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Abstract
The ability of environmental factors to promote a phenotype or disease state not only in the individual
exposed but also in subsequent progeny for multiple generations is termed transgenerational
inheritance. The majority of environmental factors such as nutrition or toxicants such as endocrine
disruptors do not promote genetic mutations or alterations in DNA sequence. In contrast, these factors
have the capacity to alter the epigenome. Epimutations in the germ line that become permanently
programmed can allow transmission of epigenetic transgenerational phenotypes. This review
provides an overview of the epigenetics and biology of how environmental factors can promote
transgenerational phenotypes and disease.
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The current paradigm for disease etiology is that the presence of a genetic mutation,
polymorphism or chromosomal abnormality promotes disease. Although this is a critical
component of disease, the environment is an equally important consideration in disease
etiology (Figure 1). Since the genome is evolutionarily and chemically stable, the ability of the
environment to influence or promote disease does not generally involve DNA mutations.
Therefore, environmental factors must generally regulate genome activity independent of DNA
sequence manipulation (e.g. epigenetics). An additional consideration for environmental
influences on disease etiology is the developmental stage of exposure. Exposures during a
critical time of development can alter genome activity associated with the differentiation
program of cells or organ systems. This altered program and gene expression profile can then
promote an abnormal physiology and disease at the later adult stage of development.

A large number of epidemiology studies suggest the environment is a major factor in disease
etiology [1,2]. Examples include phenomena such as the regional differences in disease
frequency, the low frequency of the genetic component of disease, the increase in the majority
of specific disease frequencies, the variability in disease frequency between identical twins,
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and the large number of environmental exposures that promote disease. This review focuses
on how environmental factors promote adult onset disease transgenerationally.

Environmental Factors and Disease
Epidemiology research suggests significant environmental impacts on disease. Each
geographic region around the world generally has a distinct disease frequency. For example,
some regions have high rates of prostate disease and low rates of stomach disease (North
America), while others have low rates of prostate disease and high rates of stomach disease
(Eastern Asia) [3,4]. If one is moved early in life from one region to the other, they often
develop the new region’s disease frequencies. Interestingly, when identical twins develop in
different geographic regions, they also have different disease frequencies [5]. Therefore,
although the genetics is nearly identical, disease development is different suggesting an
environmental influence [6]. Another example is the dramatic and rapid increase in nearly all
disease frequencies over the past several decades that can not be explained through genetics
alone. There are also a large number of environmental compounds and toxicants shown to
promote disease, but most do not alter the DNA sequence [7]. Therefore, environmental factors
are critical in the etiology of disease.

Although numerous environmental factors influence and promote adult onset disease (such as
nutrition and stress), the current review will emphasize endocrine disruptors due to this group
of environmental compounds being one of the largest we are exposed to daily in society.
Endocrine disruptors are environmental chemicals that affect the function of the endocrine
system by mimicking or blocking the actions of hormones, altering hormone signaling or
disrupting hormone production [8]. Endocrine disruption can have profound consequences due
to the crucial role hormones have in development.

A number of disease states are promoted by endocrine disruptors (Table 1). Many endocrine
disruptors with reproductive hormone actions (e.g. estrogen or androgen) influence
reproduction and fertility including bisphenol-A (BPA), DDT and vinclozolin. Activation of
the male and female reproductive systems at an inappropriate time during development by
endocrine disruptor chemicals can alter normal physiology [9]. For example, prenatal exposure
to diethylstilbestrol (DES) produces several developmental abnormalities in the male mouse
reproductive tract and increases tumor incidence [10]. Embryonic exposure to the pesticide
methoxychlor during the period of sex determination affects embryonic testis cellular
composition and germ cell number and survival [11]. Embryonic testicular cord formation is
also affected when embryos are exposed in vitro to vinclozolin. Transient in utero exposure to
vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals
which correlates with reduced sperm motility and number in the adult [12]. In utero exposure
to the plastic-derived compounds phthalates also disrupts differentiation of androgen-
dependent tissues in male rat offspring [13]. A more recent example of an endocrine disruptor
is the plastic component BPA that acts as an estrogenic compound causing numerous
pathologies including prostate cancer in low doses [14]. Other examples include the plant
derived estrogenic compounds (phytoestrogens) such as genistein, which influences a number
of reproductive organs [15,16]; eating aflatoxin-contaminated food has been correlated with
the incidence of liver cancer in Asia and Africa [17]; tobacco contains cadmium, which is an
estrogenic endocrine disruptor (18); and use of tobacco can cause reproductive problems in
addition to carcinogen-induced lung cancer. Heterocyclic amines in well-cooked meat products
can result in cancer of colon, breast and stomach in consumers [19]. Abnormalities in mouse
testicular Leydig cells are induced by chronic low dose exposure to arsenic [20]. Estrogen
receptor-alpha promoter hypomethylation may play a role in induction of hepatocellular
carcinoma by arsenic exposure in utero [21]. Therefore, it is apparent that a large number of
environmental compounds have endocrine disruptor activity. How an early life exposure to an
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endocrine disruption can promote an adult onset disease, long after the compound is removed,
is presumed to involve in part epigenetic mechanisms that are reviewed below.

Epigenetics
Although the history and definition of epigenetics has evolved (Box 1), the majority of the
molecular elements of epigenetic regulatory processes have only been recently elucidated [1].
The first epigenetic molecular factor identified was DNA methylation in the 1970’s [22] (Table
2). Significant focus was put on DNA methylation with the analysis of X chromosome
inactivation and imprinted genes in the late 1980s and early 1990s [23]. The next epigenetic
element identified was histone modifications in the mid 1990s and the appreciation of
chromatin structure in the regulation of the genome [24]. This was followed by the
identification of non-coding RNA around 2000 and the first whole epigenome analysis in 2005
[25] (Table 2). Epigenetic processes are likely to be expanded in the future. For example, the
recent identification of hydroxy-methylcytosine residues in the brain is a new epigenetic mark
whose function remains to be elucidated [26]. These epigenetic processes are equally important
in regulating genome activity (i.e. gene expression) and DNA sequence (i.e. genetics).

A special category of genes called imprinted genes are subject to epigenetic programming and
can be influenced by environmental exposures. For example, in vitro treatment of
preimplantation embryos with the contaminant 2,3,7,8-tetra-chlorodibenzo-p-dioxin alters
DNA methylation in the H19 and IGF-2 imprinted genes [27]. From an epigenetic perspective,
imprinted genes are a special class of genes because they have relatively unchanged DNA
methylation patterns over generations and are not affected by the overall reset in methylation
patterns that occur early in development [28]. Imprinted genes carry a molecular memory of
their parent of origin allele acquired early in the germ line [29]. This molecular memory is
associated with differential methylation patterns between the two alleles, which affect
monoallelic gene expression [30]. These allelic differences in methylation are defined in the
developing embryo during the establishment of germ line development [28]. Methylation of
imprinted genes initiated during germ line development can be completed after fertilization
[28,31]. Some imprinted genes remain imprinted throughout the organism’s life; however, a
group of them are imprinted in specific tissues in a temporally specific manner [32].
Interestingly, if external agents altered DNA methylation in these imprinted genes or induced
new methylation sites during critical periods of their establishment, such changes could persist
transgenerationally [33,34] (Figure 2). This heritable transmission of environmentally induced
phenotypes is referred to as transgenerational inheritance [1,35].

From a human health perspective, a number of disease states exist that have an epigenetic
origin. Several diseases and syndromes have abnormal DNA methylation or imprinted gene
sites leading to various pathologies [32]. These include Silver-Russell Syndrome [36],
Beckwith-Weidemann Syndrome [37], Angelman and Prader-Willi Syndromes [38]. Another
epigenetic disease due to abnormal DNA methylation of the X-chromosome is the Fragile X
Syndrome [39]. A number of brain disorders such as Autism, Schizophrenia and Rett’s
Syndrome also appear to have major epigenetic components [39–41]. Cancer also has an
epigenetic component to regulate genome stability and is associated with transformation and
disease phenotype [42,43]. A growing list of diseases with an epigenetic component suggests
epigenetics will have a critical role in disease etiology for many disease states (Figure 1).

Epigenetics and Environmental Factors
Initial observations of how the environment can influence epigenetics and phenotype were
shown in plants [44]. In animals, many examples associate environmental influences to
epigenetic changes. Epigenetic influences have been observed with environmental compounds,
nutritional factors [45,46] such as methyl donors like folate [47,48], inorganic contaminants
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such as arsenic [20,21], airborne polycyclic aromatic hydrocarbons [49], drugs such as cocaine
[50], endocrine disruptors such as BPA [14,51,52], phytoestrogens [53,54] and chemicals used
as fungicides [33] or pesticides [55] (Table 1). Some studies have also demonstrated behavioral
effects on DNA methylation including maternal effects on nursing behavior [56] or depression
[57]. Therefore, numerous examples of environmental factors have been shown to alter the
epigenome.

Holliday initially proposed a link between hormone action and establishment of DNA
methylation in mammalian embryos. He proposed that maternal effects of teratogens might
disrupt the normal distribution of DNA methylation in a developing embryo, leading to
developmental abnormalities or defects that would appear in the next generations [58].
McLachlan and collaborators [59] proposed that exposure to environmental endocrine
disrupting chemicals during early development affects adult stages, potentially involving gene
imprinting leading to persistent genetic change at the level of DNA methylation. The first
experimental evidence that endocrine disrupting chemicals produce epigenetic changes came
from experiments where neonatal exposure to DES produced abnormalities in the
demethylation of the lactoferrin promoter [60].

A classic model for studying endocrine and nutritional epigenetic effects is the Agouti mouse,
which consists of detecting changes in methylation of the Avy allele. Methylation in this meta-
stable allele correlates with changes in coat color, which shifts from yellow-agouti to yellow
by decreasing DNA methylation in the intracisternal A particle retrotransposon upstream of
the Agouti gene [47]. Maternal methyl donor (i.e. folate) consumption leads to changes in the
coat color of offspring correlated with alteration in methylation of the Avy allele [47].
Interestingly, transgenerational exposure of Avy/a mice to an ad libitum diet produces
amplification of obesity, an effect that is suppressed when the diet is methyl-supplemented
with extra folate [61]. Maternal BPA treatment also decreases the offspring’s CpG DNA
methylation in this meta-stable epi-allele, resulting in a coat color change [51]. Dietary
supplementation of BPA or genistein treatments with methyl donors inhibits the hypo-
methylating effect of BPA or genistein, shifting the coat color of heterozygous yellow-agouti
offspring toward pseudo-agouti, which is the same coat color pattern observed in controls
[51]. This mouse model has clearly established the ability of environmental factors to influence
epigenetics to promote phenotypic changes later in development.

Endocrine disruptors have the ability to alter DNA methylation patterns of key genes that
produce related transcriptional changes [1,7,62,63]. Administration of the plant derived
endocrine disrupting phytoestrogens, coumestrol and equol, to newborn mice enhances DNA
methylation to inactivate the proto-oncogene H-ras [64]. DNA methylation patterns were
altered in 8-week-old mice that consumed high doses of the phytoestrogen genistein [65].
Recently, gender-specific changes in Acta1 methylation have been shown as a response to
dietary isoflavones in mice [54]. Environmental compounds with endocrine disruptor activity
tested for epigenetic effects include the fungicide vinclozolin, the plastic residue BPA and the
pharmacological compound DES (Table 1). Exposure to environmentally relevant doses of
BPA during the neonatal developmental period in rats produces DNA methylation changes
associated with carcinogenic processes [14]. Maternal exposure to BPA has also been shown
to alter methylation in the fetal mouse forebrain [52] and to produce changes in behavior
responses in the offspring [66]. These findings correlate with other studies showing epigenetic
changes due to endocrine disruptor exposure which affect aspects of neuroendocrine systems
[67] and behavioral neuroendocrinology [68–70]. Changes in methylation also explain the
reappearance of increased susceptibility for tumor formation in F2 generation mice after
developmental exposure to DES [71,72]. Therefore, the actions of a number of endocrine
disruptors involve alterations in epigenetic processes.
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The implication of these environmentally induced epigenetic effects in evolutionary biology
is also a topic of interest. An assumption of new-Darwinian theory is that evolution proceeds
based on random DNA sequence mutations and that the environment is not able to alter the
occurrence or frequency of these mutations [73]. Epigenetics offers an alternative view
regarding the molecular mechanism involved. For example, DNA methylation of CpG sites
increases the rate of mutations of methylated cytosines by an order of magnitude [74].
Therefore, in the event DNA methylation patterns are altered due to an environmental stimulus,
these CpG sites will be more prone to undergo mutations than sites that are not methylated
[34]. If this is transgenerationally maintained in a population, this is an epigenetically
controlled mutation frequency. This bias in the mutation rates over generations is
environmentally induced. Simulations in the evolution of the BRCA1 gene show that
methylation-biased derived mutations are a feasible process [75]. Recent studies highlight the
role of environmental compounds on epigenetic mechanisms from an evolutionary and
ecological perspective [34,54,69,76].

Epigenetic Transgenerational Phenomena
Since the germ line is required for transmitting genetic information between generations, a
permanent epigenetic modification of the germ line can result in transgenerational phenomena
(Box 2). Epigenetic programming of the germ line occurs during the migration of the primordial
germ cells in the embryo. The migrating primordial germ cells in the genital ridge undergo an
erasure of methylation of the DNA during migration and colonize the early bipotential gonad
prior to gonadal sex determination [77,78]. Once gonadal sex determination is initiated, the
primordial germ cells develop female or male germ cell lineage and re-methylate the DNA in
a male or female specific manner. Therefore, the germ cell epigenetic programming during
gonadal sex determination is a sensitive period to environmental factors [77] (Box 3).

Although there are alterations in the male and female germ line epigenomes (i.e. DNA
methylation) during gametogenesis in the adult gonads [79], the embryonic period of gonadal
sex determination is the most sensitive to environmental insults. During spermatogenesis, the
male germ cell replaces the majority of histones with protamines, DNA condensation occurs
to eliminate chromatin structure, and the genome is silenced for reduced expression of non-
coding RNAs [80]. Although a small percentage of histones are maintained in developmentally
important loci [81], the role of histones in sperm remains to be established. Therefore, the
primary epigenetic process that is transmitted through the male germ line is DNA methylation.

One of the first studies to demonstrate the ability of an environmental factor to modify the
epigenetic programming of the male germ line used the endocrine disruptor vinclozolin. When
embryonic rats were exposed through maternal administration to vinclozolin, an anti-
androgenic environmental endocrine disruptor, during gonadal sex determination, adult onset
disease occurred in the first generation and persisted for four subsequent generations [33]
(Figure 2). This phenomenon was found to be due to male germ line changes in DNA
methylation, which resulted in heritable changes in transcription in a number of tissues, such
as the testis [82], brain [70] and prostate [83]. The pathology of adult onset disease from
vinclozolin exposure during embryonic life included testicular, prostate and renal
abnormalities and incidence of tumors [33,84,85]. A modification of the sperm epigenome
appears to have occurred following vinclozolin exposure at the time of gonadal sex
determination, and this enabled transgenerational transmission to subsequent generations to
promote adult onset disease [1] (Figure 2). This was one of the first reports of an environmental
factor promoting epigenetic transgenerational inheritance.

A follow-up study by a company that produces vinclozolin (BASF, Germany) found that oral
administration of the same dose used intraperitoneally (IP) [33] did not have transgenerational
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effects nor major effects in the F1 generation [86]. Previously, we found that a 4-fold decrease
in the dose eliminated the vinclozolin effect [84]. For most compounds, oral gavage treatment
generally has an order of magnitude lower circulating dose than an IP injection, such that the
lack of effect was likely due to insufficient dosing [33]. In regards to toxicology, this study
suggests vinclozolin may not be a significant risk factor at the dose used [86]. However, in our
studies, we used vinclozolin as a pharmacologic agent to promote the transgenerational
phenotype and to study mechanism [33] and did not perform risk assessment or classic
toxicology experiments. A second study repeated the vinclozolin experiment [87] using a more
inbred CD-Sprague Dawley (Charles River) rat line versus the outbred Harlan Sprague Dawley
line [33]. This study did not obtain a dramatic transgenerational phenotype [87]. Previously,
we reported that the inbred Fisher rat line did not respond as well as the outbred Harlan Sprague
Dawley line [33,84] and have recently found the CD-Sprague Dawley response is also not as
robust. The hypothesis is proposed that the inbred status of the line may be a factor in the
efficiency of promoting the phenotype. We recently repeated the original observation [33] with
the outbred Harlan Sprague Dawley line [88]. In addition to the outbred status of the line, the
exposure timing and duration have been found to be critical. The parameters required to obtain
the transgenerational phenotype will likely help reveal aspects of the mechanisms involved.
Several other recent studies confirm the ability of environmental agents to promote
transgenerational phenotypes [89], and a recent independent study confirmed the epigenetic
transgenerational actions of vinclozolin [90].

A number of epigenetic transgenerational phenomena and phenotypes have since been
observed in various species and with various environmental factors involved (Table 3). The
first non-Mendelian hereditary phenomenon reported in plants was called paramutation [44]
and later this transgenerational phenomenon was found to be epigenetic in nature and controlled
by DNA methylation [91]. This event was observed in mammals when a similar mode of
inheritance was found in mice [92,93]. Nutrition also promotes a transgenerational adult onset
obesity phenotype, as described in the Agouti mouse model [61], and there is also
documentation of transgenerational responses to nutrition in humans [94]. A transgenerational
mechanism exists which appears to capture an alteration in nutrition in a sensitive period of
perinatal development from the previous generation(s). This requires a mechanism for
transmitting the change in environmental exposure (epigenetic) that then alters gene expression
and phenotype in the next generation (Figure 2). A nutritionally induced transgenerational
response has been observed down the male line and implies that the sperm carries the ancestral
exposure information. A study by Arai et. al. [95] demonstrates the ability of an animal’s
environment to modulate the signaling network that promotes long-term potentiation (LTP) in
the hippocampus and to improve contextual fear memory formation across generations. In
addition, environment also enhances LTP in their future offspring through adolescence, even
if the offspring are not exposed. Stress-induced maternal programming also promotes
behavioral changes transgenerationally [96,97].

Heritable disease states such as multiple sclerosis (MS) also appear to have an epigenetic origin
[98]. Epigenetic modifications differentiate among human leukocyte antigen class II risk
haplotypes and are involved in the gender bias in MS [98]. Processes such as embryonic stem
cell culture to generate spermatogonial stem cells have been shown to epigenetically alter the
germ line and promote abnormalities transgenerationally (F0–F4) in mice [99]. As discussed,
environmental toxicants such as vinclozolin [33] and the plastic component BPA promote
transgenerational disease. The plasticizer BPA also promotes testicular disease from F1 to F3
generations in rats [89]. Further studies (Box 4) are required to determine the critical time of
exposure of environmental toxicants and to identify factors which result in germ line-
transmitted adult onset diseases and those that have an epigenetic basis.
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Concluding Remarks
Epigenetic transgenerational phenomena generally require the involvement of the germ line to
allow the transmission of an epigenetic abnormality between multiple generations. The ability
of environmental factors or toxicants to alter the epigenome will be common in somatic tissues,
but less common for the germ line due to the limited developmental period the germ line is
sensitive to reprogramming. In the event an altered germ line epigenome becomes permanently
programmed, an epigenetic transgenerational phenotype would be possible (Figure 2).

The phenomenon of the fetal basis of adult onset disease has been established [1,100], and
epigenetics likely plays a critical role in this process. Transient early life exposures in the
exposed individual, or transgenerational exposures if the germ line is involved, are now
included as causal factors for adult onset disease. Further investigation into the role of
epigenetics in disease etiology is needed to determine how significant early life toxicology is
to disease. Elucidating the epigenetic mechanisms involved in transgenerational toxicology
will provide insights into the diagnosis of environmental exposures and provide potential
therapeutic targets for disease. Although the prevalence of epigenetic transgenerational
inheritance needs to be assessed in various disease states, the role of epigenetics will likely be
a major factor to consider in toxicology and medicine in the future.

Endocrine disruptors are one of the most prevalent groups of environmental compounds we
are exposed to daily. Although these compounds disrupt the endocrine system, it is the long
term response of molecular processes like epigenetics that will promote downstream
developmental events, adult onset disease (Figure 1). Elucidation of the role of epigenetics in
endocrine disruptor actions and in the etiology of disease will undoubtedly provide insights
into diagnostics and therapeutics for environmental exposures, risk assessment and adult onset
disease (Box 4). In addition to these abnormal endocrine disrupting agents, it is likely that
epigenetics will also be critical to consider in normal endocrinology and metabolic events.

Box 1. Epigenetics

The term epigenetics was coined by Conrad Waddington in the 1940s. Waddington
integrated the new knowledge about genes and genetics to embryology. The study of
embryological growth and differentiation was commonly known as Epigenesis, a concept
that was around since Aristotelian times. The integration of the concepts of Epigenesis and
Genetics gave origin to the term Epigenetics [101,102]. Waddington’s goal with epigenetics
was to provide insight into gene-environment interactions that influence development and
embryology [101–103]. Pioneering epigenetic experiments from Waddington on
Drosophila demonstrated that a temperature shock from hours 17–23 after puparium
formation produced cross veinless wings in flies. Flies with this phenotype were culled from
the population and only those showing normal wings were used to carry on the line. After
an expected initial reduction of the cross wingless phenotype in the population, it
surprisingly raised after generation 16 [104]. This phenotype was considered a ‘genetic
assimilation’ and dealt with environmental exposures early in development with subsequent
consequences on phenotypic inheritance.

The definition of epigenetics has evolved with greater clarity of the molecular mechanisms
involved and a better understanding of genetic phenomena. The initial definition of
Waddington focused on gene-environment interactions but had no molecular insights to
consider [102]. In 1990, Holliday defined epigenetics as “the study of the mechanisms of
temporal and spatial control of gene activity during the development of complex
organisms”. His definition rescues the original Waddington’s meaning of developmental
biology, although does not differentiate between the action of what we currently know as
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epigenetic mechanisms and the action of genetic regulators of gene expression such as
transcription factors [105]. Another early definition, by Riggs and colleagues states that
epigenetics is “the study of mitotically and/or meiotically heritable changes in gene function
that cannot be explained by changes in DNA sequence” [106]. However, the term heritable
is generally in reference to generational inheritance and not associated with growth of cells
or tissues. Perhaps a more direct term would be mitotically stable. A more recent definition
focuses on molecular elements that influence chromatin, independent of DNA sequence.
Bird defines epigenetics as the “structural adaptation of chromosomal regions so as to
register, signal or perpetuate altered activity states” [107]. Since there are a number of
epigenetic elements that do not fit into this definition such as non-coding RNA and minor
modifications of histones and DNA methylation of promoters, this definition appears not
global enough to encompass all of epigenetics. Therefore, we propose a definition that is
more global and encompasses all molecular elements and includes the use of the term Epi
for around DNA. In this case, epigenetics is defined as “molecular factors and processes
around DNA that are mitotically stable and regulate genome activity independent of
DNA sequence.”

Box 2. Transgenerational Phenotype Definition

The majority of the actions of environmental factors or toxicants involve direct exposures
of somatic tissues that are important for the exposed individual’s disease, but will not be
transmitted to the next generation. In contrast, transgenerational phenotypes and toxicology
by definition excludes direct exposure and must be transmitted through multiple generations
[1,108]. For example, exposure of a gestating female provides direct exposure of the F0
generation female, the F1 generation embryo, and the germ-line that will generate the F2
generation [108]. Therefore, a phenotype in the F3 generation is required to have a
transgenerational phenomenon or phenotype. The effects observed in the F0 and F1
generations are due to direct exposures, as well as that in the F2 generation germ line [1,
108]. The ability of a direct exposure to influence multiple generations is defined as a
multiple generation phenotype and not a transgenerational phenotype. In contrast, a
transgenerational phenotype requires the absence of a direct exposure and transmission of
the phenotype to minimally the F3 generation [108].

Box 3. Germ Cell Developmental Epigenetics

An important factor to consider with a transgenerational phenotype is the action of
environmental factors on the germ line and gonadal development. During embryonic
development in mammalian species, the primordial germ cells migrate down the genital
ridge towards the developing gonad prior to sex determination [77,78,109]. At the time of
gonadal sex determination, the germ cell develops into a male or female germ cell lineage
at the initial stages of gonadal sex determination. The female germ line then enters meiosis
in the developing embryonic ovary, while male germ cells continue to proliferate until
immediately prior to birth and then resume proliferation after birth until puberty [77,78,
109]. In the adult, the female germ line undergoes oogenesis during follicle development
to generate oocytes. The male germ line, in turn, develops from spermatogonial stem cells
and undergoes spermatogenesis for the production of spermatozoa in the testis. The critical
period for epigenetic regulation and modification of the germ line is during the period of
primordial germ cell migration and gonadal sex determination. The permanent alteration in
the epigenetic programming of the germ line appears to be the mechanism involved in the
transgenerational phenotype [1,33].
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Box 4. Future Questions and Considerations

• The epigenetic and genetic mechanisms of how the germ line epigenome becomes
permanently programmed to transmit a transgenerational phenotype needs to be
determined.

• A correlation of epigenetic biomarkers with disease needs to be assessed for the
potential future development of early stage diagnosis of disease.

• A correlation of epigenetic biomarkers with environmental exposures is needed to
develop advanced risk and toxicology assessments.

• The paradigm that genetics is the primary molecular mechanism involved in
biology and medicine needs to be modified to incorporate epigenetics as a critical
regulatory factor as well.
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Figure 1. Proposed etiology of how the environmental impacts on disease
The cascade of molecular and physiological processes following an environmental exposure
to promote disease is shown.
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Figure 2. Role of the germ line in epigenetic transgenerational inheritance
(i) An environmental factor acts on the F0 generation gestating female to influence (ii) the
developing F1 generation fetus and alter gonadal development to reprogram the primordial
germ cell DNA methylation. (iii) This altered DNA methylation in the germ line becomes
permanently programmed similar to an imprinted-like gene and is transferred through the germ
line to subsequent generations. The embryo generated from this germ line starts with an altered
epigenome that (iv) affects developing somatic cells and tissues to have an altered
transcriptome. This altered somatic cell transcriptome can then promote adult onset disease
associated with the transgenerational phenotype.
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Table 1

Common Endocrine Disruptors and Actions

Endocrine Disruptor Effect Reference

DDT Reproductive Failure [110]

Phytoestrogens
(e.g. Genistein)

Impaired Fertility, Reproductive Effects, Breast
Cancer Protection

[15,16]

Diethylstilbestrol
(DES)

Vaginal Cancer in Humans
Developmental Toxicity in Hamsters

[111–113]

Dicofol Abnormal Ovarian Follicles, High Plasma
Estrogen Levels

[114]

Bisphenol-A (BPA) Prostate Cancer [14,115]

Aflatoxin Liver Cancer [17]

Cadmium Lung Cancer, Reproductive Problems [18]

Heterocyclic amines Cancer of Colon, Stomach and Breast [19]

Arsenic Liver Cancer [21]

Dioxins (TCDD) Mammary Tumor [116]

Vinclozolin Impaired Male Fertility [33]

Methoxychlor Impaired Male Fertility [117]

Phthalates Impairs Male Reproductive Tract and Testis [13]
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Table 2

History of Epigenetics

1940s Conrad Waddington defined epigenetics as environment-gene
interactions that induce developmental phenotypes

1975 Holliday and Pugh identify DNA methylation

1988 X-chromosome inactivation and DNA methylation

1990s Imprinted genes, allelic expression and DNA methylation

1995 Histone modifications and chromatin structure

2000s Small non-coding RNA’s

2005 Epigenome mapping

Trends Endocrinol Metab. Author manuscript; available in PMC 2011 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Skinner et al. Page 19

Table 3

Epigenetic Transgenerational Events

Epigenetic Transgenerational Event, Environmental Factor and
Generation

Reference

Paramutation in Maize
Modification of plant color (F1–F2)

[118]

Paramutation in Arabidopsis (F1–F4) [91]

Epigenetic (Paramutation) Non-Mendelian change in mouse (F1–F6) [92,93]

Vinclozolin induced epigenetic transgenerational adult onset disease in
rats (F1–F4)

[33,86]

BPA-induced transgenerational testicular abnormality (F1–F3) [89]

Transgenerational promotion of long term potentiation
(F1–F2) by altered environment

[95]

Stress induced behavior alterations (F0–F2) [96]

Nutrition induced transgenerational obesity in mice (F1–F3) [61]

Transgenerational response in longevity to nutrition (F0–F2) [94]

Gender bias in multiple sclerosis following (F1–F2)
Epigenetic changes in HLA class III risk haplotypes

[98]

Tumor susceptibility in Drosophila (F1–F3) [119]

Stem cell culture induced adult onset disease (F0–F4) [99]
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