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ABSTRACT The s-1 receptor is a widely expressed protein that interacts with a variety of ion channels, including the
acid-sensing ion channel (ASIC) 1a. Here we used atomic force microscopy to determine the architecture of the ASIC1a/s-1
receptor complex. When isolated His8-tagged ASIC1a was imaged in complex with anti-His6 antibodies, the angle between pairs
of bound antibodies was 135�, consistent with the known trimeric structure of the channel. When ASIC1a was coexpressed with
FLAG/His6-tagged s-1 receptor, ASIC1a became decorated with small particles, and pairs of these particles bound at an angle
of 131�. When these complexes were incubated with anti-FLAG antibodies, pairs of antibodies bound at an angle of 134�,
confirming that the small particles were s-1 receptors. Of interest, we found that the s-1 receptor ligand haloperidol caused
an ~50% reduction in ASIC1a/s-receptor binding, suggesting a way in which s-1 ligands might modulate channel properties.
For the first time, to our knowledge, we have resolved the structure of a complex between the s-1 receptor and a target ion
channel, and demonstrated that the stoichiometry of the interaction is 1 s-1 receptor/1 ASIC1a subunit.
INTRODUCTION
The s-receptor was initially believed to be a type of opioid

receptor (1); however, it is now clear that it is a distinct

receptor consisting of two subtypes: s-1 and s-2 (reviewed

in Monnet (2)). The s-1 receptor has been cloned (3) and

shown to share 30% identity and 67% similarity with a yeast

sterol C8-C7 isomerase (ERG2). The receptor contains two

transmembrane regions, although it is still unclear whether

the N- and C-termini are cytoplasmic (4) or extracytoplasmic

(5). The sequence of the s-2 receptor is still unknown. The

s-1 receptor is widely expressed in both the central nervous

system and peripheral tissues (2), and a variety of functions

have been ascribed to it, including modulation of voltage-

gated Kþ (4,6–8), Naþ (9), and Ca2þ (10) ion channel

activity at the plasma membrane; control of Ca2þ release

from the endoplasmic reticulum (5); and neuroprotection in

cerebral ischemia and stroke (11). Further, there is a genetic

linkage with schizophrenia (12).

s-1 Receptors are activated by a wide variety of ligands

(reviewed in Monnet (2)), including antipsychotic drugs

(e.g., haloperidol), and psychotomimetics (e.g., pentazo-

cine), and it was recently shown that the hallucinogen

N,N-dimethyltryptamine is an endogenous ligand at this

receptor (13). Mutational analysis has identified residues

D126 and E172 in the C-terminus as being crucial to ligand

binding (14). In addition, two so-called sterol binding-like

domains have been identified (15,16). One of these domains

(residues 91–109) encompasses part of the second trans-

membrane domain, and the other (residues 176–194)
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forms a hydrophobic region close to the C-terminus. The

C-terminal hydrophobic region contains cholesterol-binding

domain motifs (VEYGR and LFYTLRSYAR), and, as

expected, this region binds cholesterol (17). Significantly,

cholesterol binding is strongly inhibited by the classical

s-1 receptor ligand SKF10047, suggesting that the choles-

terol-binding domain forms part of the drug-binding site

(17).

Modulation of the voltage-gated Kþ channel by the s-1

receptor does not involve transduction mechanisms such as

G-protein signaling or phosphorylation (18), suggesting

that a direct interaction between the two proteins is required.

In support of this idea, Kv1.4 and the s-1 receptor can be

coimmunoprecipitated from membrane lysates prepared

from both rat posterior pituitary cells and mRNA-injected

Xenopus oocytes (4).

The properties of acid-sensing ion channels (ASICs) are

also modulated by s-1 receptors (19). ASICs belong to the

degenerin/epithelial Naþ channel family of cation channels

(reviewed in Wemmie et al. (20)). They are activated by

extracellular protons and are selectively permeable to Naþ

ions. They are found in all vertebrates examined thus far,

and are responsible for acid-evoked currents in many neu-

rons of the peripheral and central nervous systems. They

appear to play diverse roles in functions such as nociception,

learning, and memory, and in pathological conditions such

as ischemic stroke. Each ASIC subunit spans the membrane

twice, and the N- and C-termini are intracellular (20). The

stoichiometry of the complete ASIC has been controversial;

however, the recent determination of the crystal structure of

ASIC1a showed that the channel is a trimer (21). This

trimeric structure has been confirmed by atomic force

microscopy (AFM) imaging of the intact channel (22).
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There are four ASIC genes, which produce six subunit

isoforms: ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and

ASIC4 (20). These subunits assemble to form both homo-

and heteromultimers with varying properties, including

differential sensitivity to pH (23), and Ca2þ permeabilities

(for example, ASIC1a homomers are Ca2þ permeable,

whereas ASIC1a/ASIC2 heteromers are not (24)). It was

recently shown (19) that stimulation of the s-1 receptor

endogenously expressed in rat cortical neurons inhibits

ASIC1a-mediated membrane currents and reduces conse-

quent intracellular Ca2þ accumulation, suggesting that s-1

receptors may represent a therapeutic target for improving

the outcome of stroke injury. What is not clear from these

experiments is whether the interaction between the s-1

receptor and ASIC1a is direct, and, if so, what the

ASIC1a/s-1 receptor complex looks like.

We have developed a method, based on AFM imaging, for

directly determining the arrangement of subunits within

multimeric proteins. The method involves the imaging of

isolated proteins and of complexes formed between the

proteins and subunit-specific antibodies. We have applied

this method to the architecture of the P2X receptor (25),

the 5-HT3 receptor (26), the GABAA receptor (27), the tran-

sient receptor potential C1 ion channel (28), and ASIC1a

(22). In the study presented here, we used AFM imaging

to address the nature of the interaction between the s-1

receptor and ASIC1a. For the first time, to our knowledge,

we demonstrate the structure of an ion channel/s-1 receptor

complex and show that the stoichiometry of this complex is 1

receptor/1 channel subunit.
MATERIALS AND METHODS

Cell culture

HEK-293 cells, stably transfected with human ASIC1a bearing a C-terminal

His8 tag, were grown in Dulbecco’s modified Eagle’s medium supplemented

with 10% (v/v) newborn calf serum, 100 units/mL penicillin, 100 mg/mL

streptomycin, and 100 mg/mL Zeocin (Invitrogen, Paisley, UK) in an atmo-

sphere of 5% CO2/air. tsA201 cells, a subclone of HEK-293 cells stably

expressing the SV40 large T-antigen, were grown under the same conditions

but without Zeocin and with 10% (v/v) fetal bovine serum instead of

newborn calf serum.

s-1 Receptor construct

A cDNA sequence encoding the human s-1 receptor, with a C-terminal

FLAG epitope, was subcloned into the vector pcDNA3.1/V5-His using

HindIII and AgeI so as to delete the V5 epitope tag but leave the His6 tag.

The sequence of the construct was verified before use.

Transient transfection of HEK-293 cells
and tsA201 cells

Transfection of cells was carried out with the use of a CalPhos mammalian

transfection kit (Clontech, Basingstroke, UK). After transfection, the cells

were incubated for 48 h at 37�C to allow expression of the receptors. Protein

expression and intracellular localization were checked by immunofluores-

cence analysis of small-scale cultures. Cells were fixed, permeabilized,
and incubated with appropriate primary antibodies, followed by fluorophore-

conjugated goat anti-mouse or anti-rabbit secondary antibodies (Sigma,

Poole, UK). The cells were then imaged by confocal laser scanning micros-

copy.
Solubilization and purification of His8/6-tagged
proteins

Solubilization and purification were performed as described previously (25).

Briefly, a crude membrane fraction prepared from the cells was solubilized

in 1% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

(CHAPS), and the solubilized material was incubated with Ni2þ-agarose

beads (Probond; Invitrogen). The beads were washed extensively and bound

proteins were eluted with increasing concentrations of imidazole. Samples

were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE). Proteins were detected by silver staining or immunoblotting

using rabbit polyclonal antibodies against either ASIC1a (Alomone, Buck-

ingham, UK) or the human s-1 receptor (Abcam, Cambridge, UK), and

a mouse monoclonal antibody against the FLAG tag on the s-1 receptor

(Sigma).
AFM imaging

ASICs, anti-His6 antibodies, and s-1 receptors were initially imaged alone.

ASICs were then imaged after an overnight incubation at 4�C with a 1:2

molar ratio (~0.2 nM ASIC concentration) of anti-His6 monoclonal antibody

(Invitrogen). An anti-FLAG antibody was used as a negative control. ASIC/

s-1 receptor complexes were imaged either alone or after incubation with

anti-FLAG antibody. An anti-V5 antibody (Invitrogen) was used as a

negative control. Proteins were diluted to a final concentration of 0.04 nM,

and 45 mL of the sample were allowed to adsorb to freshly cleaved,

poly-L-lysine-coated mica disks. After a 10-min incubation, the samples

were washed with BPC-grade water (Sigma) and dried under nitrogen.

Imaging was performed with a Veeco Digital Instruments multimode

atomic force microscope controlled by a Nanoscope IIIa controller. The

samples were imaged in air, using tapping mode. The silicon cantilevers

used had a resonant frequency of ~300 kHz and a specified spring constant

of 40 N/m (Olympus). The applied imaging force was kept as low as

possible (As/A0 ~ 0.85).

The molecular volumes of the protein particles were determined from

particle dimensions based on AFM images. After adsorption of the channels

onto the mica support, the particles adopted the shape of a spherical cap.

The heights and radii were measured from multiple cross sections of the

same particle, and the molecular volume was calculated using the following

equation:

Vm ¼ ðph=6Þ
�
3r2 þ h2

�
; (1)

where h is the particle height and r is the radius (25). Volumes were initially

calculated using an automated program that we developed in-house (29).

The output of the program was then checked manually to exclude false-

negatives and false-positives.

Molecular volume based on molecular mass was calculated using the

following equation:

Vc ¼ ðM0=N0ÞðV1 þ dV2Þ; (2)

where M0 is the molecular mass; N0 is Avogadro’s number; V1 and V2 are the

partial specific volumes of particle and water, respectively; and d is the extent

of protein hydration (taken as 0.4 g water/g protein). Because the ASIC1a

subunits are glycoproteins, the volume contributions of core protein and

attached oligosaccharides were calculated separately, using values of partial

specific volumes for protein (0.74 cm3/g) and carbohydrate (0.61 cm3/g), as

described previously (22). We assumed a subunit protein molecular mass of

60 kDa and an additional contribution from oligosaccharides of 10 kDa.
Biophysical Journal 98(7) 1182–1191
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Determination of the association of proteins
with rafts

Cells were extracted in ice-cold Triton X-100 (1%) and the extracts were

mixed with Optiprep (Sigma) to a concentration of 35% (v/v). Increasingly

dilute solutions of Optiprep were layered above the cell extracts and the

discontinuous density gradients (total volume 9 mL) were centrifuged at

200,000 g for 4 h. Samples (1 mL) were taken from the tops of the gradients,

and proteins (ASIC1a, s-1 receptor and the raft marker caveolin) in the

fractions were analyzed by SDS-PAGE and immunoblotting. Caveolin

was detected using a rabbit polyclonal antibody (Sigma).
RESULTS

Immunofluorescence analysis of HEK-293 cells stably ex-

pressing ASIC1a bearing a His8 epitope tag at its C-terminus,

using either anti-ASIC1a or anti-His6 antibodies, revealed

the presence of ASIC1a channels in the transfected cells

(Fig. 1 A). The staining pattern indicated that the channels

were present both at the plasma membrane and in internal

membranes. In contrast, the use of an anti-V5 antibody

as a negative control produced only a background immuno-

fluorescence signal (data not shown). When the cells were

transfected with a FLAG/His6-tagged s-1 receptor construct,

immunofluorescence with anti-FLAG antibodies showed the

presence of s-1 receptors in ~20% of the cells (compare the

fluorescence image with the corresponding brightfield image

in Fig. 1 B).
after isolation (I) by binding to Ni2þ-agarose. Samples were analyzed by SDS-PAG

rabbit polyclonal anti-ASIC1a antibody, followed by a horseradish peroxidase-conj

alized using enhanced chemiluminescence. Arrowheads indicate molecular mass

from s-1 receptor-transfected cells by binding to Ni2þ-agarose. Samples were ana

(right panel) using anti-ASIC1a antibody or mouse monoclonal anti-FLAG antibod

isolated from nontransfected ASIC1a-expressing cells or s-1 receptor-transfecte

anti-ASIC1a antibody, anti-FLAG antibody, or rabbit polyclonal anti-s-1 recepto
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A crude membrane fraction prepared from the ASIC1a-

expressing cells was solubilized in CHAPS detergent (1%

w/v), and ASICs were isolated through the binding of the

His8 tag to Ni2þ-agarose beads. Both the membrane fraction

and the isolated protein were subjected to SDS-PAGE, silver

staining, and immunoblotting using the anti-ASIC1a anti-

body. A silver stain of the isolated fraction (Fig. 1 C, left
panel) showed a single band at a molecular mass of 70 kDa,

consistent with the expected size of the ASIC1a subunit (30).

The anti-ASIC1a antibody also labeled a single band, again

at a molecular mass of 70 kDa (Fig. 1 C, right panel). Hence,

the isolation procedure produced highly purified ASIC1a.

When proteins were isolated from crude membrane frac-

tions of cells transfected with FLAG/His6-tagged s-1 receptor

and subjected to SDS-PAGE followed by silver staining and

immunoblotting, prominent bands were seen on the silver-

stained gel at molecular masses of 70 kDa and 33 kDa, as

expected from the known sizes of ASIC1a (29) and the s-1

receptor with added FLAG and His6 tags (3) (Fig. 1 D, left
panel). Other bands were visible, although the 70-kDa and

33-kDa bands were the most prominent. Immunoblotting

(Fig. 1 D, right panels) confirmed that the 70-kDa protein

was ASIC1a and the 33-kDa protein was FLAG-tagged s-1

receptor. It is known that HEK-293 cells endogenously

express the s-1 receptor (9). To assess the relative expression

levels of endogenous and exogenous (FLAG/His6-tagged)
FIGURE 1 Isolation of proteins from

ASIC1a-expressing cells. (A) Immuno-

fluorescence detection of ASIC1a in

stably transfected HEK-293 cells. Cells

were fixed, permeabilized, and incu-

bated with either rabbit polyclonal

anti-ASIC1a antibody or mouse mono-

clonal anti-His6 antibody, followed by

Cy3-conjugated goat anti-rabbit or anti-

mouse secondary antibodies, as appro-

priate. Cells were imaged by confocal

laser scanning microscopy. (B) Immuno-

fluorescence detection of the s-1

receptor in HEK-293 cells stably ex-

pressing ASIC1a and transiently trans-

fected with s-1 receptor cDNA. Cells

were incubated with mouse monoclonal

anti-FLAG antibody, followed by fluo-

rescein isothiocynate-conjugated goat

anti-mouse secondary antibodies. A rep-

resentative immunofluorescence image

is shown, along with a corresponding

brightfield image; ~20% of the cells are

expressing the s-1 receptor. (C) Detec-

tion of ASIC1a in a membrane fraction

from stably transfected cells (M) and

E and either silver staining (left panel) or immunoblotting (right panel) using

ugated goat anti-rabbit secondary antibody. Immunoreactive bands were visu-

markers (kDa). (D) Detection of ASIC1a and the s-1 receptor after isolation

lyzed by SDS-PAGE and either silver staining (left panel) or immunoblotting

y. (E) A screen for the presence of endogenous s-1 receptor in protein samples

d cells. Samples were analyzed by SDS-PAGE and immunoblotting using

r antibody.
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receptors, we subjected isolated protein fractions prepared

from cells expressing either ASIC1a alone or ASIC1a plus

FLAG/His6-tagged s-1 receptor to immunoblot analysis

(Fig. 1 E). As expected, both samples gave a strong signal

with an anti-ASIC1a antibody. The cells transfected with

FLAG/His6-tagged receptors also gave strong signals with

both an anti-FLAG antibody and an anti-s-1 receptor anti-

body. In contrast, the nontransfected cells gave no detectable

signal with either the anti-FLAG antibody (as expected) or,

significantly, with the anti-s-1 receptor antibody. Hence,

the endogenous s-1 receptors must be expressed at much

lower levels than the FLAG/His6-tagged receptors, and are

therefore unlikely to interfere with the subsequent analysis

of ASIC1a/s-1 receptor interaction.

Isolated ASIC1a, anti-His6 antibodies, and s-1 receptors

(prepared in the absence of ASIC1a by transfection of

tsA201 cells) were subjected to AFM imaging. In previous

work, we used AFM probes made of silicon nitride. To

measure molecular volumes, we assumed that the shape

the particles adopted the approximate shape of a spherical

cap. To overcome the large tip-convolution effect, we

measured the particle radius at half-height. Using this proce-

dure, we determined a volume of 210 nm3 for the ASIC1a
trimer, which is considerably smaller than the expected value

of 390 nm3 (22). Nevertheless, the trimeric structure of the

channel was apparent from the presence of the triple subunit

clusters, likely caused by ASIC1a trimers attaching to the

mica substrate intact and then falling apart during the drying

process. More recently, we have begun to use probes made

of silicon, which have a higher aspect ratio and a much

greater spring constant than the silicon nitride tips. With

the new tips, we have found that we can achieve a more accu-

rate estimation of the protein volume using the basal radius

rather than the half-height radius in Eq. 1. We have demon-

strated this by imaging a range of proteins of known molec-

ular mass and comparing the measured volumes with the

expected volumes (31). Of course, even the new probes

will inevitably display some lateral broadening, so there

will be some overestimation of molecular volumes.

However, this effect will likely be mitigated by the reduction

in the measured vertical dimension resulting from increased

squashing of the particles, because of the higher spring

constant of the probes.

A low-magnification image of isolated ASICs is shown in

Fig. 2 A. A mixed population of particles is seen, including a

number of large particles, two of which are numbered. The
FIGURE 2 AFM imaging of ASIC1a, anti-His6 anti-

bodies, and s-1 receptors. (A) Low-magnification image

of isolated ASIC1a. The arrow indicates a trimeric cluster

of three equally sized particles, which is likely an ASIC

trimer that has bound to the mica intact and then fallen apart

during the drying process. A zoomed image of this cluster is

shown at the bottom right of the panel. A shade-height scale

is shown at the right. (B) Sections through the two particles

indicated in A, taken at the positions indicated by the lines.

The sections indicate that the shapes of the particles approx-

imate that of a spherical cap. The calculated volumes of the

particles are indicated. (C) Low-magnification image of

anti-His6 antibodies. A shade-height scale is shown at the

right. (D) Frequency distribution of molecular volumes of

anti-His6 antibodies. The curve indicates the fitted Gaussian

function. The mean of the distribution is indicated. (E) Low-

magnification image of s-1 receptors. A shade-height scale

is shown at the right. (F) Frequency distribution of molec-

ular volumes of s-1 receptors. The curve indicates the fitted

Gaussian function. The mean of the distribution is indicated.

Biophysical Journal 98(7) 1182–1191
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arrow indicates a characteristic triple subunit cluster (referred

to above), and a zoomed image of this cluster is shown in the

inset. Sections through particles 1 and 2 show that they adopt

the approximate shape of a spherical cap (Fig. 2 B). Using

Eq. 1, the volumes of the particles were calculated as 594

and 737 nm3, respectively. These values are considerably

higher than the expected value of 390 nm3 for an ASIC1a

trimer, and may indicate the presence of attached detergent,

as we have suggested previously for other multispanning

transmembrane proteins (25–27). Fig. 2 C shows a low-

magnification image of anti-His6 antibodies. A frequency

distribution of molecular volumes (Fig. 2 D) gave a mean

molecular volume of 250 nm3, close to the volume of

285 nm3 expected for a 150-kDa immunoglobulin G mole-

cule. Isolated s-1 receptor particles appeared as a spread of

small particles (Fig. 2 E), and the frequency distribution

of molecular volumes gave a mean molecular volume of

65 nm3, very close to the value of 63 nm3 expected for a

33-kDa FLAG/His6-tagged s-1 receptor.
Biophysical Journal 98(7) 1182–1191
For the reasons described above, the measured volume is

not by itself a reliable indicator of the stoichiometry of the

ASIC1a channel. To conclusively establish the stoichiometry

of the channels, they were imaged after antibody decoration.

ASIC1a complexes isolated from ASIC1a-expressing cells

were incubated with an anti-His6 antibody, which should

decorate the C-terminal His8 epitope tag present on each

subunit. Three low-magnification AFM images of ASIC1a-

antibody complexes are shown in Fig. 3 A. Several large

particles can be seen, some of which have been decorated

by either one (arrowheads) or two (arrows) smaller particles.

A gallery of undecorated and singly or doubly decorated

large particles is shown in Fig. 3 B. Of the large particles

imaged, 88.7% were undecorated, 9.8% were singly deco-

rated, and 1.5% were doubly decorated. We presumed that

the large particles represented ASICs and the smaller parti-

cles represented antibodies.

The molecular volumes of the doubly decorated central

particles (n ¼ 50) and the corresponding peripheral particles
FIGURE 3 Analysis of anti-His6 antibody binding to

His8-tagged ASIC1a. (A) Low-magnification AFM images

of a sample of isolated ASIC1a that had been incubated

with anti-His6 antibody. Arrowheads indicate singly deco-

rated ASICs; arrows indicate doubly decorated ASICs.

A shade-height scale is shown at the right. (B) Gallery of

zoomed images of ASICs that are undecorated (top) or

decorated by one (middle) or two (bottom) anti-His6 anti-

bodies. Lines indicate the angles between pairs of bound

antibodies. (C–E) Frequency distributions of (C) molecular

volumes of decorated central particles, (D) molecular

volumes of bound peripheral particles, and (E) angles

between pairs of bound peripheral particles. The curves

indicate the fitted Gaussian functions. The means of the

distributions are indicated.
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were determined and used to construct frequency distribu-

tions. The mean volume of the central particles was 600 nm3

(Fig. 3 C), similar to the volumes of the large particles seen in

the images of isolated ASICs (Fig. 2, A and B). The mean

volume of the peripheral particles was 200 nm3 (Fig. 3 D),

a little smaller than the volume determined for isolated anti-

His6 antibodies (Fig. 2, C and D). This apparent volume slip-

page from the small peripheral particles to the large central

particles is a common feature of this type of experiment (see

below) and is likely caused by the different extents of

spreading of the two types of particle on the mica substrate

(i.e., the large particle spreads out more and partially engulfs

the smaller particles). In addition to this problem of volume

slippage, measurement of molecular volumes is further

complicated by the convolution introduced by the geometry

of the scanning tip, as explained above. Hence, the measured

volume is not by itself a reliable indicator of the stoichiometry

of the channel.

To conclusively establish the stoichiometry of the

channel, we identified doubly decorated ASICs and mea-

sured the angles between the bound antibodies. This was

done in each case by joining the highest point on the central

particle (the ASIC trimer) to the highest points on the periph-

eral particles (the antibodies) by lines and then determining

the angle between the two lines. The frequency distribution

of angles obtained is shown in Fig. 3 E. The mean angle is

135�, close to the expected value of 120� for a trimeric

ASIC. The antibody decoration profile, then, strongly indi-

cates that ASIC1a assembles as a trimer. In a control exper-

iment, we incubated the isolated ASICs with anti-FLAG

antibodies. Now only 0.2% of the large particles were doubly

decorated, compared with the value of 1.5% obtained with

the anti-His6 antibody. These double-decoration events in
the control incubation likely represent occasions when the

antibodies attached to the mica close enough to the ASIC

particles to give the appearance of direct binding. These

data support our conclusion that the isolated ASICs were

being specifically decorated by the anti-His6 antibodies.

When the proteins isolated from ASIC1a/s-1 receptor

expressing cells were imaged by AFM, a spread of large parti-

cles, some of which had one or two small particles attached,

was observed. Note that the protein fraction likely contained

free s-1 receptor particles, since the s-1 construct bears a His6

epitope tag. However, these particles would be difficult to

distinguish from ASIC1a monomers, which would also

have been present, as observed in a previous study (22).

A gallery of undecorated and singly or doubly decorated large

particles is shown in Fig. 4 A. Of the large particles imaged,

87.3% were undecorated, 11.4% were singly decorated by

small particles, and 1.3% were doubly decorated. A frequency

distribution of molecular volumes of the central particles in

these complexes (Fig. 4 B) gave a mean volume of 550 nm3,

similar to the volume illustrated in Figs. 2 and 3. The fre-

quency distribution of molecular volumes of the small parti-

cles (Fig. 4 C) gave a mean volume of 50 nm3, smaller than

the volume of 65 nm3 determined for isolated s-1 receptors

(Fig. 2, E and F). Hence, volume slippage between the small

and large particles is again apparent. We conclude that the

central particles again represent ASICs, whereas the periph-

eral particles represent bound s-1 receptors. The angle distri-

bution for pairs of bound s-1 receptors is shown in Fig. 4 D.

The mean angle is 131�, very close to the value for double

decoration of the ASIC1a by anti-His6 antibodies, and also

to the expected value of 120� for a trimeric channel structure.

This result suggests that the s-1 receptors bind with a stoichi-

ometry of 1 s-1 receptor/1 ASIC1a subunit.
FIGURE 4 Analysis of s-1 receptor binding to ASIC1a.

(A) Gallery of zoomed images of ASICs that are undeco-

rated (top) or decorated by one (middle) or two (bottom)

peripheral particles. Lines indicate the angles between pairs

of bound peripheral particles. (B–D) Frequency distribu-

tions of (B) molecular volumes of decorated central parti-

cles, (C) molecular volumes of bound peripheral particles,

and (D) angles between pairs of bound peripheral particles.

The curves indicate the fitted Gaussian functions. The

means of the distributions are indicated.

Biophysical Journal 98(7) 1182–1191



FIGURE 5 Decoration of bound s-1 receptors with anti-FLAG anti-

bodies. (A) Gallery of zoomed images of ASICs/s-1 receptor complexes

that are undecorated (top) or decorated by one (middle) or two (bottom)

peripheral particles. Lines indicate the angles between pairs of bound large

peripheral particles. (B) Frequency distribution of molecular volumes of

bound peripheral particles. The curve indicates the fitted Gaussian function.

The mean of the distribution is indicated. (C) Frequency distribution of

angles between pairs of bound peripheral particles. The curve indicates

the fitted Gaussian function. The mean of the distribution is indicated.
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To confirm that the small particles seen decorating the

ASICs are indeed s-1 receptors, we incubated the proteins

isolated from the ASIC1a/s-1 receptor-expressing cells

with anti-FLAG antibodies. We have shown (above) that

these antibodies do not decorate ASICs alone; however,

they ought to decorate s-1 receptors complexed with the

ASICs. Now, large central particles (ASICs) could be seen

decorated with one or two peripheral particles, many of

which were larger than those seen in the absence of the anti-

body. Of the peripheral particles observed, 55% of the total

were large and therefore likely to be antibodies bound to s-1

receptors, whereas 45% were small and therefore likely to be

undecorated s-1 receptors. A gallery of images showing

undecorated ASICs and ASICs decorated with either one

or two large peripheral particles is shown in Fig. 5 A. Of

the ASIC1a particles imaged, 87.1% were undecorated,

6.6% were singly decorated, and 1.2% were doubly deco-

rated by larger peripheral particles. A molecular volume

distribution for the large peripheral particles is shown in

Fig. 5 B. The mean molecular volume of these particles is

210 nm3, slightly larger than the volume reported above

for the anti-His6 antibody (Fig. 2 D), consistent with the

combined contributions of a s-1 receptor and an antibody.

The angle distribution for pairs of bound peripheral particles

is shown in Fig. 5 C. The mean angle is 134�, very close to

the value of 131� for the double decoration of ASICs by the

smaller peripheral particles in the previous experiment.

When an anti-V5 antibody was used instead of the anti-

FLAG antibody, only a very low level (0.2%) of decoration

of the central particles with two larger peripheral particles

was seen. We therefore conclude that these particles repre-

sent anti-FLAG antibodies bound to the FLAG/His6-tagged

s-1 receptors, which are in turn complexed with the ASICs.

Since ligands acting at s-1 receptors are known to affect

ion channel function, we tested the effect of one of these

ligands, haloperidol, on the interaction between the s-1

receptor and ASIC1a. ASIC1a-expressing cells were trans-

fected with cDNA for the s-1 receptor and proteins were iso-

lated in the normal way, by binding to Ni2þ-agarose. In this

case, however, haloperidol (10 mM) was added to the culture

medium 48 h before cell lysis, and the drug was present at the

same concentration throughout the protein isolation. Immu-

noblotting of crude cell extracts showed that preincubation

of the cells with haloperidol did not change the expression

level of the s-1 receptor (data not shown). Hence, haloper-

idol did not cause any down-regulation of the s-1 receptor.

Isolated proteins were subjected to AFM imaging as above,

and the numbers of ASIC1a particles decorated by peripheral

s-1 receptor particles were determined. It was found that

haloperidol caused a reduction in single decoration events

from 11.4% to 6.0%, and a reduction in double decoration

from 1.3% to 0.8%. Given that the reduction in single

binding events is ~50%, we would actually expect a >50%

reduction in double binding. However, since the proportion

of double binding events is so low, and there is also some
Biophysical Journal 98(7) 1182–1191



FIGURE 6 Determination of the raft association of ASIC1a and the s-1

receptor. Cells were extracted with ice-cold Triton X-100 (1%) and subjected

to centrifugation on Optiprep density gradients. Fractions from the gradient

were analyzed by SDS-PAGE and immunoblotting using anti-ASIC1a anti-

body, anti-FLAG antibody (for the s-1 receptor), or anti-caveolin antibody

(as a raft marker).
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degree of nonspecific decoration, we believe it would be

unwise to overanalyze these data.

It has been reported that treatment of cells with the s-1

receptor ligand SKF10047 reduces the proportion of the

s-1 receptor in lipid raft fractions of the plasma membrane

(17). Drug treatment also reduced the cholesterol content

of rafts, and the raft targeting of other known raft marker

proteins, such as flotillin. These results suggest that the s-1

receptor may be able to sequester cholesterol into mem-

branes, potentially remodeling lipid rafts. Since at least

some of the targets of s-1 receptors, such as Kv1.4 and

Kv1.5, are known raft residents (32,33), and cholesterol

depletion significantly affects the kinetic properties of these

channels, it is possible that the effects of s-1 receptor drugs

may be caused by a remodeling of raft lipid content.

The ability of s-1 receptor ligands to displace cholesterol

from its binding site on the receptor may be relevant to the

observed reduction in ASIC1a/s-1 receptor coupling caused

by haloperidol in this study. We hypothesized that the func-

tional effect of the s-1 receptor on ASIC1a might be brought

about by the recruitment of ASIC1a into lipid rafts. By

reducing the ASIC1a/s-1 receptor coupling, haloperidol

might reduce this putative raft recruitment of ASIC1a. We

explored this idea by determining the effect of the s-1

receptor (with and without haloperidol) on the partitioning

of ASIC1a between raft and non-raft phases. Cells were

extracted in ice-cold Triton X-100, and the extracts were

subjected to density gradient centrifugation. It is known

that rafts resist solubilization and thus float in gradients

(34). As shown in Fig. 6, ASIC1a was found predominantly

in the lower (denser) fractions of the gradient under all three

conditions tested (ASIC1a only, ASIC1a plus s-1 receptor,

and ASIC1a plus s-1 receptor plus haloperidol). Hence,

the vast majority of ASIC1a was not raft-associated, and

its partitioning between raft and non-raft phases was not

affected by either the s-1 receptor or haloperidol. Fig. 5

also shows that the s-1 receptor itself was also predomi-

nantly excluded from rafts. In contrast, the raft marker,

caveolin, floated toward the top of the gradient, as expected,

and this behavior was not affected by the presence of the s-1

receptor.
DISCUSSION

s-1 Receptor ligands have been shown to inhibit many

different ion channels, including ASICs (19), and a number

of voltage-gated channels (4–9). The ability of s-1 receptors

to modulate ion channel activity does not require G-protein

activation or protein phosphorylation (18), suggesting that

there is a direct interaction between the s-1 receptor and

its target channels. The ability of the s-1 receptor to alter

the function of Kv1.4 channels in the absence of ligand (4)

is consistent with this suggestion. The observed coimmuno-

precipitation of the two proteins, even in a heterologous

system, also indicates a direct interaction (4), although these
findings do not rule out the involvement of another adaptor

molecule.

In this study, we used AFM imaging to visualize ASIC1a

isolated from cells that stably express this protein. The

trimeric structure of the ASIC is now well established as a

result of the recent publication of the crystal structure (21).

In a previous AFM study (22), we detected a mixture of

ASIC1a subunit monomers, dimers, and trimers, and

in some cases triple-subunit clusters were clearly visible,

confirming the trimeric structure of the channel. Here, we

show that antibody decoration of isolated His8-tagged

ASIC1a complexes reflects this trimeric structure, in that

the mean angle between pairs of bound anti-His6 antibodies

is close to the expected value of 120�. The trimeric structure

of the intact ASIC1a channel cannot be discerned directly

in the AFM images, largely as a result of the collapse of

the receptors onto the mica substrate. We have considered

the possibility that imaging under fluid might improve the

quality of our images. However, the collapse of the particles

onto the mica does not depend primarily on the medium (i.e.,

air or fluid). In fact, in a previous study, various proteins

were imaged under fluid as well as in air, and although

the measured volumes were similar in the two cases, no
Biophysical Journal 98(7) 1182–1191
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additional structural features became apparent during fluid

imaging (35). In addition, if we were to image under fluid,

the particles would appear wider because fluid-imaging

tips are blunter than air-imaging tips. This reduction in lateral

resolution would make it difficult to resolve bound anti-

bodies, and especially bound s-1 receptors, as distinct parti-

cles. For these reasons, we used imaging in air for the study

presented here.

When ASIC-expressing cells were transiently transfected

with cDNA encoding s-1 receptors, some of the isolated

ASICs were decorated by smaller particles. The mean molec-

ular volume of these particles was similar to the expected size

of the s-1 receptor; the particles were not seen when ASICs

were isolated from untransfected cells, and they were recog-

nized by antibodies against the FLAG epitope present on

the s-1 receptor construct. Hence, we are confident that the

peripheral particles are s-1 receptors. When we imaged

complexes between ASICs and s-1 receptors, the mean angle

between pairs of bound s-1 receptors was again close to 120�.
These data argue strongly for a direct 1:1 binding between the

s-1 receptor and an ASIC subunit, meaning that the ASIC

complex will bind a maximum of three s-1 receptors.

The proportion of ASICs that were decorated by one and

two s-receptors was 11.4% and 1.3%, respectively. Only a

minority (typically ~20%) of the ASIC-expressing cells

were transfected with s-1 receptor cDNA, so only this

proportion of the ASICs would be exposed intracellularly

to s-1 receptors. Of these ASICs, the proportion decorated

by one or two s-1 receptors would therefore be ~57.0%

and 6.5%, respectively, assuming that no ASIC/s-1 receptor

interaction occurred after cell lysis.

We found that the association between s-1 receptors and

ASICs was reduced by ~50% on treatment of the cells

with the s-1 receptor ligand haloperidol. However, this

uncoupling did not lead to a change in the distribution of

either protein between raft and non-raft phases of the

membrane. Our observation that the s-1 receptor is predom-

inantly excluded from rafts differs from two previous reports

that showed raft association of the receptor in MDA-MB-231

human breast cancer cells (17) and in endoplasmic retic-

ulum-derived lipid droplets in NG108 cells (36). We specu-

late that the difference in behavior of the s-1 receptor in

these studies may be a result of the different cell lines

used. The possibility remains that in these other cells, the

action of s-1 receptor ligands might affect the distribution

of the receptor and its target channels within the plane of

the membrane.

How might a reduction in coupling between the s-1

receptor and ASIC1a bring about the observed reduction in

ASIC1a-mediated membrane current (19)? The simplest

possibility is that the binding of the s-1 receptor to ASIC1a

has a direct positive modulatory role, and that haloperidol

brings about its functional effect by reducing this binding.

However, this idea runs counter to previous findings that un-

liganded s-1 receptors have a negative effect on channel
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current; for instance, s-1 receptors increase the rate of inac-

tivation of Kv1.4 and reduce the current at all voltages

when the two proteins are coexpressed in Xenopus oocytes

(4). An alternative possibility is that s-1 receptors have an

effect on the behavior of the ASIC channel akin to the inter-

action between G-protein-coupled receptors and G-proteins,

where activation of the receptor is transmitted to the

G-protein, but the affinity of the receptor for the G-protein

falls.

If the effects of s-receptors on the various ion channels

involve similar direct interactions to the one described

here, it will be revealing to see whether the 1:1 stoichiometry

between s-receptors and channel subunits is maintained. If

so, one would expect the distribution of angles between pairs

of bound s-receptors and the tetrameric voltage-gated Kþ,

Naþ, and Ca2þ channels to have two peaks, at 90� and

180�. It should be possible to test this prediction using the

type of analysis described here. We should also be able to

use this approach to screen for regions involved in the inter-

action of the s-1 receptor with its various ion channel targets.
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