethality [23,24]. To assess the

ability of these strains to form P-bodies or stress granules, both

pab1D suppressor strains, as well as strains harboring the

individual suppressor mutations (spb2D and pat1-2) and the

wild-type strain were transformed with a plasmid expressing

Pbp1-GFP (stress granule marker) and Edc3-mCherry (P-body

marker). Examination of glucose deprived cells led to the

following observations.

We observed that the pab1D spb2D strain showed an increase in

the number of P-bodies per cell and a significant reduction in the

number of stress granules per cell as compared to the spb2D strain

alone, although low levels of stress granules were still observed

(Figure 4A). We interpret this observation to suggest that Pab1

promotes stress granule formation, but is not absolutely required

for stress granules to form. In addition, the corresponding increase

in P-bodies in pab1D spb2D along with the decrease in stress

granules is consistent with the previous suggestion that mRNAs

primarily move from P-bodies to stress granules during glucose

deprivation [8].

In contrast to the results with pab1D spb2D, the pab1D pat1-2

suppressor strain showed a slight decrease in the number of P-

bodies per cell and no change in the number of stress granules per

cell (Figure 4B). This provides additional evidence that Pab1 is not

absolutely required for stress granule formation. We do not yet

understand why the Pab1 protein is more important for stress

granule formation in the spb2D background as compared to the

pat1-2 background, but one possibility is that the loss of functional

Pat1 reduces the ability of mRNAs to be maintained in P-bodies

and therefore are more apt to remodel into a stress granule

mRNP, even in the absence of Pab1.

Finally, and consistent with earlier results [25], we observed an

increase in the number of P-bodies in the pab1D suppressor strains

under normal non-stress conditions compared to the wild-type,

spb2D, and pat1-2 strains (Figure 4A and B). This is consistent with

Pab1 normally functioning in part to promote mRNAs exiting P-

bodies and re-entering translation.

Over-expression of Dhh1, Pbp1, and Pab1 cause growth
defects

Several proteins that are components of yeast or mammalian

stress granules and/or P-bodies can cause growth inhibition and/

or granule formation when over-expressed [reviewed in 12]. For

example, over-expression of Dhh1 in yeast has been shown to

inhibit cell growth [26]. Given this, we examined the effects of

over-expression of Pbp1, Lsm12, Pbp4, Pab1, and Dhh1 (as a

control) on cell growth and the formation of stress granules and/or

P-bodies. We observed that strains over-expressing Pbp1, Dhh1,

or Pab1 via a galactose-inducible promoter showed growth

inhibition on plates containing 2% galactose, while strains over-

expressing Lsm12 or Pbp4 grew normally (Figure 5). Dhh1 over-

expression appears to cause stronger growth inhibition than Pbp1

over-expression, as assessed by growth levels on 0.5% sucrose/

1.5% galactose.

Growth inhibition phenotype caused by over-expression
of Pbp1, Dhh1, and Pab1 is not suppressed by deletion of
other stress granule factors

To further understand how Pbp1, Dhh1, and Pab1 over-

expression might be triggering growth inhibition, we asked if

specific factors were required for this phenotype by examining the

over-expression inhibition of growth in strains lacking the other

factors. Thus, we expressed Pbp1, Dhh1, Lsm12, Pbp4, and Pab1

under control of the galactose promoter in the pbp1D, dhh1D,

lsm12D, and pbp4D deletion strains. Growth was then assessed on

media containing sucrose or galactose as the carbon source.

We observed that none of the factors tested suppressed the

inhibition of growth caused by Pbp1, Dhh1, or Pab1 over-

expression (Figure 5). We used decreasing levels of galactose to

assess whether the deletion factors had any effects on growth that

could be missed due to the lack of sensitivity on media containing

2% galactose. Interestingly, we observed that in a dhh1D strain,

over-expression of Pbp1 shows strong growth inhibition with lower

levels of galactose induction as compared to Pbp1 over-expression

in the wild-type background (Figure 5; 0.5% galactose/1.5%

sucrose). Interestingly, this is similar to the previous observation

that over-expression of the Stm1 protein is more toxic in a dhh1D
strain [27]. This does not appear to occur in the reverse, as the

growth inhibition by Dhh1 over-expression is not changed in the

pbp1D strain at any galactose concentration (Figure 5). Taken

together, our results suggest that the absence of Pbp1, Dhh1,

Pbp4, and Lsm12 does not reproducibly suppress the growth

inhibition caused by over-expression of Pbp1, Dhh1, or Pab1. Our

results also suggest that Dhh1 may be antagonizing Pbp1 function,

as loss of Dhh1 heightened the growth inhibition caused by over-

expression of Pbp1.

Over-expression of Dhh1 and Pbp1 induce Pab1
aggregation in the absence of stress

To further determine possible roles that Pbp1, Dhh1, Lsm12,

Pbp4, and Pab1 play in stress granule formation, we asked what

effect each factor has on P-body or stress granule formation

following their over-expression. Since pbp1D and dhh1D strains

show a loss of stress granules compared to wild-type [8], and over-

expression of the mammalian ortholog of Pbp1 disrupts P-bodies

[11], it is possible that the over-expression of these factors may

Figure 4. Pab1 promotes, but is not absolutely required for stress granule formation. pab1D spb2D, spb2D, and wild-type strains (A), as
well as pab1D pat1-2, pat1-2, and wild-type strains (B), were transformed with a plasmid containing Pbp1-GFP (stress granule marker) and Edc3-
mCherry (P-body marker) and analyzed for granule formation following ten minutes of glucose deprivation stress.
doi:10.1371/journal.pone.0010006.g004
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affect granule formation and the transition of mRNA between P-

bodies and stress granules. To determine this, strains expressing

the Pbp1, Dhh1, Lsm12, and Pbp4 proteins under the control of

the galactose promoter on high copy plasmids were assessed for

their ability to form P-bodies (Edc3-mCherry marker) and stress

granules (Pab1-GFP marker). To assess the effect of Pab1 over-

expression on granule formation, Pbp1-GFP was used as a stress

granule marker.

We observed that upon two hours of galactose induction and no

stress treatment, strains over-expressing either Lsm12 or Pbp4

showed no increase in P-bodies or stress granules (Figure 6A),

which is consistent with over-expression of these proteins causing

no growth defect in yeast cells and loss of these proteins having no

effect on granule formation. In contrast, over-expression of Dhh1

or Pbp1 caused substantial accumulation of Pab1 in cytoplasmic

structures (Figure 6A). The Pab1 foci formed by Dhh1 over-

expression morphologically resembled normal stress granules.

However, the Pab1 aggregation caused by Pbp1 over-expression

formed large, globular aggregates that appear to be strung

together in a more fibrillar type of morphology (Figure 6A).

To determine if either of these aggregates required non-

translating mRNAs for their formation, we examined how they

were affected by the addition of cycloheximide, which traps mRNAs

in polysomes by blocking translation elongation, depletes the pool of

non-translating mRNAs, and thereby reduces stress granules and P-

bodies [8,20]. To test this, a strain containing a chromosomally

integrated Pab1-GFP was transformed with either the vector

control, gal-Dhh1, or gal-Pbp1 high copy plasmids. We observed

that when cycloheximide was added after a two hour galactose

induction, the Pab1 foci in the strains over-expressing Dhh1

declined substantially (Figure 6B), suggesting that these Pab1

aggregates are dependent upon non-translating mRNAs for their

assembly. This observation argues that over-expression of Dhh1

leads to the accumulation of mRNAs in a stress granule state. In

contrast, the Pab1 aggregates seen when Pbp1 was over-expressed

were not as severely affected by cycloheximide addition (Figure 6B).

This observation, and the aberrant morphology of these granules,

suggests that the Pbp1 over-expression granules may either be less

dependent upon non-translating mRNAs, be slower to disassemble,

or may be protein aggregates that contain small amounts of mRNA.

The observation that Dhh1 over-expression did not lead to the

accumulation of P-bodies as judged by Edc3 (Figure 6A) and Dcp2

(P-body marker; data not shown) but instead led to the

accumulation of stress granules was surprising, as previous work

had argued that Dhh1 over-expression led to the accumulation of

P-bodies based on the subcellular distribution of Dcp2 [26]. We

repeatedly saw Pab1 foci formation and no strong increase in P-

body formation upon over-expression of Dhh1, allowing us to

conclude that an over-abundance of Dhh1 leads to stress granule

formation in the absence of stress and not P-body formation as

previously reported.

We also observed that upon two hours of galactose induction

and no stress treatment, strains over-expressing Pab1 showed no

increase in P-bodies (Edc3-mCherry) or stress granules (Pbp1-

GFP) (Figure 6C). Therefore, Pab1 over-expression triggers the

same growth inhibition as Pbp1 and Dhh1 over-expression, but it

leads to a significantly different granule phenotype. This result

suggests that the lethality observed with excess Pab1 is not due to

premature stress granules or protein aggregation.

Pbp1 and Lsm12 are required for proper expression of
other stress granule factors

Since Pbp1, Pbp4, and Lsm12 all interact and localize to stress

granules, we attempted to examine whether there was a hierarchy for

how these proteins assembled into stress granules. For example, we

asked if Pbp4, Lsm12, and Dhh1 were able to form granules in the

absence of Pbp1. To do these experiments, we crossed each of the

Pbp1, Pbp4, Lsm12, and Dhh1 deletion strains with strains

containing the chromosomally integrated GFP-tagged versions of

the different factors (with exception of the same tagged protein as the

deletion). We then determined whether the GFP-tagged factors were

able to accumulate in foci in the different deletions under conditions

of glucose deprivation stress. In addition, we examined the expression

of each protein in the different deletion strains to determine if any of

these factors were required for stable accumulation of the others.

These experiments revealed the following observations.

First, we observed that Pbp1 is required for stable accumulation

of Pbp4 and Lsm12. In the pbp1D strain, Pbp4 and Lsm12 levels

were greatly reduced as judged both from the GFP signal in cells

observed on the microscope and by western analysis (Figure 7A

and B). Additionally, we observed that Lsm12 is required for

proper expression of Pbp4, as seen by microscopy and confirmed

by western analysis (Figure 7A and B). In contrast, pbp4D did not

affect the expression of any factors or their accumulation in foci

following glucose deprivation. Taken together, these results

indicate that Pbp1 is required for the expression of Lsm12 and

Pbp4, and Lsm12 is required for the expression of Pbp4, perhaps

because these factors are unstable in the absence of forming a

Pbp1-Pbp4-Lsm12 complex.

Second, we observed that the expression and accumulation of

Pbp1 in stress granules was unaffected by lsm12D, pbp4D, or dhh1D.

This indicates that Pbp1 can accumulate in stress granules

independently of these interacting proteins.

Third, we observed that the levels and accumulation of Dhh1 in

foci were unaffected by pbp1D, lsm12D, and pbp4D (Figure 7A).

Moreover, triple fluorescent experiments revealed that the

distribution of Dhh1 between P-bodies and stress granules was

similar in wild-type and pbp1D (data not shown). We interpret this

set of observations to indicate that Dhh1 can accumulate in stress

granules and P-bodies independently of Pbp1, Lsm12, or Pbp4.

Discussion

Identification of additional components of yeast stress
granules

We have identified additional components of the yeast stress

granules, which include the Lsm12 and Pbp4 proteins. Our results

suggest that these factors are not critical for stress granule

formation, as stress granules were still able to form in their

absence. One possible reason for the accumulation of Lsm12 and

Pbp4 in stress granules is that they associate in a complex with

Pbp1 on a specific subset of mRNAs within the stress granules and

therefore play a role in the maintenance of these mRNAs in the

granules, binding of important translation initiation factors to the

mRNAs in these granules, or in the re-initiation process itself.

Dhh1 can be in P-bodies and stress granules in yeast
Our results suggest that the translation repressor and activator

of decapping, Dhh1, can exist in both P-bodies and stress granules

Figure 5. Dhh1, Pbp1, and Pab1 over-expression inhibit growth in wild-type and deletion strains. Proteins were expressed using
galactose-inducible promoters on high copy plasmids and assessed for growth in both wild-type and deletion strains on media containing different
concentrations of galactose as their carbon source. All plates were incubated at 30uC for five days.
doi:10.1371/journal.pone.0010006.g005
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following a glucose deprivation stress. This finding is consistent

with similar behavior by the mammalian ortholog of Dhh1, Rck

[8,14]. Additionally, it has been observed that the Caenorhabditis

elegans ortholog of Dhh1, Cgh-1, accumulates in P-granules during

oogenesis and early developmental stages, which are mRNPs that

share characteristics of stress granules [28,29]. This provides

further evidence that Dhh1 and its orthologs associate and localize

to stress granules and stress-granule-like particles, as well as to P-

bodies. It should be noted that because Dhh1 can be in both P-

bodies and stress granules and is a DEAD-box ATPase that could

help remodel the mRNP, it may play an important role in the

exchange of mRNAs between these two different compartments.

Figure 6. Dhh1 and Pbp1 over-expression trigger Pab1 granule formation in the absence of stress. Proteins were expressed under
galactose-inducible promoters on high copy plasmids in wild-type cells. (A) Cells were assayed for their ability to form P-bodies (Edc3-mCherry) or
stress granules (Pab1-GFP) in media containing 2% galactose with 0.25% sucrose. (B) Granules triggered by Dhh1 over-expression are dependent
upon actively translating mRNAs. Addition of 100 mg/ml cycloheximide for 30 minutes to block translation following two hours of galactose induction
substantially reduced Pab1 foci formation in cells over-expressing Dhh1, while only slightly reducing Pab1 foci in cells over-expressing Pbp1. (C) Pab1
over-expression does not cause granule formation as assessed by the P-body marker, Edc3, and the stress granule marker, Pbp1, in media containing
2% galactose with 0.25% sucrose. (*) denotes underestimate of Pab1 foci due to large string-like aggregation.
doi:10.1371/journal.pone.0010006.g006
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It is interesting that Dhh1 and its orthologs can exist in

different types of cytoplasmic granules in yeast, as this appears

to be a common theme developing in the granule field [12]. The

yeast translation repressor, Scd6, and its mammalian ortholog,

Rap55, have been observed in both P-bodies and stress granules

[Rajyaguru et al. submitted,30,31]. It was observed that in the

absence of stress, Rap55 co-localized with the P-body markers,

Dcp1a and Ge-1, but following arsenite stress, co-localized with

the mammalian stress granule marker, TIA [31]. Additionally,

when the cells were permitted to recover from one hour of

arsenite stress, Rap55 was now seen both in stress granules and

P-bodies. These results suggest that Rap55 can shuttle between

the two granules. Other factors exhibit similar localization to

both granules. Xrn1, which is predominantly a P-body

component, has been identified in stress granules [3], and

eIF4E, which is predominantly a stress granule component, has

been observed in P-bodies following stress granule induction

[3,25].

Over-expression of Dhh1 triggers stress granule
formation, not P-body formation

Our data suggests that over-expression of Dhh1 in yeast not

only impairs growth, but also leads to the accumulation of Pab1

and Pbp1 (Figure 6A and C) in stress granules in the absence of

stress. Furthermore, blocking mRNAs in translation by addition of

cycloheximide disrupts these Dhh1 over-expression granules,

suggesting that the granules are dependent upon mRNA. These

results suggest that Dhh1 is shifting the balance of Pab1 from the

translating pool to the non-translating pool, likely by either

promoting the accumulation of Pab1 into aggregates containing

both proteins and mRNA, or by heightening the levels of

translation repression, thereby shifting the mRNA into non-

translating pools and subsequently triggering stress granule

formation. It is surprising that the over-expression of Dhh1 only

affects stress granule accumulation and not P-body accumulation,

contrary to what was previously reported (although conditions

could differ between experiments) [26]. This suggests that excess

Dhh1 may promote the quick transition of mRNA through P-

bodies in order to accumulate in stress granules, or may cause the

mRNA to by-pass P-bodies and directly accumulate in stress

granules from the translating pool. It is possible that when stress

granule formation is inhibited, in conjunction with the over-

expression of Dhh1, P-body formation would now be increased,

rather than stress granule formation.

An interesting question is whether Dhh1 itself localizes to these

over-expression stress granules in yeast. It was previously

demonstrated in mammalian cells that introduction of exogenous

Rck and subsequent arsenite stress leads to the accumulation of

Rck in stress granules, not P-bodies [14]. If Dhh1 is found within

these over-expression stress granules, it is possible that their

formation is dependent upon the Dhh1-mRNA interaction which

creates a repression complex that ultimately recruits Pab1 and

Pbp1. If however, Dhh1 is not found in these granules, then it may

simply be triggering a stress response, thereby indirectly recruiting

Pab1, or increasing translation repression to such a degree that

stress granule formation is triggered.

Pab1 is not absolutely required for stress granule
formation

While Pab1 is a characteristic component of both yeast and

mammalian stress granules, we have determined that Pab1 is not

absolutely required for stress granule formation. Use of two

different pab1D suppressor strains allowed us to observe P-body

and stress granule formation in the absence of Pab1. The levels of

stress granule formation were different in the two pab1D
suppressor strains, as they were unchanged in the pab1D pat1-2

strain compared to wild-type, and drastically reduced in the

pab1D spb2D strain. This suggests that Pab1 may regulate the rate

of stress granule formation in accordance with the presence of

other factors. This raises the caveat that our results may not

accurately depict the role Pab1 plays in granule formation since

suppressors must be present to allow for cell viability. This is most

problematic for the Pat1 mutant strain, as pat1D is known to

affect stress granule and P-body formation to some extent [8,32].

One simple possibility is that Pab1 promotes the transition of

poly(A)+ mRNAs from P-bodies to stress granules, as suggested

by the decrease in stress granules and increase in P-bodies in the

pab1D spb2D strain. However, we suggest that in the pab1D pat1-2

strain, the formation and/or maintenance of mRNAs in P-bodies

is reduced and therefore mRNAs can accumulate in stress

granules even in the absence of Pab1. Indeed, this may provide

an explanation for why strains lacking Pat1 can suppress the

lethality of the pab1D strain.

Materials and Methods

Yeast strains and growth conditions
The yeast strains used in this study, and their genotypes, are

found in Table 1. All strains were grown at 30uC in synthetic

complete (SC) media supplemented with the correct amino acids

and containing 2% glucose, unless galactose induction was

required. For galactose induction in liquid media, media was

supplemented with either 2% sucrose or 2% galactose with 0.25%

sucrose. For the assessment of growth upon galactose induction,

strains were grown at 30uC on SC media supplemented with the

correct amino acids and containing either 2% sucrose, 1.9%

sucrose and 0.1% galactose, 1.5% sucrose and 0.5% galactose, 1%

sucrose and 1% galactose, 0.5% sucrose and 1.5% galactose, or

2% galactose. Strains yRP2065, yRP2066, yRP2192, yRP2790,

and yRP2791 were obtained from a genomic deletion library

(Invitrogen/Resgen collection) and only used for assaying growth

upon over-expression. Strain yRP2789 was obtained from a

genomic library [33]. Strains yRP2771–yRP2774 were construct-

ed using polymerase chain reaction (PCR) to amplify the specific

gene deletion cassette from genomic library strains (Invitrogen/

Resgen collection) with subsequent integration into the yRP840

background [34]. The GFP tags in strains yRP2775 - yRP2778

were constructed using PCR-based gene modification methods as

previously described [35]. Yeast crosses were done by standard

laboratory procedure to construct strains yRP2779–yRP2788. All

constructed yeast strains were verified by PCR and all yeast strains

were transformed using standard laboratory techniques. Strains

yRP923 and yRP924 are described as in Table 1 [36].

Figure 7. Pbp1 is required for proper expression of both Lsm12 and Pbp4. Likewise, Lsm12 is required for proper expression and granule
formation of Pbp4. (A) Deletion - GFP crosses and wild-type GFP strains were assayed for foci formation following ten minutes of glucose deprivation
stress. (B) Western analysis of the GFP-tagged proteins was done on whole-cell extracts using an anti-GFP antibody to detect protein levels. It is
important to note that the blots have been cropped and the deletion and controls aligned with each other because, while the deletion and control
strains were run on the same gel, they were not run in adjacent lanes.
doi:10.1371/journal.pone.0010006.g007

Effects of Pbp1 Network on SGs

PLoS ONE | www.plosone.org 11 April 2010 | Volume 5 | Issue 4 | e10006



Plasmids
The plasmids used in this study are described in Table 2.

Plasmid pRP1944 was constructed by NsiI digestion of Pab1 in the

plasmid pRP1659, and repaired via homologous recombination

using a PCR fragment containing the promoter and open reading

frame (ORF) for the PBP1 gene. Plasmids pRP1361, pRP1430,

pRP1941, pRP1942, and pRP1943 were purchased from Open

Biosystems [37].

Microscopy
To perform glucose depletion and control experiments, yeast

cultures were grown and assessed as described previously [8].

Briefly, cells were grown in the correct SC media in the presence

of glucose to OD600 0.3–0.4. Cells were then collected by

centrifugation, washed briefly in the media +/2 glucose and

briefly centrifuged. For glucose deprivation, cells were re-

suspended in media lacking glucose and incubated in a flask at

30uC with shaking for ten minutes. Follow this, cells were collected

by brief centrifugation, washed in media lacking glucose, briefly

centrifuged and re-suspended for assessment by microscopy. To

perform galactose induction experiments, yeast cultures were

grown in the correct SC media containing 2% sucrose to OD600

0.3–0.4. Cells were then split and collected by centrifugation,

washed briefly in media containing 2% sucrose or 2% galactose

with 0.25% sucrose and briefly centrifuged. Cells were then re-

suspended and incubated in flasks at 30uC with shaking for two

hours. Following this time, cells were then collected by brief

centrifugation, washed again in the appropriate media, centri-

fuged, and re-suspended in the appropriate media for microscopic

investigation. For assessment of the effect of translation on over-

expression granules, cultures were grown and shifted to galactose

media, as depicted above, for two hours. 100 mg/ml cyclohexi-

mide was added for 30 minutes and cultures continued to incubate

at 30uC with shaking. Cells were collected and analyzed as

described above.

Images were acquired as previously described [8]. A DeltaVi-

sion RT microscope system (Applied Precision, Inc Issaquah, WA)

was used with an Olympus 1006, 1.4NA objective, and the

softWoRx 3.5.1 software program. Images were collected as

5126512 pixel files using a CoolSnapHQ camera (Photometrics,

Tucson, AZ) using 161 binning. Deconvolution was done on all

images using the deconvolution algorithms in the softWoRx

program (enhanced ratio, low noise filtering). Image J [38] was

used to adjust all images to the same contrast according to the

Table 1. Yeast Strains used in this study.

Yeast Strains Properties References

yRP840 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG Hatfield et al.(1996)

yRP923 MATa leu2-3,112 trp1 ura3-52 his4-539 lys2-201 spb2::URA3 pab1::URA3 Caponigro and Parker (1995)

yRP924 MATa leu2-3,112 trp1 ura3-52 his4-539 lys2-201 spb2::URA3 Caponigro and Parker (1995)

yRP1131 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG pat1-2 pab1::URA3 Hatfield et al.(1996)

yRP1134 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG pat1-2 Hatfield et al.(1996)

yRP2065 MATa his3D1 leu2D0 met15D0 ura3D0 Invitrogen/Resgen collection

yRP2066 MATa his3D1 leu2D0 met15D0 ura3D0 dhh1D::KanMX Invitrogen/Resgen collection

yRP2192 MATa his3D1 leu2D0 met15D0 ura3D0 pbp1D::KanMX Invitrogen/Resgen collection

yRP2771 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG pbp1D::KanMX This study

yRP2772 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG dhh1D::KanMX This study

yRP2773 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG pbp4D::KanMX This study

yRP2774 MATa leu2-3,112 trp1 ura3-52 his4-539 cup1::LEU2/PGK1pG/MFA2pG lsm12D::KanMX This study

yRP2775 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG PBP1-GFP (NEO) This study

yRP2776 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG DHH1-GFP (NEO) This study

yRP2777 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG PBP4-GFP (NEO) This study

yRP2778 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG LSM12-GFP (NEO) This study

yRP2779 MATa leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG pbp1D::KanMX DHH1-GFP (NEO) This study

yRP2780 MATa leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG pbp1D::KanMX PBP4-GFP (NEO) This study

yRP2781 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG pbp1D::KanMX LSM12-GFP (NEO) This study

yRP2782 MATá leu2-3,112 trp1 ura3-52 lys2-201 his4-539 cup1::LEU2/PGK1pG/MFA2pG dhh1D::KanMX PBP1-GFP (NEO) This study

yRP2783 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG pbp4D::KanMX PBP1-GFP (NEO) This study

yRP2784 MATa leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG pbp4D::KanMX DHH1-GFP (NEO) This study

yRP2785 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG pbp4D::KanMX LSM12-GFP (NEO) This study

yRP2786 MATa leu2-3,112 trp1 ura3-52 lys2-201 his4-539 cup1::LEU2/PGK1pG/MFA2pG lsm12D::KanMX PBP1-GFP (NEO) This study

yRP2787 MATa leu2-3,112 trp1 ura3-52 cup1::LEU2/PGK1pG/MFA2pG lsm12D::KanMX DHH1-GFP (NEO) This study

yRP2788 MATá leu2-3,112 trp1 ura3-52 lys2-201 cup1::LEU2/PGK1pG/MFA2pG lsm12D::KanMX PBP4-GFP (NEO) This study

yRP2789 MATa leu2 ura3 his3 met15 PAB1-GFP (HIS) Huh et al. (2003)

yRP2790 MATa his3D1 leu2D0 met15D0 ura3D0 pbp4D::KanMX Invitrogen/Resgen collection

yRP2791 MATa his3D1 leu2D0 met15D0 ura3D0 lsm12D::KanMX Invitrogen/Resgen collection

doi:10.1371/journal.pone.0010006.t001
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protein being examined and the experiment. All images were

taken using Z-series of 12 images and collapsed during analysis by

Image J, with the exception of the triple fluorescent experiments

(Dhh1-GFP, Edc3-mCherry, Pab1-CFP), which were single plane

images where the CFP image was taken followed very closely by

the dsRED image and the FITC image. For this experiment, to

avoid bleed-through between the fluorescent GFP and CFP

channels, we utilized the FITC filter to assay GFP signal.

Experiments were done to verify that use of these filters removed

overlap between the two channels (data not shown).

Image quantitation
Analysis of three different individual experiments was done to

quantitate the triple fluorescent datasets and assess granule co-

localization. Quantitation of P-body and stress granule foci in the

pbp4D and lsm12D strains was done in a blind manner for four

independent datasets totaling 340–410 cells for + glucose

conditions and 770–920 cells for–glucose conditions. Similar

quantitation was done for the pab1D suppressor strains and their

controls by analysis of three different individual experiments, but

was not done blindly due to characteristic changes in cell

morphology of the suppressor strains. Quantitation of Pab1 in

cells over-expressing Pbp1 was done and likely under-represents

the amount of Pab1 actually present in the aggregates, as the large

protein formations were difficult to accurately quantitate.

Growth Assay
To assess cell growth upon over-expression of specific factors,

cultures were grown overnight in the appropriate SC media

containing 2% sucrose in test tubes at 30uC with shaking. Cells

were then diluted to OD600 0.1 in the same media, and incubated

at 30uC for several hours until OD600 0.4. Cultures were then

transferred into 96 well plates, with initial cultures at OD600 0.4.

A 1/6 dilution was then made, followed by a 1/36 dilution. Each

strain containing the different over-expression plasmid was

repeated four times. Strains were then plated onto large agar

plates containing the appropriate SC media with the range of

sucrose and galactose by a 96 well pin replicator. Plates were

incubated at 30uC for five days.

Western Analysis
To assess GFP expression levels of tagged factors, western

analysis of the proteins was done on whole-cell extracts from the

different strains. Cultures were incubated at 30uC with shaking in

the appropriate SC media with 2% glucose until OD600 0.3–0.4.

The Bio-Rad protein assay was used to determine protein

concentration so equal amounts of total protein were loaded on

the gels. The GFP-tagged proteins were detected using an anti-

GFP antibody (Covance).
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