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Early Aggregation Steps in a-Synuclein as Measured by FCS and FRET:
Evidence for a Contagious Conformational Change
Sangeeta Nath,† Jessika Meuvis,† Jelle Hendrix,† Shaun A. Carl,‡ and Yves Engelborghs†*
†Laboratory of Biomolecular Dynamics, Department of Chemistry & BioSCENTer, and ‡Laboratory of Quantum and Physical Chemistry,
Department of Chemistry, University of Leuven, Leuven, Belgium
ABSTRACT The kinetics of aggregation of a-synuclein are usually studied by turbidity or Thio-T fluorescence. Here we follow
the disappearance of monomers and the formation of early oligomers using fluorescence correlation spectroscopy. Alexa488-
labeled A140C-synuclein was used as a fluorescent probe in trace amounts in the presence of excess unlabeled a-synuclein.
Repeated short measurements produce a distribution of diffusion coefficients. Initially, a sharp peak is obtained corresponding
to monomers, followed by a distinct transient population and the gradual formation of broader-sized distributions of higher olig-
omers. The kinetics of aggregation can be followed by the decreasing number of fast-diffusing species. Both the disappearance
of fast-diffusing species and the appearance of turbidity can be fitted to the Finke-Watzky equation, but the apparent rate
constants obtained are different. This reflects the fact that the disappearance of fast species occurs largely during the lag phase
of turbidity development, due to the limited sensitivity of turbidity to the early aggregation process. The nucleation of the early
oligomers is concentration-dependent and accompanied by a conformational change that precedes b-structure formation, and
can be visualized using fluorescence resonance energy transfer between the donor-labeled N-terminus and the acceptor-labeled
cysteine in the mutant A140C.
INTRODUCTION
Parkinson’s disease is one of the most common neurodegen-

erative disorders. Though the cause of the disease is still

unknown, substantial evidence suggests that aggregation of

a-synuclein plays a critical role in the etiology of the disease

(1). Fibrillar aggregates of a-synuclein are found in Lewy

bodies in the brain of Parkinson patients (2,3). These Lewy

bodies are spherical protein inclusions found in the cytoplasm

of surviving nigral neurons. However, growing evidence

suggests that early intermediary oligomers, rather than mature

fibrils of a-synuclein, are the pathogenic species (1,4,5).

Alpha-synuclein is a small (14.460 Da), abundant presyn-

aptic protein that displays remarkable structural versatility. It

is an intrinsically disordered or naturally unfolded protein at

physiological conditions, but it can readily adopt an a-helical

structure when bound to membranes (6,7) or a b-sheet struc-

ture in fibrillar aggregates (8,9). The early oligomeric

intermediates before formation of the fibrillar structure are

also assumed to be very toxic to the cell (10,11) and are

able to induce leakage in vesicles. Due to their heterogeneity

and their transient nature, the identification and characteriza-

tion of early oligomers in terms of size and conformation is

very difficult.

Fluorescence correlation spectroscopy is a technique that

allows us to determine the size of molecules by analyzing

their diffusion. The diffusion of a relatively low number of

fluorescent molecules through the focal volume of a confocal

microscope causes intensity fluctuations in the detector.

Autocorrelation analysis and the construction of an autocor-
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relation curve represents one way of statistically processing

the fluctuating fluorescence trace, and from the autocorrela-

tion curve the average diffusion time of the molecules can be

obtained. When the autocorrelation curve can be fitted to one

diffusing component, the average diffusion time of the mole-

cules allows the calculation of the diffusion coefficient,

which corresponds nicely with the diffusion coefficients

obtained from other techniques such as dynamic light scat-

tering (12). Fluorescence correlation spectroscopy (FCS)

has been applied for the quantitative analysis of oligomer

formation of tubulin (12), the study of the aggregate forma-

tion of b-amyloid peptide (13), and of a-synuclein (14,15).

To apply the technique of FCS to an aggregating system,

trace amounts of fluorescently labeled molecules can be

used, in the presence of a large excess of unlabeled mole-

cules. It is then expected that during the course of aggrega-

tion, the number concentration of fluorescent species will

remain constant (due to the large excess of unlabeled mole-

cules), and the diffusion time will gradually increase. This

application of the FCS technique has the inherent problem

that the sampling time should be increased with the polymer-

ization time to allow us to observe sufficient fluctuations

from the slower moving big aggregates. Here we show that

by using short sampling times, the heterogeneity of the early

oligomers can be revealed, while bigger aggregates do not

contribute to the fluctuations. This method is analogous to

bootstrapping in statistics.

In this study, the kinetics of the aggregation process are

quantitatively analyzed by following the decrease of the

number concentration of fast diffusing species. The same

information can also be obtained directly from the fluctuating

signal, i.e., from the average count rate of the fluctuating
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signal measured in-between the big spikes observed when big

aggregates pass through the confocal volume (16,17). The

kinetics of the disappearance of oligomers can be described

using the kinetic equation of the Finke-Watzky two-step,

two-state model for an initiation by monomolecular isomeri-

zation followed by an autocatalytic conformational switching

coupled to aggregation (18–20), but the phenomenon occurs

almost completely during the lag phase of the turbidity

appearance, demonstrating the insensitivity of turbidity for

these early events. This is in agreement with other spectro-

scopic observations (21). Independent evidence for a confor-

mational change during oligomer formation is also presented

here, based on intramolecular fluorescence resonance energy

transfer (FRET) signals.
MATERIALS AND METHODS

Construction a-synuclein expression plasmid
and its point mutant A140C

The wild-type a-synuclein (140aa) and A140C mutant of a-synuclein was

expressed and purified as described before (22). The aggregation rate of

A140C mutant of a-synuclein was measured by turbidity and Thio-T signal

and is comparable to WT-SYN (23). Aggregation is induced by increasing

the temperature to 37�C or 45�C as indicated, and applying magnetic stirring

at 500 rpm.

Labeling of purified protein

The Cysteine residue at C-terminal of A140C-synuclein (200 mM) was

labeled with a 20-fold molar excess of Alexa488 C5 maleimide in 20 mM

HEPES buffer of pH 8.8. The protein was incubated for 2 h at 20�C with

magnetic stirring. Labeled protein was separated from free dye by gel chro-

matography using a double PD-10 column. C-terminal Alexa-labeled synu-

clein (C-Alexa-SYN) was used for FCS measurements.

FRET measurements were done with double-labeled synucleins (DAL-

SYN). First, the C-terminal Cysteine of A140C-synuclein was labeled simi-

larly as described above using tetra-methyl rhodamine (TMRh) as acceptor.

Then the pH was adjusted to pH 6.5–6.8 by adding HCl (0.06 N) for specific

N-terminal (a-amine) labeling with twofold molar excess of Alexa-fluor 488

carboxylic acid succinimidyl ester as donor. After incubation at 20�C for 2 h

with magnetic stirring, free dyes were removed using a PD-10 column.

Alpha-synuclein was also labeled separately with donor Alexa-488 at

N-terminal (DL-SYN) and acceptor TMRh at C-terminal (AL-SYN) simi-

larly by above described methods. The concentration of donor/acceptor

labeled-synuclein was calculated by correcting for the contribution of the

dyes to the absorbance at A277,

A277ðproteinÞ ¼ A277 � A277ðDonorÞ � A277ðAcceptorÞ;

A277ðAcceptorÞ ¼ A553ðAcceptorÞ
3277ðAcceptorÞ

3553ðAcceptorÞ
;

A277ðDonorÞ ¼
�

A493 � A553ðAcceptorÞ
3493ðAcceptorÞ

3553ðAcceptorÞ

�
3277ðDonorÞ

3493ðDonorÞ
:

The following molar extinction coefficients were used: a-synuclein

3277(synuclein) ¼ 5800 M�1 cm�1; Alexa-488 3277 (Donor) ¼ 638 M�1 cm�1;

TMRh 3277(Acceptor) ¼ 1740 M�1 cm�1; TMRh 3493(Acceptor) ¼
11,900 M�1 cm�1; Alexa-488 3493(Donor) ¼ 72,000 M�1 cm�1; and TMRh

3553(Acceptor) ¼ 85,000 M�1 cm�1 (24,25).
The stoichiometry of the Alexa-488 and TMRh in double-labeled protein

(DAL-synuclein) were 30 5 2% and 65 5 3%, respectively. Although

a-synuclein contains 15 Lys residues, at neutral pH the labeling of the

a-amino group, with an average pKa ~7.6, is more efficient than the 3-amino

groups with pKa ~10.5 (26,27). Therefore, by lowering the labeling pH

to pH 6.5–6.8 and with a labeling stoichiometry <1, we expect mainly

N-terminal labeling but cannot exclude the presence of a small fraction of

protein with labeled lysine residue. As we use the FRET signal only prag-

matically and not to calculate distances, this is not a problem.

Alexa-488 and TMRh is a well-known FRET pair, and significantly

photostable and insensitive to pH 4–10 (Molecular Probes, Invitrogen,

Carlsbad, CA) (28). We have also tested it at pH 11, where it shows no

change in fluorescence intensity and lifetime.

The kinetics of fibril formation of a-synuclein with labeled proteins were

compared using Thio-T fluorescence (Fig. S1) at pH 7.4 and 37�C, with

continuous shaking (270 rpm) in a Spectra Fluor Plus or Safire2 (TECAN,

Mechelen, Belgium). The half-life of aggregation is almost the same in

labeled and unlabeled a-synuclein. The kinetics of double-labeled synuclein

(DAL-synuclein) is significantly faster (half-life 23 5 4 h) compared to

unlabeled (half-life 40 5 3 h), but similar to the kinetics of singly labeled

a-synuclein that has undergone the same treatment (multiple pH changes)

except for the labeling itself.

Fluorescence correlation spectroscopy (FCS)

Fluorescence correlation spectroscopy (FCS) measurements were performed

on the laser-scanning microscope (i.e., LSM) LSM 510/ConfoCor II combi-

nation (Carl Zeiss, Jena, Germany). Experiments were done at a concentration

of 3–4 nM labeled protein (C-Alexa-SYN) mixed with different concentration

of unlabeled protein, to ensure that number of fluorescent molecules in the

confocal volume (0.312 fL) is limited to 1–4. The FCS measurements reveal

the presence of a small fraction (<20%) of free dye, probably due to the pres-

ence of nonspecifically bound dye molecules that are not fully removed by the

gel chromatography at 100 mM, but are released upon dilution to nanomolar

concentrations. For experiments, 100 measurements of 10 s duration were per-

formed, and each curve was fitted using the two-component model (Fig. S2),

GðtÞ ¼ 1 þ GTðtÞ � GDðtÞ;

GTðtÞ ¼
�

1 þ TRe�t=tx

1� TR

�
;

GDðtÞ ¼
�

1

N

�
8>>>><
>>>>:

�
F1

1þ t=t1

��
1

1þ ðux=uzÞ2ðt=t1Þ

�1=2

þ
�

1� F1

1þ t=t2

��
1

1þ ðux=uzÞ2ðt=t2Þ

�1=2

9>>>>=
>>>>;
;

where GT is the part of the autocorrelation curve at a fast timescale, repre-

senting the photodynamics; GD is the concentration-dependent part repre-

senting diffusion; t is correlation time; TR and tx are the amplitude and

the relaxation time of the photodynamic process; N is the average number

of particles in the confocal volume; t1 (F1) and t2(1-F1) are, respectively,

the diffusion time (fraction) of free Alexa dye and dye bound to a-synuclein;

and ux and uz are the radial and axial radii of the confocal volume, which are

determined by a calibration with Alexa-488 of known diffusion coefficient

300 mm2 s�1 (29) and are fixed throughout the fitting.

Images of fluorescent aggregates using
laser-scanning microscopy (LSM)

Confocal images of the bottom of the glass slide and of the solution (100 mm

from the glass bottom) were made using an LSM 510 (Carl Zeiss) after every
Biophysical Journal 98(7) 1302–1311
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hour of FCS measurements. Fluorescently labeled (Alexa-488) a-synuclein

was used with unlabeled protein at a dilution of 2.5 � 104-fold to visualize

aggregates. A picture was also obtained in the differential interference

contrast microscopy.

Circular dichroism (CD)

Alpha-synuclein was centrifuged for 30 min at 13,400 rpm (18,500g, in

a Galaxy 14D centrifuge; Sorvall, VWR, Belgium) to remove preexisting

aggregates. Samples were incubated at 45�C under continuous stirring.

Far-ultraviolet circular dichroism (CD) spectra were recorded on a model

No. 810 spectrophotometer (JASCO, Oklahoma City, OK) in a 1-mm

path-length cuvette at room temperature. Spectra were recorded from 195

to 260 nm with a step size of 1 nm and a scanning speed of 20 nm/min.

On average, three scans were recorded. All spectra were corrected by sub-

tracting the background spectrum of the buffer. Samples were prepared by

diluting the stock solution to 0.2 mg/mL (20 mM Tris HCl, 100 mM

NaCl, pH 7.4).

Turbidity measurements

Turbidity was measured at 350 nm with different concentration of unlabeled

a-synuclein mixed with trace amount of labeled proteins, at 45�C in 20 mM

HEPES buffer, pH 7.4 and 150 mM NaCl with constant magnetic

stirring (500 rpm). The unlabeled a-synuclein was centrifuged for 30 min

at 13,400 rpm/(18,500g) in a Galaxy 14D centrifuge (Sorvall) before

experiments.

Steady-state and time-resolved fluorescence
spectroscopy

Steady-state fluorescence measurements were done in a spectrofluorimeter

(Photon Technology International, Birmingham, NJ) equipped with a water

bath and thermostated cell holder for temperature control. All measurements

were done by exciting the donor Alexa-488 at Exmax 495 nm, and acceptor

TMRh at Exmax 557 nm with a slit-width of 2 nm.

Time-resolved fluorescence measurements were done in the microscope,

using a 466-nm pulsed laser head (model No. LDH-P-C-470; PicoQuant,

Berlin, Germany) coupled to a polarization-maintaining single-mode

fiber. The fiber is coupled to a commercially available FCS instrument,

the ConfoCor I microscope (Carl Zeiss) and the compact time-correlated

single photon counting (TCSPC) electronics of the TimeHarp 200 TCSPC

board (PicoQuant, Berlin-Adlershof, Germany) were used to control the

data acquisition. The detailed setup has been described elsewhere (30).

Measurements were done with a dichroic mirror of 470 nm, an excitation

wavelength filter of 467 5 5 nm and emission filter at 520 5 20 nm,

and a 16 MHz laser frequency with 70% efficiency (laser power 5 mW).

Light scattered at 467 nm by a D-glycogen suspension in distilled

water was collected to obtain the instrument response function. Fluores-

cence decay was measured by keeping the polarizer oriented at the magic

angle (54.7� with respect to the vertical) to eliminate anisotropy decay

artifacts.

Data analysis

The observed time-resolved decay data were deconvoluted with the instru-

ment response function. The fluorescence decay is expressed as a sum of

discrete exponentials as (31)

IðtÞ ¼
Xn

i

aiexpð � t=tiÞ;

where n is the number of discrete exponentials required to fit the decay

profile, i is the index, and ai and ti are the amplitudes and lifetimes, respec-

tively. Average lifetimes were calculated by the equation
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tm ¼
Xn

aiti=
Xn

ai:

i i

Decay parameters were obtained after iterative reconvolution using

a nonlinear least-square fit (Fig. S3). The goodness of the fit is judged by

the reduced c2 and the randomness of the distribution of the weighted resid-

uals W(t).
RESULTS

Concentration-dependent early oligomer
formation measured by FCS

Repetitive FCS measurements with a short sampling time of

10 s were used to follow the concentration-dependent early

aggregation process. Alexa488-labeled A140C-synuclein

(C-Alexa-SYN) was used as a fluorescent probe in trace

amount (3–4 nM) with different excess concentrations of

unlabeled a-synuclein. The aggregation reaction was initiated

at 45�C with magnetic stirring in HEPES buffer of pH 7.4

and 150 mM NaCl with, respectively, 50 mM, 100 mM, and

200 mM of unlabeled monomer a-synuclein. Repeated FCS

measurements (after cooling an aliquot to 20�C) of short

sampling time and autocorrelation analysis produce a distribu-

tion of average diffusion coefficients (<D>) with a single

sharp peak with diffusion coefficient of 114 5 15 mm2/s

during the initial hour, which is attributed to the monomers.

Assuming a spherical structure, a hydrodynamic radius of

1.7–2.2 nm can be calculated. The initial monomeric state

of the unlabeled a-synuclein was further checked using native

PAGE and size exclusion chromatography. In PAGE, unla-

beled a-synuclein shows almost a single band without any

higher oligomers (Fig. S4). In size-exclusion chromatography

(using a HiLoad 1660 Superdex 75 column; Amersham

Pharmacia Biotech, Piscataway, NJ) initial material shows

a single peak. After calibration of the column, a hydrodynamic

radius of 2.75 5 0.6 nm (Fig. S4) is calculated. In the litera-

ture the hydrodynamic radius varies from 2.5 to 3.7 depending

on the technique used (32–35).

With increasing time of aggregation, higher oligomers with

a heterogeneous distribution gradually appear. In between the

sharp monomer peak and the broader distribution of higher

oligomers, an intermediate sharp distribution appears with

a diffusion coefficient of 78 5 15 mm2/s (Fig. 1). Monomer

disappearance and the formation of the transient intermediate

and the heterogeneous higher oligomers are clearly concen-

tration-dependent. The sharp concentration-dependent transi-

tion of the monomer and the transient intermediate are shown

in Fig. 1. The diffusion coefficient of the linear oligomers

(of size i) can be estimated from the empirical relation i ¼
(D1 /Di)

1.72 (formula 7 from (12)). Applying this formula

for the dimer (i¼ 2) gives a calculated D2¼ 76 mm2/s, which

corresponds nicely to the experimentally observed diffusion

coefficient of the transient. However, as each individual

measurement produces an average diffusion coefficient, it

is not possible to state with certainty that this transient is



FIGURE 1 Concentration-dependent early oligomer formation of a-synu-

clein. Autocorrelation curves were obtained from repeated (100) measure-

ments with short sampling time (10 s), using A140C-synuclein labeled

with Alexa-488 as fluorescent probe in trace amount (3–4 nM) with excess

unlabeled a-synuclein. The distribution of the average diffusion coefficient

at different concentration of total protein (A) 50 mM and (B) 200 mM was

plotted, as a function of aggregation time (h).

FIGURE 2 Decreasing count rate of fluorescence with oligomerization.

(A) Gradual decrease of the count rate of the base line, with formation of

big aggregates (spikes) with increasing time of aggregation. (B) The number

of molecules (y axis), as obtained from the amplitude of the FCS curves,

correlates nicely with the average intensity (count rate) of the fluctuating

signal between the spikes.
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a pure dimeric species. For the longer timescales, <D>
becomes widely distributed, and this distribution convinc-

ingly demonstrates the heterogeneity of the sample, but it is

not possible to link this distribution to a unique collection of

the species.

Correlation of oligomer formation
with the reduction of the number of molecules
in the confocal volume

Repeated FCS measurements of 10 s sampling time show

autocorrelation curves at time zero that consistently can be

fitted with one component (Fig. S2). With increasing time

of aggregation, the repetitive measurements show a broader

distribution (Fig. S5) and an increase in the amplitude. The

amplitude reflects the inverse of the average number of fluo-

rescent molecules in the focal volume. The analysis of the

data shows that there is an increase of the fraction of free

dye and a concomitant decrease of labeled a-synuclein frac-

tion with aggregation time. In absolute terms, the number of
free dye remains constant and can be used as a kind of

internal standard. There is a significant decrease in the

number of labeled a-synuclein molecules and this decrease

is concentration-dependent (Fig. S6). It reflects the disap-

pearance of labeled molecules in big aggregates that are

excluded from the measurements. The number concentration

of labeled a-synuclein molecules correlates nicely with the

level of the fluctuating signal between the bright pulses

that appear in the signal (Fig. 2). However, the reduction

of the number concentration is not mainly due to the incor-

poration of multiple fluorescent molecules in big oligomers.

FCS measurements were done after dilution (104–105 times)

of labeled protein with unlabeled monomer a-synuclein.

Therefore, the chance of having more than one labeled mole-

cule in an oligomer is insignificant, when the aggregates are

not too big. Experimentally this is confirmed by the fact that
Biophysical Journal 98(7) 1302–1311
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the brightness of the oligomers does not increase. The spikes

are due to big oligomers with multiple labeling.
Visualization of aggregates by laser-scanning
microscopy (LSM)

Confocal images were taken at the bottom of the glass slide

and in solution 100 mm above the glass slide after every FCS

measurement. Results show precipitation of the large aggre-

gates on the glass slide at later hours. Initially when the diffu-

sion coefficients are corresponding to small oligomers, no

big aggregates are visible on the glass slide or in solution

(100 mm above the glass plate; Fig. 3, a and b). However,

at 3.5 h significant precipitation on the glass plates is visible.

Big, almost immobile, aggregates are also visible in solution

(100 mm above the glass plate) at 3.5 h (Fig. 3, c–e). Most of

the proteins are precipitated between 4 and 5 h at 100-mM

concentration.

The results seem to indicate that the sharp decrease of the

number of molecules in the focal volume is due to the precip-

itation of big aggregates on the bottom of the glass slide. In

addition, larger immobile big aggregates in solution pass less

frequently through the focal volume. The aggregates are

mostly globular in overall shape. Large fibrils are visible

after 24 h of incubation at 45�C (Fig. 3 f).
Images were also taken by differential interference contrast

microscopy to clearly visualize the precipitates on the glass

slides (Fig. S7). Several aggregates are without fluorescent

label, due to the high dilution (104–105 times) during measure-

ments with unlabeled proteins. Fluorescent aggregates are

detectable by FCS (after 3 h) earlier than the appearance of

the turbidity signal. In the absence of magnetic stirring, no
Biophysical Journal 98(7) 1302–1311
aggregation is visible by FCS in solution, nor in the image

of the glass slide, even after 7 h of incubation at 45�C with

100 mM solution. With magnetic stirring, most of the samples

show precipitated large aggregates after 5 h of incubation.

Aggregation kinetics by circular dichroism (CD)

Conformational studies were followed with aggregation at

100 mM concentration and 45�C using circular dichroism

(CD) spectra. (For CD measurements, the samples were

cooled to 20�C). The decrease of the CD spectra at 195 nm

and increase at 218 nm with aggregation indicates the forma-

tion of b-sheet. The initial monomers are unstructured. No

structural changes are visible in the CD spectra during the

initial hours. The b-sheet structures are only visible at later

hours. Intermediate spectra appeared after 4 h incubation in

the case of the 100-mM solution at 45�C (Fig. 4), when, in

FCS curves and LSM images, heterogeneous oligomeric

aggregates appear with considerably larger sizes. The forma-

tion of b-sheets clearly occurs upon the formation of large

aggregates. Electron microscopy pictures show formation

of conventional fibers after 48 h of incubation at 45�C
with magnetic stirring (Fig. S8).

Study of intramolecular fluorescence resonance
energy transfer (FRET) signal in oligomers

The conformational change that accompanies oligomer forma-

tion was studied using fluorescence resonance energy transfer

(FRET) between donor (Alexa-488) labeled N-terminus and

an acceptor (TMRh)-labeled cysteine at position A140C.

This dual-labeled a-synuclein (DAL-SYN) was used for

FRET measurements. The time-resolved measurements on
FIGURE 3 Visualization of aggre-

gates by laser-scanning microscopy.

Images were taken after each hour of

aggregation of a-synuclein at 45�C
with a concentration of 100 mM. (a)

After 2 h of aggregation when the diffu-

sion coefficient still corresponds to a

monomer, no big aggregates are visible

on the glass slide. (b) After 3 h, when

FCS measurements show a transient

intermediate corresponding to an

average diffusion coefficient of 78 5

15 mm2/s, a few big aggregates are seen

in solution (100 mm above the glass

slide) or (c) as precipitates on the bottom

of the glass slide. (d) After 3.5 h, large

(10 mm) aggregates are observed in solu-

tion and (e) as precipitates (10–20 mm)

on the bottom of the glass slide. (f) After

24 h of aggregation, big aggregates of

lengths >100 mm are precipitated on

the glass slide.



FIGURE 4 Conformational studies of aggregation using CD spectra. The

initial random coil/unstructured protein starts to form b-structure after 4 h of

incubation at a concentration of 100 mM and 45�C with stirring. After 6 h of

aggregation, the characteristic b-sheet structure is visible.
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DAL-SYN showed a significant decrease in the mean lifetime

tm ~ 3.02 ns instead of ~3.50 ns for DL-synuclein (Fig. 5 A).

The fluorescence decay curve of DAL-SYN was fitted with

a double-exponential with t1 ~ 1.55 ns (39–41% of amplitude

fraction) and t2 ~ 4 ns (58–62%), and DL-SYN was also fitted

with a double-exponential with t1 ~ 1.85 ns (22–24%) and t2 ~

4 ns (77–79%). Donor and acceptor dyes dissolved in buffer

have a single lifetime of t ~ 4 ns. This indicates that the bound

donor experiences a complex environment on the protein. All

curves were fitted with c2 values in the range of 0.95–1.15.

Although the reduction of the average lifetime in DAL-SYN

compared to DL-SYN strongly suggests FRET (as well as

the reduction of t1 and its increased amplitude), the calculation

of the FRET efficiency is quite uncertain due to the complexity

of the lifetime data.
FIGURE 5 Measurements of FRET signals by time-resolved and steady-state

SYN (~3.02 ns) is significantly shorter than DL-SYN (~3.50 ns) and than that of

rescence at Ex 480 nm with DAL-SYN shows significant quenching compared to

at acceptor wavelength. (C) DAL and AL synucleins show almost overlapping e

Concentration of DL-SYN and DAL-SYN is 40 mM.
Steady-state fluorescence of DAL-SYN shows quenching

of donor fluorescence and enhancement of acceptor fluores-

cence compared to DL-SYN and AL-SYN, respectively,

upon oligomer formation (Fig. 5 B).

An important question is whether the FRET signal of

DAL-synuclein is due to intra- or to intermolecular interac-

tions. The previously measured diffusion coefficient of the

monomers was 114 5 15 mm2/s. However, DAL-SYN at

pH 7.4 shows a distribution of diffusion coefficients with

some higher oligomers. These oligomers are likely formed

during the 2 h incubation at pH 6.5 for N-terminal donor

labeling; this is suggested by the fact that DL-SYN treated

in the same way, except for the presence of the N-terminal

label, also shows the presence of oligomers.

The intramolecular origin of the FRET signal is shown

by the fact that DAL-SYN shows only a small increase

in the average lifetime when incubated with a 50-fold

molar excess of unlabeled protein for 20 min (total concen-

tration of mixture 100 mM) (Fig. S9). Assuming monomer

exchange occurring in the oligomers, as evidenced by the

decrease of the brightness of the particles, the fact that

the FRET signal remains unchanged indicates its intramolec-

ular origin. As a control, the fluorescence lifetime of DL-

SYN remains also constant (but different) in the presence

of different concentrations of unlabeled protein. The results

convey that exchanging labeled protein for unlabeled pro-

tein does not abolish the FRET signal and that its origin is

intramolecular.

Concentration-dependent conformational change
studied by FRET

Dissociation of small aggregates/seeds of a-synuclein at

alkaline pH (pH 10–11) is well known (36). The measure-

ment of the size distribution at pH 11 showed a gradual

dissociation of the oligomers (Fig. 6 A). Alkaline pH treat-

ment also showed a gradual recovery of donor fluorescence
fluorescence. (A) The decay curves show that the average lifetime of DAL-

the free donor and acceptor (1:1) in buffer (~3.95 ns). (B) Steady-state fluo-

DL-SYN at donor wavelength and enhancement compared to AL-WT-SYN

mission spectra, when they were excited at acceptor wavelength (557 nm).

Biophysical Journal 98(7) 1302–1311



FIGURE 6 (A) Distribution of diffusion coefficients

measured by FCS. DL-SYN was incubated for 20 min at

pH 7.4 and pH 11, in the presence of 25-fold excess of

unlabeled-SYN. The histograms were constructed from

repeated (100 times) measurements during 10 s. (B)

Recovery of the long donor lifetime in DAL-SYN after

incubation at pH ~ 11 and 20�C for increasing time inter-

vals. The fluorescence decay was measured by TCSPC.

All measurements were done with 140 mM of total concen-

tration, where the ratio of unlabeled/DAL-SYN is 20:1. (C)

Kinetics of dissolution of intermediates was measured by

increase of the donor fluorescence signal (Ex 490 nm/Em

520 nm) using 4 mM of DAL-SYN at 37�C and pH ~ 11

in presence of increasing concentration of unlabeled-

SYN. (D) Reassociation kinetics measured by the decreas-

ing donor fluorescence, due to FRET, at pH 7.4 after initial

complete dissociation of DAL-SYN at pH 11 and 37�C at

50 mM total concentration.
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(Ex/Em 490/520 nm) in time-resolved fluorescence measure-

ments (Fig. 6 B). All measurements were done with 140 mM

of total protein concentration with labeled/unlabeled synu-

clein (1:20). The results showed a gradual recovery of the

average donor lifetime with time of pH treatment.

The FRET results suggest dissociation of early intermedi-

ates/oligomers at pH ~11, in agreement with the observed

size distributions (Fig. 6 A). Intensity and lifetime of DL-

synuclein is independent of pH 11. Because FRET is intra-

molecular, the result strongly suggests a strict linkage

between the conformational change and the oligomerization.

Dissociation kinetics of early intermediates were also

followed at steady state (Ex/Em at 490 nm/520 nm) from

the increase of the donor signal at pH ~11 and 37�C
(Fig. 6 C). The result of the dissociation kinetics is con-

centration-dependent, where increasing concentrations of

unlabeled-SYN were mixed with 4 mM of DAL-SYN. At

higher concentrations, the dissociation rate is slower, and

longer times are needed for complete dissociation of the

intermediates.

The formation of the intermediates and the reassociation

kinetics were followed at pH 7.4 for 4 h at 45�C with

magnetic stirring, after initial dissociation of the intermedi-

ates at pH ~11 (Fig. 6 D). It is assumed that after 30 min

incubation at pH ~11 of 50 mM a-synuclein, all molecules

are dissociated into monomers. The results show that the

FRET signal was not irreversibly lost at alkaline pH, and

after returning to pH 7.4, a gradual decrease of donor signal

during the early association process (initial 4 h) occurred.

The concentration-dependency of the recovery of the

FRET-signal at pH 11 further suggests a strong linkage

between the conformational change and the association and

dissociation of the protein.
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DISCUSSION

Early oligomers

In this study, we have been able to follow the initial steps of

a-synuclein aggregation-forming early oligomers. Previ-

ously formation of higher oligomers and their heterogeneity

was characterized, but by using different methods, such as

AFM and FIDA (37). Here, FCS was used to follow the

disappearance of the monomers and the concentration-

dependent early oligomer formation and the development

of their heterogeneity directly in solution during the process

of aggregation. Immediately after the initiation of the reac-

tion, repetitive FCS measurements with short sampling

time reveal a very narrow distribution of diffusion times,

indicating the presence of monomeric protein. An interme-

diate sharp distribution appears as a transient before the

formation of significant heterogeneity (Fig. 1), with a diffu-

sion coefficient of 78 5 15 mm2/s. This value corresponds

nicely with the diffusion coefficient of a linear dimer, but

it cannot be excluded that this value represents a mixture

of monomers and small oligomers.

In the later phase of the aggregation, the FCS measure-

ments result in a broad distribution of average diffusion coef-

ficients. The transition from the sharp initial distributions to

the broad distribution of oligomers is relatively sharp and

rapid (Fig. 1).
Kinetic analysis of early oligomer formation

The kinetic studies of many aggregating or polymerizing

systems have been compared recently in a nice comprehen-

sive overview (18–20) and most aggregation processes can

be described by a simple two-state two-step model,



TABLE 1 Observed rate constants obtained from fitting [A]t or [B]t using Finke-Watzky equations

Initial concentration

of monomer

Appearance of polymer by turbidity Disappearance of monomer by FCS

k1 (h�1) k2 (mM�1 h�1) k1 (h�1) k2 (mM�1 h�1)

50 mM 0.0023 5 0.0034 0.0096 5 0.0045 0.014 5 0.019 0.018 5 0.008

100 mM 0.0010 5 0.0006 0.0081 5 0.00081 0.045 5 0.03 0.013 5 0.003

200 mM 0.0010 5 0.0003 0.0043 5 0.0002 0.34 5 0.09 0.007 5 0.002

The rate constants were obtained from fitting the model to the data collected at 45�C with continuous stirring (500 rpm).

FIGURE 7 The kinetics of polymerization was fitted with Finke-Watzky

equation describing the extent of reaction as a function of time. Curves (with

open symbols) were fitted with the equation for the disappearance of the

monomer (or A) at (,) 50 mM, (6) 100 mM, and (B) 200 mM. The curves

with the solid symbols were fitted with the equation for the appearance of

polymer (or B) at the concentrations (-) 50 mM, (:) 100 mM, and (�)
200 mM dotted lines are the curves for the disappearance of monomers,

calculated as the mirror image of the appearance of turbidity data fitted

with equation B.
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A /
k1

B;

A þ B /
k2

2B;

where A represents the protein in the nonpolymerized state in

conformation A and B the monomers in conformation B. The

second step is an autocatalytic step of induced conforma-

tional switching upon bimolecular interactions, and therefore

B is a contagious state. The way that the model is usually

used in data analysis implies that [B] represents the total

concentration of protein in the polymeric state. The model

assumes, further, that each monomer in a polymer is acces-

sible for further aggregation.

The model can be described by rate equations that can be

integrated, leading to the Finke-Watzky equation (18–20)

describing the extent of the reaction as a function of time,

either as the disappearance of A or the appearance of B:

½A�t¼

k1

k2

þ ½A�0

1 þ k1

k2½A�0
exp
�
k1 þ k2½A�0

�
t
;

½B�t¼ ½A�0�½A�t:

The problem of linking the equation to experiments is to find

a technique that produces a signal that measures uniquely and/

or correctly [B]t or [A]t. The kinetic analysis is usually limited

to the fitting of the [B]t equation to data concerning aggregate

formation from turbidity or Thio T fluorescence. When plot-

ting our data, i.e., the concentration of fast moving species as

a function of time and the appearance of turbidity, S-shaped

curves are obtained that can indeed be fitted to the two

Finke-Watzky equations, but the rate constants obtained

from fitting [A]t or [B]t are different (Table 1). This corre-

sponds with the fact that the fast oligomers, as seen by FCS,

disappear almost completely before the development of

a significant signal from turbidity, or from CD (b-structure

formation) (Fig. 7). This demonstrates the presence of an

autocatalytic conformational change taking place in the olig-

omeric intermediates and before fibril formation with b-struc-

tures. Moreover the rate constant for the conformational

switching (k1) is strongly concentration-dependent (Fig. 7),

indicating that the conformational switching occurs upon

molecular encounters. A more detailed kinetic analysis should

involve a multistep process, describing explicitly the forma-

tion of early oligomers as distinct from the overall formation
of B in the two-step model. However, such a detailed analysis

is somewhat premature, as all the rate constants are so-called

observed-rate constants, dependent on the rate of stirring.

Further aggregation and b-sheet formation

Once the FCS measurements start to show broad heteroge-

neous distributions, large immobile aggregates are formed

in solution and precipitates on the glass plates (2–10 mm)

are clearly visible in the confocal images (Fig. 3). Aggregates

are mostly globular in overall shape in the confocal micro-

scope. Fibrillar structures are visible after 24 h of aggregation.

Large precipitates and aggregates are almost immobile and

pass through the confocal volume very infrequently (Fig. 2).

The time sequence of the CD spectra shows that the signif-

icant increase of b-structure only happens after the develop-

ment of higher oligomers in FCS data (Fig. 4). Therefore, it

can be concluded that the autocatalytic conformation does

not yet have a b-structure.

Evidence for conformational switching from FRET
studies

Conformational studies were done with oligomers, which

are formed at pH 6 during the labeling with a donor at the
Biophysical Journal 98(7) 1302–1311
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N-terminal of the protein. These oligomers may not be

exactly similar in size to those formed during our FCS

studies with the singly (Alexa-488) labeled protein at the

terminal cysteine. However, the measured diffusion coeffi-

cients reflect comparable sizes. Therefore, studies were

done to see the effect of oligomerization on the conforma-

tion. In the past, formation of partially folded intermediates

of a-synuclein were reported before structured fibrillation

(21,34,38,39), which was based on a variety of techniques.

Our FRET study shows (Fig. 6 D) that aggregation of

a-synuclein at early hours (<4 h) is accompanied by a

conformational change. Dissociation of the oligomers (which

formed at pH 6) at pH 11 causes recovery of the donor signal

(Fig. 6). The concentration dependence of the recovery of

the donor fluorescence with dissociation at alkaline pH

(pH 11) suggests that the conformational change is strictly

associated with oligomerization. Recently, evidence for a

pH-dependent conformational change was also obtained by

nuclear magnetic resonance techniques (39).

The formation of a-synuclein oligomeric species before

the formation of larger structures and fibrils has been shown

before (4,40) as well as their potential role in cell death

(10,37). Therefore, the detection and the characterization

of early oligomeric species is very important. Although

this FCS method, using short sampling times, cannot detect

the exact sizes of the species and their exact distribution,

the method is quite sensitive to the formation of early aggre-

gates and more sensitive than methods that only detect

overall aggregate formation like turbidity, and Thio-T

fluorescence. Moreover, these measurements are not suffer-

ing from the contribution of the big aggregates and their

precipitation.

It is important to note that while this manuscript was in

revision, a study by mass spectroscopy was published that

also showed the presence of dimers and early oligomers (41).
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