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Abstract
Aim—This review posits that fatty acid amide hydrolase (FAAH) inhibition has therapeutic potential
against neuropathological states including traumatic brain injury, Alzheimer's, Huntington's, and
Parkinson's diseases, and stroke.

Main Methods—This proposition is supported by data from numerous in vitro and in vivo
experiments establishing metabolic and pharmacological contexts for the neuroprotective role of the
endogenous cannabinoid (“endocannbinoid”) system and selective FAAH inhibitors.

Key Findings—The systems biology of endocannabinoid signaling involves two main cannabinoid
receptors, the principal endocannabinoid lipid mediators N-arachidonoylethanolamine
(“anandamide”) (AEA) and 2-arachidonoyl glycerol (2-AG), related metabolites, and the proteins
involved in endocannabinoid biosynthesis, biotransformation, and transit. The endocannabinoid
system is capable of activating distinct signaling pathways on-demand in response to pathogenic
events or stimuli, thereby enhancing cell survival and promoting tissue repair. Accumulating data
suggest that endocannabinoid system modulation at discrete targets is a promising
pharmacotherapeutic strategy for treating various medical conditions. In particular, neuronal injury
activates cannabinoid signaling in the central nervous system as an intrinsic neuroprotective response.
Indirect potentiation of this salutary response through pharmacological inhibition of FAAH, an
endocannabinoid-deactivating enzyme, and consequent activation of signaling pathways
downstream from cannabinoid receptors, have been shown to promote neuronal maintenance and
function.

Significance—This therapeutic modality has the potential to offer site- and event-specific
therapeutic relief in those tissues where endocannabinoids are being produced as part of a
physiological protective mechanism. In contrast, direct application of cannabinoid receptor agonists
to the central nervous system may activate CB receptors indiscriminately and invite unwanted
psychotrophic effects.
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Introduction
Demonstration that cannabinoid (CB) constituents of the Cannabis plant, including Δ9-
tetrahydrocannabinol (THC), exert their effects by engaging and activating discrete cellular
CB receptors prompted the search in animals for naturally produced CB-receptor agonist
ligands. This quest led to the discovery of a ubiquitous mammalian signaling system in which
endogenous cannabinoids (endocannabinoids) synthesized by the body act as signaling lipids
play varied homeostatic and regulatory roles (Mackie 2006; Pacher et al. 2006; Pertwee
2008). Experimental and clinical data have unequivocally demonstrated that one of the most
important functions of the endocannabinoid signaling system is tissue protection against
pathological insult or injury-- a function that has opened several attractive therapeutic
modalities for pharmacological endocannabinoid-system modulation (Chang et al. 2006;
Mackie 2008; Pacher and Haskó 2008; Vemuri et al. 2008; Janero and Makriyannis,
2009a,b). In particular, great advances have been made toward targeted pharmacotherapeutic
manipulation of endocannabinoid signaling for neuroprotection. One well-studied
endocannabinoid in particular, N-arachidonoylethanolamine (or “anandamide”) (AEA), has
been linked to the neuroprotective property of CB-receptor transmission (Table 1) (see reviews:
Bahr et al. 2006; Pavlopoulos et al. 2006; Janero and Makriyannis 2007; Micale et al. 2007).
Distributed throughout the brain as an integral membrane protein, the enzyme fatty acid amide
hydrolase (FAAH) is primarily responsible for inactivating AEA and quenching AEA-induced
biological responses (Basavarajappa 2007; Vandevoorde and Lambert 2007; Di Marzo 2008;
Ahn et al. 2008; Fezza et al. 2008). Whereas THC and other direct CB-receptor agonists can
negatively influence psychomotor, cognitive, and appetitive behaviors (Freund 2003; Iversen
2003; Di Marzo and Matias 2005), selective FAAH inhibitors appear to offer site- and event-
specific therapeutic relief in those tissues where endocannabinoids are being produced as part
of a physiological protective mechanism (Vemuri et al. 2008; Janero and Makriyannis,
2009a). By virtue of this pharmacological mode of action, FAAH inhibitors are advantageously
poised to exploit the neuroprotective nature of endocannabinoid signaling without risk of
eliciting adverse psychotropic (or other) effects associated with chronic application of
cannabinoid receptor agonists.

The foregoing implies that endocannabinoid signaling may be enhanced indirectly to
therapeutic levels through FAAH inhibition, making FAAH an attractive pharmacotherapeutic
target and selective FAAH inhibitors attractive drug candidates for various neurological and
neurodegenerative/neuroinflammatory disorders (Table 2). This proposition will be examined
herein from the perspectives of endocannabinoid metabolism and endocannabinoid-system
neuropharmacology.

I. Endocannabinoid Metabolic Pathways
A growing number of endocannabinoid amide and ester long-chain fatty-acid derivatives are
either known agonists or candidate ligands for one or both principal CB receptor subtypes,
CB1 and CB2 (Mackie 2008; Pei et al. 2008; Pertwee 2008; Wood et al. 2008). It should also
be noted that there have been other studies identifying potential cannabinoid receptors
including a species named GPR55 (Begg et al. 2005; Pertwee 2007; Lauckner et al. 2008). The
two signaling lipids first identified as endocannabinoids, AEA and 2-AG, remain nonetheless
the most intensively studied and best characterized CB-receptor agonists (Bisogno 2008). AEA
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is a partial CB1-receptor activator with modest affinity [Ki = 61 nM (rat) and 240 nM (human)]
and a relatively weak CB2-receptor ligand (Ki = 440-1930 nM for rodent and human CB2
receptors) with low overall efficacy. 2-AG is a full agonist at the CB1 and CB2 receptors, albeit
with lower affinity (Ki = 472 and 1400 nM, respectively) and greater efficacy relative to AEA
(Vemuri et al. 2008; Janero and Makriyannis, 2009a). Their distinctive biochemical and
pharmacological properties notwithstanding, homeostatic regulation of AEA and 2-AG
signaling depends critically upon controlled endocannabinoid generation and
biotransformation/inactivation. The balanced actions of endocannabinoid synthesizing and
metabolizing enzymes help localize and direct the intrinsically broad influence these lipid
mediators may exert (Alexander and Kendall 2007). It is not surprising, therefore, that
spatiotemporal changes in the expression/activity of endocannabinoid biosynthetic and
inactivating enzymes are associated with both normal physiological processes as well as
pathological states in humans (Wang et al. 2007; Ludányi et al. 2008). As distinct from most
water-soluble neurotransmitters that are mobilized from membrane-delimited storage vesicles
in bioactive form, AEA and 2-AG are synthesized on-demand in response to (patho)
physiological stimuli (Figure 1), and their signaling functions are efficiently terminated by
cellular uptake through a presently ill-defined transporter system and the rapid, enzyme-
catalyzed hydrolytic inactivation (Figure 2) (Di Marzo 2008; Ahn et al. 2008). Reflecting the
importance of AEA and 2-AG to intercellular communication within the central nervous system
(CNS), investigations into the metabolism of these endocannabinoids have made extensive use
of brain tissue and neuronal cells (Ahn et al. 2008; Lovinger 2008). For this reason, a synopsis
of key metabolic pathways implicated in the regulation of endocannabinoid biosignaling
primarily in the CNS is presented here. Recent reviews may be consulted for additional primary
literature as well as details on the molecular and structural properties of various
endocannabinoid-metabolizing enzymes, their physiological chemistry, and their potential as
therapeutic targets (Bahr et al. 2006; Basavarajappa 2007; Vandevoorde and Lambert 2007;
Saario and Laitinen 2007; Schneider et al. 2007; Ahn et al. 2008; Fezza et al. 2008; Vemuri et
al. 2008; Janero and Makriyannis 2009a,b; Kano et al. 2009).

A. Endocannabinoid Biosynthesis
Enzymatic synthesis of both AEA and 2-AG draws upon pools of membrane phospholipids
such as phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylinositol
4,5-bisphosphate (PtdIns(4,5)P2) (Figure 1) (Ahn et al. 2008;Lovinger 2008) (Figure 1). The
pathways by which N-acyl ethanolamines (NAEs) such as AEA are synthesized had been
studied well before AEA was identified as an endocannabinoid. Early data suggested a two-
step pathway involving the sequential action of a calcium-dependent transacylase (Ca-TA) that
transfers a fatty-acyl chain from a membrane phospholipid molecule onto the primary amine
of membrane PE to generate N-acyl phosphatidylethanolamine (NAPE) and a NAPE-selective
phospholipase D (NAPE-PLD) that hydrolyzes NAPE to NAEs such as AEA (Natarajan et al.
1983,1984;Cadas et al. 1997). Two NAPE-PLD-independent pathways have also been
implicated in NAE/AEA formation. One involves the hydrolysis of NAPE (and, perhaps, lyso-
NAPE) to a glycerophospho(GP)-NAE intermediate by phospholipase A1/A2 (PLA1/2) or--
perhaps more importantly in the CNS-- by the serine hydrolase α/β-hydrolase-4 (ABHD4).
GP-NAE ester cleavage by glycerophosphodiesterase-1 (GDE1) then generates NAE/AEA
(Simon and Cravatt 2006,2008). Another candidate NAPE-PLD-independent pathway for
AEA biosynthesis involves the conversion of NAPE to phospho-AEA (pAEA) by
phospholipase C (PLC) followed by the phosphatase-mediated hydrolysis of pAEA (Liu et al.
2006,2008). Formation of polyunsaturated NAEs such as AEA appears to rely more upon
NAPE-PLD-independent routes, whereas synthesis of long-chain saturated or
monounsaturated NAEs proceeds mainly through NAPE-PLD (Ahn et al. 2008). All of these
candidate pathways for NAE/AEA formation, however, likely have NAPEs as key lipid
precursors.
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As is the case for AEA, multiple, incompletely characterized pathways for 2-AG biosynthesis
by neurons have been proposed, each of which involves sequential enzyme-catalyzed
transformations (Figure 1). The first and best-studied pathway is implicated in 2-AG formation
elicited by intracellular calcium elevation or by Gαq/11-coupled receptor activation. Both of
these signals stimulate membrane-bound phospholipase C β (PLC-β) to hydrolyze the minor
membrane phospholipid PtdIns(4,5)P2, generating inositol 1,4,5-triphosphate (InsP3) and
diacylglycerol (DAG). Two developmentally-regulated serine hydrolases, the sn-1-selective
DAG lipases (DAGLs) DAGL-α and -β, then catalyze the final step of 2-AG formation from
DAG (Figure 1) (Jung et al. 2005,2007;Vandevoorde and Lambert 2007;Ahn et al. 2008).
Although both DAGL-α and -β are highly enriched in brain, the latter is expressed primarily
in early development, whereas DAGL-α expression is sustained throughout adulthood and
shifts from a predominantly pre- to post-synaptic locus during neuronal maturation (Bisogno
et al. 2003). Another presumptive pathway for 2-AG formation involves the synergistic actions
of calcium elevation and receptor activation leading to DAG hydrolysis by DAGL-α/β as its
final step (Hashimotodani et al. 2007,2008).

Most enzymes implicated in AEA or 2-AG biosynthesis presently lack sufficiently selective
genetic or pharmacological tools (e.g., potent small-molecule inhibitors) for experimental
provocation to quantify the relative contribution of each endocannabinoid biosynthetic
pathway discussed. Among the recognized endocannabinoid biosynthesizing enzymes, DAGL
is the focus of much current research. The strategic positioning of DAGL in multiple 2-AG
biosynthetic pathways suggests that selective DAGL inhibition might offer an attractive
therapeutic modality for medical conditions to which heightened 2-AG signaling through the
cannabinoid 1 (CB1) receptor may contribute, such as obesity, metabolic syndrome, and
substance abuse disorders (Vemuri et al. 2008; Ortar et al. 2008; Hoover et al. 2008; Janero
and Makriyannis 2009a,b).

B. Endocannabinoid Inactivation and Biotransformation
In marked contrast to the multiplicity and partial redundancy of putative pathways for AEA
and 2-AG biosynthesis, each of these two principal endocannabinoids is inactivated in the
nervous system primarily by a specific, relatively well-characterized hydrolase that generates
the biologically important polyunsaturated fatty acid, arachidonic acid (AA) (Figure 2). Fatty
acid amide hydrolase (FAAH) is the principal enzyme responsible for terminating AEA
signaling and is widely expressed throughout the CNS as an integral membrane protein
(Basavarajappa 2007;Vandevoorde and Lambert 2007;Di Marzo 2008;Ahn et al. 2008;Fezza
et al. 2008). Another amidase-signature serine hydrolase with FAAH activity shares limited
sequence identity with the original, so-called FAAH-1 enzyme and has been designated as
FAAH-2 (Wei et al. 2006). FAAH-1 and -2 display several distinct biochemical, phylogenic,
and tissue-distribution characteristics. In the CNS, FAAH-1 is the more abundant FAAH and
it hydrolyzes NAEs (including AEA) at greater rates than FAAH-2, which is enriched in select
peripheral tissues but is absent in lower mammals, including rodents (Wei et al. 2006). FAAH-1
and -2 also display quantitatively distinct inhibitor sensitivities (Wei et al. 2006). An NAE-
hydrolyzing acid amidase (NAAA) identified in immune system cells and select peripheral
tissues has been cloned (Tsuboi et al. 2007a,b). NAAA is not a serine hydrolase and is also
quite different from FAAH in its intracellular (lysosomal) localization, acidic pH optimum,
and lack of preference for AEA as substrate. The contribution of NAAA to AEA inactivation
in vivo is unknown.

Genetic polymorphisms in FAAH that disturb endocannabinoid biosignaling are associated
with increased risk for substance abuse (Flanagan et al. 2006), gastrointestinal dysfunction
(Storr et al. 2008a), and overweight/obesity issues (Aberle et al. 2008) in certain human
subpopulations. Because of the important roles of AEA in neuronal plasticity, memory, and
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protection against neurological insult, selective FAAH inhibitors are a prime translational focus
as potential drugs for important medical problems including pain management,
psychobehavioral states (anxiety, depression), inflammation, excitotoxic events (i.e., stroke,
seizures), and age-related neurodegenerative disorders including Huntington's, Parkinson's,
and Alzheimer's diseases (Bahr et al. 2006; Karanian et al. 2005b, 2007; Centonze et al.
2007; Scherma et al. 2008; Storr et al. 2008b; Naidu et al. 2009) (vide infra). Targeted FAAH
inhibition (i.e., blocking AEA inactivation) is considered an attractive therapeutic approach to
enhance indirectly cannabinergic signaling, for it would take place preferentially in regions
where endocannabinoid synthesis and release are ongoing as a salutary, tissue-protective
response. The site- and event-specific character of the pharmacological inhibition of
endocannabinoid deactivating enzymes such as FAAH may offer increased selectivity with
less risk of the undesirable side effects that have been observed with CB-receptor agonists
capable of activating all accessible receptors indiscriminately (Vemuri et al. 2008; Janero and
Makriyannis 2009).

Although FAAH hydrolyzes both AEA and 2-AG at similar rates in vitro (Goparaju et al.
1998), multiple lines of genetic, biochemical, and pharmacological evidence suggest that
enzyme(s) other than FAAH regulate 2-AG inactivation in vivo. In particular, a soluble serine
hydrolase, monoacylglycerol lipase (MGL), is considered the principal enzyme responsible
for terminating 2-AG signaling in the CNS by catalyzing 2-AG's conversion to AA (Figure 2)
(Vandevoorde and Lambert 2007; Saario and Laitinen 2007; Ahn et al. 2008; Zvonok et al.
2008a and 2008b). Four other hydrolases are capable of generating AA from 2-AG: α/β-
hydrolase-6 (ABHD6), α/β-hydrolase-12 (ABHD4), neuropathy-target esterase (NTE), and
hormone-sensitive lipase (H-S lipase) (Figure 2) (Belfrage et al. 1977; van Tienhoven et al.
2002; Blankman et al. 2007). Some 85% of total brain 2-AG hydrolysis has been assigned to
MGL, the remaining ∼ 15% catalyzed mostly by ABHD6 and ABHD12 (Blankman et al.
2007). The distinct subcellular distributions of MGL, ABHD6, and ABHD12 suggest that they
may modulate specific CNS 2-AG pools (Ahn et al. 2008).

Enzymatic conversion of AEA and 2-AG to AA constitutes the hydrolytic deactivation mode
of endocannabinoid metabolism. AEA and 2-AG can also serve as indirect and direct sources
of substrates for oxidative transformation to various lipid derivatives (Figure 2). The AA
product of both FAAH and MGL catalysis is a second-messenger molecule whose positional
oxygenation, epoxidation, or hydroxylation by cyclooxygenase (COX), lipoxygenase (LOX),
epoxygenase, or hydroxylase enzymes can generate an array of fatty acid derivatives including
prostaglandin, prostacyclin, thromboxane, and leukotriene eicosanoids and
hydroxyeicosatetraenoic and epoxyeicosatrienoic acids (Khanapure et al. 2007). Many of these
AA derivatives have important physiological functions: e.g., prostaglandin E2 (PGE2) is a
potent modulator of vascular tone and mediates diverse immune and inflammatory responses
(Khanapure et al. 2007). Both AEA and 2-AG can be oxygenated directly by COX to generate
prostaglandin ethanolamides (“prostamides”) [e.g., prostaglandin E2 ethanolamine (PGE2-
EA)] and glyceryl prostaglandins [e.g., prostaglandin E2 glycerol ester (PGE2-G)], respectively
(Figure 2). COX-1 is much less effective than COX-2 in catalyzing oxidative endocannabinoid
metabolism (Woodward et al. 2008). Likewise, AEA and 2-AG can serve as LOX and
cytochrome P450 substrates, leading to an array of oxygenated compounds including
hydroxyeicosatetraenoic acid ethanolamides [e.g., 12-S-OH arachidonoyl ethanolamine (12-
S-HEA)], hydroxyeicosatetraenoic acid glycerol esters [e.g., 12-S-OH arachidonoylglycerol
(12-S-HG)] (Figure 2), epoxyeicosatetraenoic acid ethanolamides, and epoxyeicosatetraenoic
acid glycerol esters (Prusakiewicz et al. 2007;Chen et al. 2008). The production and
physiological activity of most products of direct AEA and 2-AG oxidative metabolism in vivo
largely remain to be established (Guindon and Hohmann 2008). In this regard, it has recently
been observed that COX-2 converts 2-AG into PGE2-G, which induces hyperalgesia in the rat
(Shu-Jung et al. 2008), and that fat ingestion elicits NAPE biosynthesis to suppress food intake
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(Gillum et al. 2008). The finding that AEA and 2-AG induce COX-2 expression and stimulate
prostaglandin production in human gestational tissue (Mitchell et al. 2008) is suggestive of
physiologically significant cross-talk between endocannabinoids and enzymes regulating their
metabolism. This suggestion is reinforced by the ability of AEA to inhibit 2-AG biosynthesis
and activity in mouse-brain striatum by interfering with DAGL-α catalysis through activation
of a nonselective cation channel, transient receptor potential vanilloid 1 (TRPV1) (Maccarrone
et al. 2008).

II. Neuroprotection Through Endocannabinoid Modulation
Responses to CB receptor activation include opening of potassium channels, inhibition of
calcium currents, and stimulation of various protein kinases (Deadwyler et al. 1995; Gomez
Del Pulgar et al. 2000; Galve-Roperh et al. 2002; Molina-Holgado et al. 2005; Karanian et al.
2005b, 2007). Some of the many such signaling elements activated by endocannabinoids play
important roles in neuronal maintenance (Bahr et al. 2006; Galve-Roperh et al. 2008). CB
receptor transmission elicits modulatory effects on calcium channels, resulting in reduced
neurotransmitter (e.g., GABA, glutamate) release (Hajos et al. 2000; Kreitzer and Regehr
2001; Ohno-Shosaku et al. 2001; Wilson et al. 2001). One particular mitogen-activated protein
kinase, extracellular signal-regulated kinase (ERK), is involved in cannabinergic signaling, as
are focal adhesion kinase (FAK) and phosphatidylinositol 3′-kinase (PI3K). These signaling
elements appear to play key roles in the neuroprotective nature of the endocannabinoid system,
and the associated signaling pathways are disrupted by blocking CB receptor activation
(Wallace et al. 2003; Khaspekov et al. 2004; Karanian et al. 2005a,b). Compromise of basal
cross-talk among pathways involving ERK, FAK, and growth-factor receptors during
endocannabinergic blockade elicits a corresponding increase in neuronal pathogenic
susceptibility and a decrease in synaptic maintenance. Several reports further indicate that
genetic ablation of CB receptors and their associated downstream signaling increases
susceptibility to seizure induction, traumatic and ischemic brain injury, and neuronal
inflammatory damage (Parmentier-Batteur et al. 2002; Marsicano et al. 2003; Jackson et al.
2005; Panikashvili et al. 2005). Conversely, promoting CB receptor responses through the
action of exogenous or endogenous ligands can generate enhanced levels of signaling via ERK,
FAK, and other pathways. This makes FAAH and other endocannabinoid deactivation
mechanisms ideal targets for neuroprotective modulation of the cannabinergic system.
Selective FAAH inhibitors and FAAH knockout studies have described the outcome of
elevated endogenous signaling through CB1 receptors (Cravatt et al. 2001; Kathuria et al.
2003; Karanian et al. 2005b, 2007). Dual modulation of endocannabinoid action was achieved
by combining a FAAH inhibitor with another blocker of endocannabinoid deactivation
(anandamide transport inhibitor), resulting in pronounced increases in FAK and ERK
responses, to levels similar to those triggered by CB1-receptor agonists. The effects of
exogenously applied AEA are also potentiated by FAAH inhibition (Gifford et al. 1999; Arizzi
et al. 2004). Together, these studies indicate that positive modulation of endocannabinoid
responses can harness endogenous signaling networks that support neuroprotection.

A. Neuroprotective Effects of FAAH Inhibitors
In the CNS, endocannabinoids are produced by neurons on demand (Figure 1), and their
efficient catalytic inactivation (Figure 2) helps ensure that they act locally near their site of
synthesis. Endocannabinoids are synthesized and released in response to neuronal injury, and
the cannabinergic action of the released CB-receptor ligands can be enhanced by attenuating
FAAH activity. Since AEA is effectively inactivated by the endocannabinoid-hydrolyzing
enzyme FAAH (vide supra), inhibiting FAAH would increase the availability of released AEA
to activate local CB receptors to elevate the initial neuroprotective response to a therapeutic
level. The significance of FAAH inhibition as a means of enhancing cannabinergic signaling
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has been demonstrated through both knockout strategies as well as pharmacological FAAH
blockade by synthetic inhibitors (Cravatt et al. 2001;Karanian et al. 2005a;Moreira et al.
2008). Not surprisingly, potential therapeutic indications to which this strategy could be applied
for therapeutic purposes are expanding and include management of multiple sclerosis (Benito
et al. 2007), spinal cord injury (Garcia-Ovejero et al. 2009), ischemic events (Nucci et al.
2007), and other disorders, particularly those involving the CNS (Table 2).

Endocannabinoid production and signaling through CB receptors elicit neuronal-cell survival
responses that could play a salutary role against diverse neuropathologies. Table 3 lists the
growing number of neuroprotective effects associated with FAAH inhibition. For example, the
FAAH inhibitor URB597 attenuated hippocampal neuronal hyperactivity (Coomber et al.
2008), and systemic administration of URB597 minimized the retinal damage observed in
ischemic-reperfusion studies (Nucci et al. 2007). Another FAAH inhibitor, palmitylsulfonyl
fluoride (AM374), enhanced the effects of AEA (Gifford et al. 1999;Arizzi et al. 2004) and
promoted endogenous CB-related signaling in brain tissue (Karanian et al. 2005b).
Pharmacological modulation of endocannabinoid deactivation to promote signaling resulted
in excitotoxic protection in both hippocampal slice and animal models. The neuroprotection
was demonstrated cellularly and functionally, i.e., by a reduction in neuronal loss in the
hippocampus, enhanced synaptic integrity, reduced behavioral abnormalities, and improved
memory performance (Karanian et al. 2005b). These neuroprotective effects were completely
abrogated by a selective CB1-receptor antagonist, thus indicating that CB1-receptor
transmission was responsible for the neuroprotection.

Another example of neuroprotective FAAH modulation is provided by data from the kainate
rat model. As an excitotoxin, kainic acid (KA) induces seizures and damage to the
hippocampus, a brain region involved in higher-order brain functions. Uncontrolled seizures
produce excitotoxic brain damage reminiscent of that in many disease states. Recurring
seizures can result from epilepsy, brain injury, and genetic conditions. Among the medical
complications associated with substance abuse/drug addiction, excitotoxic brain injury can be
caused by alcohol (Wilkins et al., 2006), diverse amphetamine derivatives (Itzhak and Ali,
2006), and cocaine (Kosten et al., 1994; Mets et al., 1998; Arai et al., 2003; Matsumoto et al.,
2004; Witkins et al., 2008). The selective FAAH inhibitor AM374 was shown to enhance AEA
levels and decrease seizure severity in KA-treated rats (Karanian et al. 2007). This study also
documented a dose-dependent and accelerated rate of seizure recovery with AM374 treatment,
which protected against excitotoxic cytoskeletal damage and synaptic decay. The controlled
modulation of cannabinergic signals also protected against the cellular and functional deficits
in the kainate rats. These salutary responses were prevented by the CB1-receptor antagonist
AM251, indicating that the neuroprotective action of FAAH inhibition was mediated through
endocannabinoid transmission. This FAAH-inhibitor study further implicated the activated
MAPK/ERK pathway in the reduction of neuronal damage. Another selective FAAH inhibitor,
URB597, has been found to attenuate the damaging effects of KA-induced neuronal activity
(Coomber et al. 2008). Together, these studies show dose-dependent congruence in vivo
among: 1) reduced seizure severity, 2) enhanced synaptic integrity, and 3) improved behavioral
performance. The endocannabinoid enhancement attenuated seizure severity, perhaps by
reducing intracellular calcium via cannabinergic actions on voltage-gated calcium channels
through inhibition of adenylyl cyclase (Deadwyler et al., 1993; Shen and Thayer, 1996, 1998;
Mu et al., 1999) or by eliciting nonspecific and synapse-specific depression of excitatory
circuits (Shen et al., 1996; Kim and Thayer, 2000; Gerdeman and Lovinger, 2001; Singla et
al., 2007). Clinical studies indicate that epileptic seizures in humans can result from
perturbation of the endocannabinoid system, including the down-regulation of CB receptors
located in hippocampal glutamatergic terminals (Ludanyi et al., 2008). In sum, manipulation
of the endocannabinoid system, a key regulator of synaptic transmission in the brain, through
FAAH inhibition is a potentially attractive approach for treating seizures of diverse etiology.
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The neuroprotective action of FAAH inhibitors is reminiscent of the compensatory protective
response in which AEA levels are elevated 2- to 13-fold after KA-induced seizures (Marsicano
et al., 2003), ischemia (Amantea et al., 2007), concussive head trauma (Hansen et al., 2001),
and neurotoxin exposure (Hansen et al., 2001; Maccarrone et al., 2003). In humans
experiencing stroke-related excitotoxic insult, AEA release during the injury process has been
observed as a compensatory protective response to potentiate intrinsic survival signaling
(Schäbitz et al., 2002). Cannabinergic modulation of network excitability may also have the
potential to offset the neuronal over-activation produced by drugs of abuse that can involve
various transmitters including dopamine, serotonin, norepinephrine, GABA, and glutamate.
Note that inhibitors of. The strategy of developing FAAH inhibitors as neuroprotective drugs
gains attractiveness from findings that FAAH inhibitors are devoid of cataleptic effects
(Beltramo et al., 2000; Arizzi et al., 2004; Karanian et al., 2007) and do not carry an abuse
potential themselves (Justinova et al., 2008). These properties suggest that FAAH inhibitors
could represent novel, safe drugs for treating brain damage from epileptic seizures, traumatic
injury, and drugs of abuse.

Other medical indications where FAAH inhibition may be an effective pharmacotherapeutic
strategy include multiple sclerosis and neurodegenerative/neuroinflammatory diseases such as
Alzheimer's, Huntington's, and Parkinson's diseases (Benito et al. 2003; Maccarrone et al.
2003; Ramirez et al. 2005; Micale et al. 2007; Bisogno and Di Marzo 2008). Recent data
presented in abstract indicate that the content of AEA and a prime AEA precursor, N-
arachidonoyl phosphatidylethanolamine (Figure 1), were markedly reduced in the temporal
and frontal cortices of Alzheimer's patients, whereas 2-AG and 2-AG-related related lipids
were largely unchanged (Jung et al. 2008). Interestingly, AEA levels in different brain regions
of the Alzheimer's patients correlated with region-specific cognitive test scores, implicating
the importance of endocannabinoid signaling for cognition. In another clinical Alzheimer's
study, AEA was shown to prevent toxicity of the human amyloid-β peptide (Milton 2002),
which is believed responsible for the neurodegenerative changes in the Alzheimer's brain. In
an animal model of multiple sclerosis, AM374 significantly reduced a hallmark symptom,
spasticity, a therapeutic response similar to that elicited by treatment with potent cannabinergic
agonists (Baker et al. 2001).

Further support for beneficial effects of FAAH inhibition in multiple sclerosis was recently
demonstrated in a chronic encephalitis model with the observation that that FAAH knockout
mice exhibited a more substantial remission compared to wild-type mice (Webb et al. 2008).
The reduced endocannabinoid signaling associated with Huntington's disease could be reversed
through the blockade of FAAH activity (see review: Micale et al. 2007). FAAH inhibition by
methylarachidonoyl fluorophosphonate (MAFP) also restored normal glutamatergic activity
in an animal model of Parkinson's disease (Maccarrone et al. 2003). These experimental and
clinical data suggest that FAAH inhibition will gain importance as a potential therapeutic
modality for age-related neurodegenerative diseases.

III. Conclusion
The growing understanding of the biosynthetic and inactivation pathways that help regulate
endocannabinoid signaling and the successful biochemical description and functional
annotation of several molecular constituents of the endocannabinoid metabolome have
suggested new treatment approaches for several important disease states ill-satisfied by
currently available drugs. Therapeutic exploitation of “on-demand,” tissue-protective
endocannabinoid responses is particularly attractive with respect to many neuropathological
conditions. Blocking the inactivation of the endogenous, tissue-protective CB-receptor ligands
promotes beneficial neuromodulatory and neuroprotective events (e.g., reduced transmitter
release) as well as various downstream signaling pathways. Enhancing AEA levels by
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inhibiting a critical deactivation step-- i.e., the hydrolytic enzyme FAAH-- is a particularly
noteworthy example of exploiting the protective nature of the endocannabinoid system.
Selective inhibitors of FAAH boost the endogenous tissue-protective responses in a site- and
event-specific manner, thereby avoiding the risk of unwanted psychotropic effects that may
result from the prolonged systemic application of CB-receptor agonists. FAAH inhibition is
especially effective at attenuating excitotoxic progression in the brain and protecting against
synaptic compromise, neuronal death, and the behavioral symptoms of excitotoxic brain
damage. Future advances in identifying critical targets of endocannabinoid metabolism and
metabolic intermediates whose pharmacological modulation can enhance endocannabinoid
signaling to therapeutic levels will undoubtedly open new drug-discovery avenues.
Accumulated data already encourage continued preclinical profiling of newer-generation
FAAH inhibitors with the aim of promoting lead development candidates into the clinic for
first-in-man proof-of-principal studies (Janero and Makriyannis, 2009a).
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Figure 1.
Diagrammatic representation of the major metabolic pathways implicated in the biosynthesis
of the principal endocannabinoids, anandamide and 2-arachidonoyl glycerol.
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Figure 2.
Diagrammatic representation of the major hydrolytic inactivation and oxidative
biotransformation pathways implicated in anandamide and 2-arachidonoyl glycerol
catabolism.
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Table 1

Pathogenic events that increase anandamide levels.

Pathogenic insult Alteration to the endocannabinoid system

traumatic brain injury increases in anandamide

NMDA-induced excitotoxicity increases in anandamide

kainic acid-induced seizures increases in anandamide

6-Hydroxydopamine toxicity increases in anandamide

model of multiple sclerosis increases in anandamide
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Table 2

Medicinal applications for controlled FAAH inhibitors.

Potential indications Example FAAH inhibitors

exposure to excitotoxic neurotoxins AM374, URB597

stroke/ischemia URB597

epileptic seizures AM374

multiple sclerosis AM374

spinal cord injury

traumatic brain injury

addiction
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Table 3

Effects of FAAH inhibitors

• elevation of anandamide levels

• activation of ERK, FAK, and other pathways

• reduced intra-neuronal calcium

• decreased glutamate release probability

• reduction in seizure severity and period of duration

• attenuation of excitotoxic progression

• protection of synaptic integrity

• reduced excitotoxic neuronal death

• protection against excitotoxic behavioral changes

• reduced spasticity in multiple sclerosis models
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