
Brain Imaging Techniques and Their Applications in Decision-
Making Research

Gui XUE1, Chuansheng CHEN2, Zhong-Lin LU1, and Qi DONG3
1 Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
2 Department of Psychology and Social Behavior, University of California, Irvine, Irvine, CA
92697-7085, USA
3 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
100875, China

Abstract
Advanced noninvasive neuroimaging techniques such as EEG and fMRI allow researchers to directly
observe brain activities while subjects perform various perceptual, motor, and/or cognitive tasks. By
combining functional brain imaging with sophisticated experimental designs and data analysis
methods, functions of brain regions and their interactions can be examined. A nascent field called
neuroeconomics has recently emerged as a result of the enormous success of applications of
functional brain imaging techniques in the study of human decision-making. In this article, we first
provide an overview of brain imaging techniques, focusing on the recent developments in
multivariate analysis and multi-modal data integration. We then present several studies on risky
decision making, intertemporal choice, and social decision making, to illustrate how neuroimaging
techniques can be used to advance our knowledge on decision making. Finally, we discuss challenges
and future directions in neuroeconomics.
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The last 20 years have witnessed the emergence and rapid development of the field of cognitive
neuroscience. This new field combines two traditionally distinct disciplines—cognitive
psychology and neurology—to address the neural underpinnings of human cognition. The
impact of cognitive neuroscience has been felt beyond psychology and extended to disciplines
as diverse as anthropology, philosophy, linguistics, sociology, and economics. This article aims
at providing readers with an overview of the recent advances in neuroimaging techniques and
their applications in the study of human decision-making.

Brain Imaging as a Window into the Mind
Many brain imaging tools are available to cognitive neuroscientists, including positron
emission tomography (PET), near infrared spectroscopy (NIRS), magnetoencephalogram
(MEG), electroencephalography (EEG), and functional magnetic resonance imaging (fMRI).
We focus on EEG and fMRI in this article because they are the most widely used tools.
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Electroencephalography (EEG)
First discovered about a century ago, EEG measures electrical activities of the brain from
electrodes placed on the scalp. Usually, EEG is collected from tens to hundreds of electrodes
positioned on different locations on the scalp. Most EEG systems used in cognitive
neuroscience research today employ 64 to 256 electrodes.

Scalp EEG represents the aggregates of post-synaptic currents of millions of neurons. The
recorded EEG signals usually reflect two types of brain activities, spontaneous and event-
related activities. Spontaneous EEG reflects neuronal responses that occur unprovoked, i.e.,
in the absence of any identifiable stimulus, with or without behavioral manifestations.
Spontaneous EEG has long been used in clinical settings to evaluate seizure disorders, and has
not been used often in cognitive neuroscience research (but see Williamson, Kaufman, Lu,
Wang, & Karron, 1997). Recently, there are growing interests in examining how the
background brain activities as measured by spontaneous EEG affect current cognitive activities
(Ergenoglu et al., 2004; Romei et al., 2008). In addition, spontaneous EEG may hold the key
to unraveling the patterns of functional connectivity and synchronicity among brain regions
underlying the states of consciousness (also known as the default network) (Mantini, Perrucci,
Del Gratta, Romani, & Corbetta, 2007). By combining with resting-state fMRI, generators of
spontaneous EEG activities can be localized (Salek-Haddadi, Friston, Lemieux, & Fish,
2003).

Event-related potentials (ERPs) are associated with specific stimuli or thoughts. The
amplitudes of ERPs tend to be low, ranging from less than a microvolt to several microvolts,
compared to tens of microvolts for spontaneous EEG. To detect these low-amplitude potentials
against the ongoing background EEG, EKG (cardiac artifacts), EMG (muscle activation
artifacts) and other biological signals and ambient noise, repeated stimulus presentations and
signal processing techniques (e.g., averaging) are required in ERP studies. The major
techniques to detect event-related potentials can be divided into two categories, time-locked
averaging techniques and spectral analysis techniques. Time-locked averaging techniques are
usually used to detect evoked activities, which are time-locked to the presentation of stimuli.
Because most noise occurs randomly, time-locked averaging techniques can greatly reduce the
noise while preserving the event-related signals in the EEG. Time-locked averaging can be
either stimulus-locked or response-locked.

In addition to time-locked responses, there may also be signals in the EEG that are related to
stimulus processing without a well-defined temporal relation to the event. These responses are
called induced activity. An example of induced activity is oscillatory activity (e.g. gamma
oscillations), which might have a different phase in each single measurement and therefore
would cancel one another in time-locked averaging. However, induced activity can be detected
using spectral analysis, in which EEG recordings are decomposed into a number of frequency
(sinusoidal) components, such as delta (0-3Hz), theta (4-7Hz), alpha (8-12Hz), beta (12-30
Hz), gamma (30-50 Hz), and high gamma (80-150 Hz). Among the various spectral analysis
techniques, Fourier transform (FT) is traditionally the preferred method because it is time-shift
invariant in both the time and frequency domains. However, in FT, any time-varying spectral
content of the signal is ignored because it assumes that the signal is stationary over time. This
assumption is in contradiction to the fact that EEG signals are non-stationary. To overcome
this limitation, Wavelet transform (WT) is now considered to be more suitable than Fourier
transform in analyzing induced activities (Akin, 2002).

Functional magnetic resonance imaging (fMRI)
fMRI is one of the most recently developed forms of neuroimaging technique. Since the early
1990s, fMRI has become the dominant method in cognitive neuroscience because of its low
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invasiveness, lack of radiation exposure, and relatively wide availability. In the brain, neural
activities often lead to metabolic activities such as increased blood flow and oxygen supply to
the local vasculature. Several techniques can be used to detect changes of metabolic activities
following neural activities, including contrast fMRI, blood-oxygen-level dependent (BOLD)
fMRI, and perfusion fMRI. Contrast fMRI requires injection of contrast agents, such as iron
oxide coated with sugar or starch. The signals associated with contrast agents are proportional
to the cerebral blood volume (CBV). Although this method can provide relatively strong
signals, researchers are reluctant to use this semi-invasive method with healthy volunteers.
Perfusion fMRI uses “arterial spin labeling” (ASL) to magnetically label hydrogen nuclei in
the arterial blood and then images their distribution in the brain. This method is sensitive to
cerebral blood flow (CBF), which is considered as a good correlate of neuronal activity. This
method does not require any contrast agents. Compared to the BOLD responses (to be discussed
below), the signal in perfusion fMRI is more stable and the noise is much whiter. However,
the relatively weak signal and the length of image acquisition time have limited the use of
perfusion fMRI in cognitive neuroscience.

Currently, the most widely used fMRI method is BOLD imaging, which detects the difference
in magnetic susceptibility between oxygenated hemoglobin and deoxygenated hemoglobin.
Hemoglobin is diamagnetic when oxygenated but paramagnetic when deoxygenated. The
magnetic property of blood therefore depends on its oxygenation level. Although neuronal
activities consume some oxygen, the increase in blood flow following neuronal activities
supplies more oxygen than the neuronal consumption, resulting in an increase in oxygenated
hemoglobin and therefore increased BOLD response. Although BOLD fMRI is an indirect
measure of neuronal activities, there is strong empirical evidence that the BOLD signals are
highly correlated with neuronal activities (Logothetis et al., 2001). Because the BOLD signals
are usually stronger and require less time to acquire than perfusion signals, BOLD fMRI is
more popular than perfusion fMRI.

One major technical challenge for fMRI is that the hemodynamic responses are relatively slow,
weak, and noisy. The typical BOLD hemodynamic response following a single stimulus event
starts to rise after 1 to 2 seconds, peaks at 4-6 seconds, and returns to its baseline after 12-16
seconds. The typical BOLD signal change following a single stimulus event captured on a 3T
scanner is about 1-2% and varies greatly across different event types and different brain regions.
To increase the statistical power of fMRI studies, many repetitions of the same event type are
necessary. In the early years of fMRI research, block design, in which the same types of stimuli
are grouped together in each block, was used in many studies. A block design can generate
strong BOLD signals that are relatively easy to process. However, block design has several
limitations. First, in some experimental paradigms, the events cannot be blocked. For example,
in an oddball paradigm, the target trials are presented amongst more common stimuli. Such
target trials cannot be blocked. Second, in some experiments, the nature of each particular trial
cannot be predetermined to allow for a block design. For example, in memory research, trials
remembered vs. forgotten cannot be discovered prior to the recall/recognition test. Similarly,
trials won vs. lost in a gambling task cannot be known prior to subject's response. It is therefore
impossible to use a block design to examine the neural bases of winning vs. losing bets or
remembering vs. forgetting. To overcome these limitations, event-related design was
introduced. The early event-related design studies usually used long inter-trial intervals (12 to
20 s) to avoid the overlap of the BOLD responses between trials. Slow event-related designs
turned out to be very boring for subjects and were highly inefficient in data collection. Currently
fMRI studies usually use rapid event-related designs, in which different types of events are
pseudo-randomly mixed together. Two key features of rapid event-designs are trial order
randomization and random time jittering between trials (Xue, Dong, & Zhang, 2003a). The
development of rapid event-related design has significantly changed cognitive neuroscience
research (Xue, Dong, & Zhang, 2003b). A third type of design is the mixed design, which
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combines the block design and the event-related design (Wang & Dong, 2007). In a mixed
design, trials from different conditions are grouped into blocks, and also randomly jittered
within blocks. An obvious advantage of the mixed design is the reduction of switches between
different experimental conditions, e.g., decision making under a winning situation and under
a losing situation (e.g., Xue et al., 2008). In studies of cognitive control, the mixed design can
also help to dissociate sustained cognitive control and transient cognitive control (Wang, Kuhl,
Chen, & Dong, In press).

In order to identify the regions that show significant signal changes in response to a task (thus
presumed to be involved in that task), imaging data must be analyzed with statistical methods.
Many techniques have been developed. Currently, most analysis approaches, for both block
and event-related designs, have been integrated into the general linear model (GLM)
framework (Friston et al., 1995). The aim of the GLM is to explain the variance in the BOLD
time course (i.e., the BOLD signal acquired from the scanner) in terms of a linear combination
of explanatory variables (i.e., the experimental design matrix) and an error term. By finding
the magnitudes of the parameters that corresponds to each variable in the design matrix, the
presence or absence of activation can be detected. In the GLM model, one can either assume
the shape of the BOLD response function (e.g., a double-gamma function) and then simply
estimate the amplitude of the response, or do not assume the shape of the BOLD response
function and estimate the amplitude of each time-point of the BOLD response, resulting in an
estimate of the shape of the BOLD response for each event type. The latter method is commonly
called deconvolution. Obviously, with deconvolution, more parameters must be estimated and
the results are always noisier. The advantage of deconvolution, however, is that the results are
less affected by the theoretical shape of the BOLD response function.

Comparison of EEG and fMRI
EEG and fMRI have their respective strengths and weaknesses. Ideally experiments employing
these methods must be carefully designed and conducted to maximize their strengths and
minimize their weaknesses. The most salient feature of EEG is its high temporal resolution at
a level of milliseconds. It is also a direct measure of neuronal response. Nevertheless, EEG has
several limitations. First, EEG is only sensitive to post-synaptic potentials generated in the
superficial layers of the cortex. It is not sensitive to neuronal responses from structures that are
deep in the brain, such as the striatum or hippocampus. In addition, currents that are tangential
to the skull make little contribution to the EEG signal. Second, the spatial resolution of EEG
is very low. Third, it is almost impossible to reconstruct a unique intracranial current source
distribution for a given EEG signal, although substantial recent progress has been made in this
area.

In contrast, fMRI has high spatial resolution and a comprehensive coverage of the whole brain.
Conventional BOLD fMRI has a typical spatial resolution of 3-6 millimeters; high resolution
fMRI can reach about 1 millimeter spatial resolution at the expense of whole-brain coverage.
fMRI is sensitive to the BOLD signals from both the cortical surface and deep brain structures.
The only limiting factor for coverage is susceptibility artifacts in the ventromedial prefrontal
cortex and temporal poles. This problem has been partly resolved by some newly developed
scanning sequences, or by using contrast fMRI and perfusion MRI. The major limitation of
fMRI is its temporal resolution because the BOLD response is very slow. Moreover, the BOLD
signal is only an indirect measure of neuronal activity, and is therefore susceptible to influence
by many physiological activities of the body that are un-related to neuronal processes.

Recent Advances in Neuroimaging Techniques
Functional brain imaging is a rapidly developing field. Many new techniques and
improvements to existing techniques continue to emerge. Some recent examples include the
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development of simultaneous high-intensity EEG and high field fMRI recording techniques,
new data acquisition protocols, better data preprocessing methods, and better analysis models
to improve the sensitivity in detecting the BOLD responses. Among all these advances, two
most significant developments are multivariate analysis and multi-modal data integration.

Multivariate Analysis
Traditional data analysis methods treat each single voxel as an independent measure of brain
activity. The BOLD responses in surrounding voxels are usually averaged (through certain
types of spatial filters) in order to increase statistical power. The BOLD responses are usually
thresholded to generate activation maps. Although averaging and thresholding help to reduce
noise, they also remove potentially useful information. Second, the univariate approach does
not explore interactions among different brain regions. In recent years, multivariate analysis
methods are increasingly used in fMRI data analysis. For example, multiple-voxel pattern
analysis (MVPA) has been used to identify the subtle differences in activation patterns across
voxels, whereas neural connectivity analysis has been used to examine functional interactions
among brain regions.

In the first fMRI study that used pattern analysis methods, Haxby et al. (2001) illustrated that
activation patterns of distributed voxels in the ventral visual pathway can be used to effectively
discriminate which types of visual objects participants were viewing. In this study, they asked
subjects to passively view several categories of visual objects (e.g., faces, houses, chairs, shoes,
bottles) that were grouped in blocks. The imaging data from each category were split in half
(i.e., odd blocks vs. even blocks). They first used the GLM approach to identify the responses
in the ventral temporal cortex (VTC), separately for each half of the blocks and for each
category. Unlike the traditional approach, they did not smooth the data, nor did they threshold
the statistical maps. Instead, they extracted the pattern of activation within VTC for each
category, as well as for each half of the blocks, and then calculated the within-category
correlation (e.g., the first-half patterns with the second-half patterns) and between-category
correlation (e.g., “faces” vs. “houses”). The results indicate that each category was associated
with a reliable and distinct pattern of activity in the VTC (i.e., the degree of within-category
match was significantly higher than the degree of between-category match), challenging the
view that these visual categories are processed in isolated brain regions. More significantly,
this study demonstrates that the multivariate approach is able to provide a high degree of
discrimination across different mental states, suggesting the superiority of pattern analysis over
the traditional approaches.

Following this seminal study, many more sophisticated pattern-classification algorithms, such
as support vector machines (SVM) (e.g., Mourao-Miranda, Bokde, Born, Hampel, & Stetter,
2005) and linear discriminant analysis (LDA) (e.g., Hampton & O'Doherty J, 2007), have been
used in fMRI data analysis. These methods have significantly improved the sensitivity of the
MVPA approach. For example, in the correlational approach, all voxels have the same
discrimination weight, whereas the SVM approach can identify the voxels that maximize the
margin between the two states (i.e., the support vectors), and thus assign the optimal
discrimination weights to the voxels. These pattern-analysis algorithms usually include a
training/learning stage and a test stage. In the training stage, the fMRI data and their associated
mental states are both submitted into the learning algorithms to develop a classifier for each
mental state. In the test stage, only the fMRI data that are not used for training are supplied to
the classifiers to examine whether the classifiers can correctly label the associated mental states.
Using these approaches, researchers have shown that fMRI responses can be successfully
decoded as neural representations of different visual objects (Haxby et al., 2001), different
word types (Mitchell et al., 2008), and different mental mathematical manipulations (e.g.,
addition vs. multiplication) (Haynes et al., 2007).
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Both the traditional GLM approach and the MVPA approach can address the question of
functional localization, with the former focusing on discrete brain regions and the latter on
contiguous groups of brain voxels. However, results from these analyses suggest that even a
very simple cognitive function may involve a large cooperative and/or competitive neural
network. These findings point to the importance of understanding the communications and
interactions among different brain regions when studying brain functions. A number of neural
connectivity analysis (NCA) approaches have been developed to address this issue.

The simplest neural connectivity analysis approach is functional connectivity analysis, which
is developed to evaluate coupling of neural activations in different brain regions. This can be
done by simply extracting BOLD responses in two brain regions and calculating their
correlation. As an extension of the method, the time course of the BOLD response in one brain
region can be extracted and correlated with that of the rest of the brain. This approach can
provide a comprehensive connectivity map of the whole brain with one particular region.
Although the same method can be used to examine mutual connectivities of each voxel/region
in the brain, the resulted connectivity map is usually very complicated. Additional informatics
techniques are necessary to characterize the connectivities. For example, it has been shown
that connectivities among brain regions during resting states exhibit “small-world” attributes,
i.e., high levels of clustering and short path lengths (Hagmann et al., 2008).

Another approach is to examine how different tasks and mental states modulate functional
connectivity. Friston and colleagues (1997) developed a method called psychophysiological
interaction (PPI) to address this issue. They rely on task- or context-dependent inter-regional
covariance to determine statistically associations among brain activities in different regions.
However, all functional connectivity approaches are based on correlations, and therefore
cannot be used to identify the directions and causal relations of the connections (i.e., effective
connectivities).

A number of other approaches have been developed to examine effective connectivities. For
example, covariance modeling (e.g., structural equation model, SEM) has been used
successfully to evaluate effective connectivities among a given set of brain regions when
subjects perform a particular task. It can also be used to test the differences in effective
connectivities involved in different cognitive tasks, thus illustrating the time- and task-
dependent nature of these patterns (McIntosh & Gonzalez-Lima, 1994). It shall be kept in mind
that SEM makes causality inferences based on the covariance structure but not temporal
information of neural activities in different brain regions. A causality model that emphasizes
temporal information is the Granger causality model (Goebel, Roebroeck, Kim, & Formisano,
2003). This model, for example, has been applied to EEG as well as fMRI time series and has
provided information about directional interactions between neural elements in cognitive tasks
(Brovelli et al., 2004).

Dynamic Causal Modeling (DCM), developed by Friston et al. (2003), is based on the
construction of a reasonably realistic neuronal model of interacting cortical regions with
neurophysiologically meaningful parameters. The idea is to use a full Bayesian approach to
estimate neuronal responses from the measured BOLD response data. Applications of DCM
have examined modulatory effects of attention on connectivity in the visual system (Mechelli,
Price, Friston, & Ishai, 2004). The DCM approach has also been expanded to model EEG and
MEG data (David et al., 2006). It is important to note that both SEM and Granger causality
model make causal inferences based on the BOLD response, but not neuronal activities.

Multi-modality data integration
Another significant development in functional imaging is multi-modality data integration. In
a sense, like reaction times and many other physiological responses, functional imaging is just
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another measure of human brain activities. Each of these measures provides different insights
into the human mind. In addition, as mentioned before, different functional imaging techniques
measure different aspects of brain responses and have their own strengths and limitations. Thus,
integrating different measures is not only useful but very necessary. There are four types of
integrations. First, different imaging techniques can be integrated to take advantage of their
respective strengths. Second, behavioral and functional imaging data must be integrated when
interpreting imaging results. Third, data on brain structures and functions must be integrated.
Finally, there are also methodological reasons to integrate multi-modality data. For example,
recordings of subjects' head movement, eye blinking, breathing, and heart rates can be used to
reduce the noise in functional imaging data. Using multi-modal data to reduce noise in fMRI
has become a standard affair in modern functional imaging analysis. We focus on the first three
types of integrations in the following sections.

Multi-modality data integration has not only furthered our understanding of old problems, but
also addressed many new questions. For example, researchers have long been puzzled by the
sources of resting-state BOLD fMRI. Mantini et al. (2007) recorded simultaneous EEG and
fMRI when subjects were instructed to lie down quietly in the scanner without thinking about
anything. Using independent component analysis on the fMRI data, they identified six widely
distributed resting state networks. The BOLD signal fluctuations associated with each network
were correlated with EEG power variations in the delta, theta, alpha, beta, and gamma bands.
Each functional network was characterized by a specific electrophysiological signature that
involved combination of different brain rhythms (Mantini et al., 2007). Another classical
example is to identify the relationship between the BOLD response and neuronal activities.
Logothetis et al. (2001) simultaneously recorded neuronal activities (single neuron spikes and
local field potentials) and the BOLD responses on monkey subjects, and found that the BOLD
responses were highly correlated with local field potentials, providing support that the BOLD
responses at least partially reflect neuronal activities. Similar studies have been conducted on
human patients (due to the invasive nature of this procedure) and have generally confirmed
this observation (Nir et al., 2007)

The multi-modality data integration approach has also been used to identify the relationship
between anatomical connectivities and functional/effective connectivities. In a recently study,
Hagmann et al. (2008) found a very high degree of overlap between structural and functional
connectivities by combining diffusion spectrum imaging (a non-invasive method to examine
the white-matter anatomical connectivities) and resting-state fMRI imaging.

One of the ultimate goals of cognitive neuroscience is to use functional imaging to reveal the
neural basis of human behavior. At a minimum, behavioral data must be correlated with fMRI
data. As illuminating as such correlations may be, it is even more important to have such
analyses guided by computational models. Recent successful applications of the state-space
model (Law et al., 2005; Smith et al., 2004) and reinforcement-learning model (Sutton & Barto,
1998) in imaging illustrates the importance of theory-driven integration of behavioral and
imaging data (O'Doherty et al., 2004). As it will become clear in the next section, an important
feature of neuroeconomics research is the integration of functional imaging with decision-
making models from economic research. Computational models and theories provide important
hypotheses to guide imaging data analysis.

In sum, cognitive neuroscience has experienced a rapid development, in large part due to recent
advances in functional imaging techniques and their obvious advantages over traditional
neurological and animal physiological methods. Cognitive neuroscience has become highly
influential not only in the field of neuroscience and psychology, but also in disciplines such as
sociology, economics, and philosophy. Researchers of different disciplines have begun to use
brain imaging to connect human behaviors with brain activities. Among the most rapidly
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developing areas is neuroeconomics, which combines cognitive neuroscience with
experimental and behavioral economics. In the next section, we provide some illustrative
examples of research in neuroeconomics.

Neuroeconomics: Applications of Brain Imaging in Decision Making
Research

Neuroeconomics is a multidisciplinary area of research that incorporates neuroscience,
economics, and psychology, with the goal of building a biological model of decision-making
in economic environments. By combining techniques from cognitive neuroscience and
experimental economics, neuroeconomic studies examine how real-time neural activities are
associated with various decision making processes, such as evaluating options, assessing risks
and rewards, making decisions, and interacting with others who may be affected by the
decisions (Camerer, Loewenstein, & Prelec, 2005).

Before the emergence of neuroeconomics, researchers in behavioral economics had developed
various models to describe, predict and guide human economical decision-making. These
models can be roughly divided into two categories. One category, the so-called normative or
prescriptive models, is about optimal decisions. By assuming people are absolutely rational
and fully informed, and possess unlimited computational power, these models describe how
people should make optimal decisions. The other category, the so-called predictive or
descriptive models, is about how people actually make decisions in real life. One focus of
neuroecnomics is to understand why people often do not make optimal decisions, i.e., neural
mechanisms of irrationality.

Research in neuroeconomics covers a wide range of topics. In the first comprehensive
handbook in this field, Neuroeconomics: Decision Making and the Brain, there are 33 chapters
and the topics range from axiomatic neuroeconomics to social preference in primates. Due to
space limitation, the current article focuses on three specific areas, decision under uncertainty,
intertemporal choice, and game theory. For each area, we first introduce the general research
questions and then review some representative studies to exemplify the diverse set of research
topics in neuroeconomics.

Decision under uncertainty
Many decisions, such as whether to invest in the stock market or to accept a new job, involve
the possibility of gaining or losing relative to the status quo. The economics literature makes
distinctions between two types of decision-making under uncertainty, decision under risk and
decision under ambiguity. When the probabilities of the possible outcomes are known to the
decision maker, such as in the dice game, gambling on a roulette wheel, and certain lottery, it
is called risky decision making or decision making under risk. In most daily decision-making
situations, such as whether or not to take a job offer, to marry someone, and to invest in the
stock market, the probabilities of possible outcomes are not available. Decision under these
situations is called decision under ambiguity.

The difference between risky and ambiguous decision-making is illustrated by the Ellsberg
paradox (Segal, 1987). Imagine one deck of 20 cards composed of 10 red and 10 blue cards
(the risky deck), and another deck has 20 red or blue cards, but the composition of the red and
blue cards is completely unknown (the ambiguous deck). A successful bet on a color wins a
certain amount of money if a card with the chosen color is drawn. Otherwise the participant
loses a certain amount of money. This gambling task reveals two important characteristics of
human decision making under uncertainty. First, when faced with such decisions, most people
are markedly risk aversive. For instance, if you offer people $10 gain (when betting correctly)
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and otherwise $10 loss, people will reject this gamble. On average, people will not accept the
gamble unless the amount that may be gained is at least twice the amount that may be lost (e.g.,
gain $20 or lose $10). Second, people also have ambiguity aversion. They are more likely to
reject the gamble in the ambiguous situation (e.g., when the distribution of the red and blue
cards is unknown). That is, when asked to choose between a risk decision and an ambiguous
decision, subjects prefer the risk decision task over the ambiguous decision making task.

Prospect Theory, the most successful behavioral model on decision-making under risk
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), explains risk aversion for
“mixed” (gain/loss) gambles using the concept of loss aversion: People are more sensitive to
the possibility of losing objects or money than they are to the possibility of gaining the same
objects or amount of money. To examine the neural substrates of loss aversion, Poldrack and
colleges (2007) collected fMRI data while participants decided whether to accept or reject
mixed gambles that offered a 50/50 chance of either gaining one amount of money or losing
another amount. They systematically manipulated the amount of gain and loss so that some
gambles were appealing to the participants whereas the others were not. The amounts of wins
and losses were essentially orthogonal to each other across the entire pool of trials. By
comparing trials with potential gains and those with potential losses, the researchers could
separate the neural responses associated with possible gains and possible losses. In the first
analysis, they correlated the brain responses with potential gains and potential losses. They
found that largely overlapping areas (including the midbrain dopaminergic regions and their
target regions, such as the ventral striatum and ventromedial prefrontal cortex) exhibited
increased activities as potential gains increased and decreasing activities as potential losses
increased. More importantly, the slope of decrease associated with losses was steeper than that
of increase associated with gains, consistent with the notion that losses loom larger than gains
in Prospect Theory. Using the slopes for gains and losses, they calculated the neural loss
aversion factor (λneural) for each brain region: λneural = [−βloss−βgain]. They also calculated,
based on the participants' choices, the behavioral loss aversion factor (λ). They found that
individual differences in behavioral loss aversion were well predicted by the measure of neural
loss aversion in several brain regions, including the ventral striatum and prefrontal cortex. The
study provides a neural account of behavioral loss aversion.

According to Prospect Theory, human decision-making involves maximization of a single
measure of expected utility (EU), which is a combination of subjective weighting/probability
and subjective value. Despite its parsimony and significant explanatory power, expected utility
models have not led to a satisfactory understanding of the decision impairments observed in
some of the patients with VMPFC lesions who displayed intact processing of reward levels
(Bechara & Damasio, 2005). This points to the possibility that other factors, such as risk
sensitivity, i.e., the fear of unknown, might also be important in understanding individuals'
risky decision making. To test this hypothesis, Xue et al. (2008) used the Cups Task to study
the neural mechanisms of risky decision-making, especially the inter-play of risk and reward
(Xue et al., 2008). The Cups Task includes a Gain domain and a Loss domain (Weller, Levin,
Shiv, & Bechara, 2007). In the Gain domain, each trial consists of a certain option of winning
$1 for sure, and a risky option with a probability, as determined by the number of cups, of
winning more than the sure bet, or not winning at all. Similarly, each trial in the Loss domain
consists of a certain option of losing $1 for sure and a risky option of losing more than the sure
loss, or not losing at all. Participants were asked to choose between the risky option and the
safe option, and received the outcome after their choice. Simple as it is, this task has been
shown to be sensitive to decision deficits in a group of medial prefrontal lesion patients (Weller
et al., 2007).

In analyzing the fMRI data, Xue et al. (2008) first quantified the amount of experienced risk
and experienced reward for each trial by considering participants' choice (risk vs. no risk) and
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outcome (gain vs. loss). Following existing literature (Holt & Laury, 2002), risk was defined
as the variance of the outcome. The experienced risk was defined as the variance of the possible
outcome of the risky option, multiplied by the choice (1 for risk and 0 for no risk), i.e., they
experienced no risk if they did not gamble. By correlating the experienced risk and experienced
reward with brain activations, Xue et al. (2008) found that two adjacent brain regions in the
medial prefrontal cortex (MPC) conveyed distinct decision signals: the dorsal MPFC was more
activated when individuals experienced higher level of risk; in contrast, the ventral MPFC was
parametrically modulated by the received gain/loss. In a further analysis, the authors calculated
participants' risk preference based on their behavioral choices and correlated it with activations
in the ventral and dorsal MPFC. This analysis revealed that the degree of dorsal MPFC
activation to risk across subjects was negatively correlated with their behavioral risk
preference, whereas the degree of ventral MPFC activation to reward was positively correlated
with their behavioral risk preference. These results suggest risk decision making is a combat
between two competing neural forces: the “lure” of gain in the ventral MPFC and the “fear”
of risk in the dorsal MPFC.

Other studies have directly compared decision making under ambiguity and under risk. For
example, Hsu, Bhatt, Adolphs, Tranel, & Camerer (2005) found that the level of ambiguity in
choices was correlated positively with activations in the amygdala and orbitofrontal cortex,
and negatively with that in the striatal system. Essentially, the same system treats ambiguity
and risk as limiting cases of uncertainty. In contrast, another study (Huettel, Stowe, Gordon,
Warner, & Platt, 2006) has also compared ambiguous vs. risky decision-making and found that
decision under ambiguity might involve neural mechanisms that are different from those
involved in decision under risk. The authors found that activation of the lateral prefrontal cortex
(Ambiguity > Risk) was correlated with individuals' ambiguity preference, whereas activation
of the posterior parietal cortex (Risk > Ambiguity) was correlated with individuals' risk
preference.

Although the majority of studies on risky decision-making have used fMRI as their primary
research tool, there is an increasing number of studies using EEG. For example, one ERP study
has shown that the ERP response recorded from the medial frontal electrodes can quickly
separate two decision components: Feedback negativity that occured 200-300ms after the
feedback significantly differentiated gain and loss trials, whereas the P300 component was
associated with outcome amplitude (regardless whether they were gain or loss trials) (Yeung
& Sanfey, 2004). As mentioned earlier, EEG studies can provide important insights into the
time-course of neural responses associated with different decision parameters.

Impulsivity and inter-temporal choice
“Should I apply for graduate school or go to the job market now?” “Should I save for the future
or should I consume now?” Life is full of inter-temporal choices like this. Most such choices
require decision-makers to trade off costs and benefits at different points in time. According
to Irving Fisher (1930), rational decision makers will make the decision (e.g., borrow or lend)
based on the market interest, so that present and future money can be equated. However, even
with interest rates and other factors taken into account, human behavior deviates greatly from
predictions of prescriptive decision theories. Most economic agents prefer current rewards to
delayed rewards of similar magnitude. In economics, the theory of discounted utility is the
most widely used framework for analyzing inter-temporal choices. Normative models either
assume a zero discount or a constant discount, i.e., an exponential discounting function D(t) =
δt, where δ represents the discounting rate, t represents time and D represents the discount. In
contrast, the hyperbolic discount function has been widely adopted as a more-realistic way of
describing how people (and animals) value future outcomes. Two major hyperbolic discount
functions have been proposed. The first is the quasi-hyperbolic time-discounting function,
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sometimes referred to as beta-delta preference. It posits that the discounted value of a reward
of value u received at delay t is equal to u at t = 0 and ßδt

u at t > 0, where 0 < ß ≤1 and δ≤ 1.
The ß parameter represents the special value placed on immediate rewards relative to rewards
received at any other point in time. When ß < 1, all future rewards are uniformly downweighted
relative to the immediate reward. The δ parameter is simply the discount rate in the standard
exponential formula, which treats a given delay equivalently regardless of when it occurs.
Another hyperbolic function is SV =1/(1+kD), where SV is subjective value (expressed here
as a fraction of the immediate value), D is delay (in days) and k is a subject-specific constant.
Both versions of the hyperbolic discount function have obtained support from fMRI studies.

McClure and colleagues hypothesized that the two parameters in the first hyperbolic discount
function are mediated by two distinct neural systems: The ß system is mediated by the limbic
structures and the δ system by the lateral prefrontal cortex and associated structures supporting
higher cognitive functions (McClure, Laibson, Loewenstein, & Cohen, 2004). To test these
hypotheses, they asked participants to make a series of inter-temporal choices between early
monetary rewards and later monetary rewards while their brains were scanned in fMRI. In
some choice pairs, the early option was available "immediately" (e.g., $20 now vs. $23 in 1
month). In other choice pairs, the early option was available only after a delay (e.g., $20 in two
weeks vs. $23 in 1 month and two weeks). According to their dual-system hypothesis, the
cognitive system is involved in both choices, whereas the limbic region is only involved in the
first choice. To identify the ß system, they compared neural activations between the two types
of choices. This comparison revealed regions in the ventral striatum (VStr), medial
orbitofrontal cortex (MOFC), medial prefrontal cortex (MPFC), posterior cingulate cortex
(PCC), all having been implicated in reward processing. To identify the δ system, they
compared all trials with the baseline. Since this comparison included regions that are involved
in visual and motor processing, they did a further analysis comparing the easy and difficult
trials (based on the reaction time data). The idea here is that the cognitive system is engaged
to a greater degree in difficult trials than the easy trials. This comparison revealed significant
activations in the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, left
orbitofrontal cortex, and inferoparietal cortex. If the two systems, i.e., the ß limbic system and
the δ cognitive system, are differentially involved in immediate and future rewards, a further
prediction is that the ß system is more activated when an immediate reward is selected and the
δ system is more activated when a future reward is selected. This prediction was also confirmed
by the interaction of the two systems and the two types of choices, with δ areas showing greater
activity when future reward was chosen.

Kable and Glimcher (2007) investigated neural mechanisms of the second hyperbolic discount
function. The authors employed a psychometric-neurometric technique in the study to identify
the subjective values of delayed rewards (as compared to the immediate reward) based on
economic models, and brain regions whose responses are correlated with the subjective values.
To achieve this goal, they asked participants to make a series of choices between a future reward
(with the reward amplitude and time delay parametrically varied) and a fixed amount of
immediate reward (i.e., $20). By examining participants' choices, they estimated the behavioral
discounting parameter k (i.e., behavioral k) for each individual participant, which varied from .
005 (the most patient subject) to .1189 (the most impatient subject). Within each participant,
they used the estimated parameter k to calculate the subjective value of each individual trial,
and then correlated the subjective values with brain activations. This analysis identified that,
across all subjects, activities of the medial prefrontal cortex, posterior cingulate cortex, and the
ventral striatum, were significantly correlated with subjective values. To further confirm this
result, they extracted the brain responses in the three regions in different temporal delay
conditions, and estimated the neural discount parameter k (i.e., neural k). They found that across
all subjects, the neural k was highly correlated with the behavioral k. Taken together, the study
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provides compelling evidence that the limbic reward regions quantitatively track subjective
values, for both immediate and future rewards.

Game theory
Game theory has been developed to understand a wide class of social interactions, including
competition, cooperation, and coordination. A game is usually played by two or more people,
thus provides the ground to connect individual decision making with group-level outcomes.
Traditional studies of game theory focus on developing and describing strategies in social
interactions. A normative game theory usually develops a set of equilibria in these games, i.e.,
a set of strategies that individuals may follow so that they are unlikely to change their behavior.
One important equilibrium state is the so-called Nash Equilibrium, which is reached if each
player has chosen a strategy and no player can benefit by changing his or her strategy while
the other players keep their strategies unchanged. For example, in the Ultimatum Game (UG),
two players are randomly and anonymously matched, one acts as proposer and the other as
responder. The proposer is endowed with a given amount of money (say, $10). He is then asked
to suggest a way of sharing the money with the responder. The responder can either accept the
offer or reject the offer. If he accepts the offer, the money is split according to the proposal. If
he rejects the offer, neither of them gets the money.

The Nash Equilibrium in this game is reached if the proposer gives the responder a smallest
division of the money (like one cent). This is because, once the proposer sticks to this strategy,
no matter what the responder chooses to do, either accept or reject the offer, the outcome for
the responder will not be better. A rational responder would accept whatever proposal (except
that the proposer keeps all the money), otherwise he gets nothing. Surprisingly, many studies
have shown that the responders actually reject quite often low offers; they reject about half of
the offers that are below 20% of the endowment. The interesting question here for
neuroeconomics is to understand the neural mechanisms underlying the decision making
process of the responder.

Sanfey and colleagues were the first to use fMRI to study social exchanges in Ultimatum Games
(Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003). It should be noted that in the UG
paradigm, it is important to keep the responder and proposer anonymous to each other. In
addition, the mechanisms involved in single-shot games (i.e., a pair of proposer and responder
play only one round of the game) and its results are different from those of multi-shot games
in which multiple rounds of game are played between them. In the latter case, one reason the
responder would reject an unfair offer is to pressure the proposer to increase the subsequent
offers, but such a tactic is not possible in the single-shot games. In this study, the authors first
introduced 10 anonymous people to the participants and told them that they would be the
partners with them in the game. In another condition, the participants were told to play with a
computer who makes random proposals. Essentially, participants received exactly the same
offers from the computer as from the 10 anonymous people, with half of the offers being fair
($5:$5 split) and the other half being unfair (two offers of $9:$1, two offers of $8:$2 and one
offer of $7:$3). There were two important behavioral results. The first result is that the
participants accepted all fair offers and the rejection rate increased as the offers became more
unfair. The second result is that the participants rejected significantly more unfair offers
proposed by humans than those by the computer.

Functional imaging results showed that several brain regions, including the anterior insula,
anterior cingulate cortex, and dorsal prefrontal cortex, exhibited stronger activations to unfair
offers than to fair offers. The bilateral insula activation was also significantly greater when the
unfair offers were from humans than when they were from the computer, suggesting that it is
not simply the amount of money but rather the perceived unfair treatment from people that
drove the insula activation. Across all the participants, it has been shown that individuals who
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showed more insula activation to unfair offers were more likely to reject the offer. In light of
the fact that the anterior insula has been implicated in processing negative emotions, these
results suggest that the rejection of unfair offers is driven by negative emotion experienced by
the responders during the ultimatum game. Consistent with this view, it has been shown that
allowing participants to express their negative emotion toward the proposer actually increased
the rate of acceptance of unfair offers (Xiao & Houser, 2005).

Knoch and his colleagues used repetitive transcranial magnetic stimulation (rTMS) to examine
effects of left and right dorsolateral PFC disruption on rejection decision (Knoch, Pascual-
Leone, Meyer, Treyer, & Fehr, 2006). They found that rTMS stimulation of the right DLPFC
significantly reduced the rejection rate of unfair offers, i.e., 10% rejection of offers below 20%
of the endowment, as compared to 50% rejection rate when the left DLPFC was disrupted by
rTMS. One interpretation of this result is that the right DLPFC, but not the left DLPFC, can
override participants' self-interest and guide their decision towards benefits to the society, i.e.,
to foster the social order and fairness. According to this interpretation, the motivation of
rejecting unfair offers is prosocial rather than selfish, which is guided by the high-level
executive control system but not by the emotional system. This study has led to many
interesting debates. Further studies are necessary to resolve these debates.

The Ultimatum Game is an elegant paradigm to study social exchanges as well as their neural
mechanisms. Researchers have also used other games, such as the prison's dilemma game, the
trust game, and the public goods game, to study social trust, competition, and collaboration.
Due to space limitation, brain imaging research using these other games is not reviewed in this
article. Interested readers are referred to Camerer's chapter (Camerer, 2008).

Summary
Although we have covered a very small sample of current neuroeconomics studies on decision-
making, several features are already evident from these studies. From a theoretical point of
view, these studies have generated important insights into human decision-making. For
example, theses studies have shown that decision making usually involves complex
psychological and neural processes, including competitions between automatic and controlled
processes, between cognitive and emotional processes, as well as between different emotional
processes, such as the “lure” of reward and “fear” of risk. These findings suggest that, contrary
to normative models' claim that human beings are perfectly rational and possess unlimited
power for cognitive processing, human decision-making is usually affected by emotions and
by habitual and automatic mental processes. These processes have clear neurobiological bases.
These studies also reveal that many important social motivations, such as altruism and prosocial
morals, social order and hierarchy, and social comparison, could profoundly affect human
decision making. Some of them, such as social fairness (Tabibnia, Satpute, & Lieberman,
2008), charity giving (Harbaugh, Mayr, & Burghart, 2007), and social comparison (Fliessbach
et al., 2007) might function through the common reward circuits that are responsive to primary
rewards, such as water, food, and sex. Finally, these studies have started to reveal the neural
mechanisms underlying individual differences in decision-making. As is evident in these
studies, individual differences in decision-making might be associated with variations in the
functionality of brain regions implicated in the decision process.

From a methodological point of view, all these studies have set good examples of combining
models from decision theories (e.g., the Prospect Theory) with brain imaging techniques. The
high degree of correlation between decision parameters (such as expected utility, risk,
probability) and brain activations are crucial in identifying the neural substrates of decision-
making. Generally, both within-subject correlation and between-subject correlation have been
shown to be extremely useful. For example, Xue et al. (2008) used a model from the finance
literature to quantify the experienced risk in each trial, and examined, within each individual
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subject, the trial-by-trial variations in the BOLD signals as a result of different levels of
experienced risk. This within-subject analysis revealed highly consistent results across all
subjects in the dorsal MPFC. To further examine the association between dorsal MPFC and
risk preference, Xue et al. (2008) examined whether individual differences in dorsal MPFC
activations were associated with individual differences in risk preference. In this between-
subject correlational analysis, they found that individuals showing strong activations in dorsal
MPFC also exhibited low levels of risk behaviors. A similar approach has been used in a number
of studies reviewed in this article (e.g., Hsu et al., 2005; Kable & Glimcher, 2007; Tom et al.,
2007). Identifying consistent correlations at both the within- and between-subject levels has
provided a highly useful method to integrate functional imaging measures with decision
models.

Challenges and Future Directions
Despite the impressive applications of functional imaging in decision-making studies,
neuroeconomics is still in its infancy. This discipline has great promises, but also faces many
challenges.

First, functional imaging studies can only discover the brain regions that are involved in
performing a task, but cannot establish whether the regions are necessary for the task. For
example, although the anterior cingulate cortex (ACC) has been consistently found to be
involved in cognitive control, patients with ACC lesions perform normally in the Stroop and
go/no-go tasks (Fellows & Farah, 2005). In order to establish the necessary and sufficient
conditions of a brain region in a task, it is important to combine neuroimaging and lesion
techniques. For example, Hsu et al. (2005) used fMRI to discover that the orbitofrontal cortex
is involved in risky decision-making. In another experiment, they applied the same task to a
group of patients with orbitofrontal lesions and confirmed that damage to this region impaired
decision-making. The study by Xue et al. (2008) has taken a different approach: They adapted
a task that has been shown to be sensitive to medial PFC lesions and used the information to
guide their analyses of the fMRI data collected from healthy participants. Both approaches
have proved to be effective. One major limitation for the combined imaging and lesion studies
on human subjects is that (irreversible) lesions can only be studied with patients. The nature
of the lesions (size, severity, location, etc.) is beyond researchers' control. Reversible “lesion”
techniques such as transcranial magnetic stimulation (TMS) and pharmacological research
methods also have their own limitations. For example, TMS can only target cortical regions
but not subcortical nuclei, and drug effects are often too widespread for researchers to target
a particular brain area. Major breakthroughs are necessary to overcome these limitations.

Second, neuroimaging studies have focused on understanding brain functions (i.e., what is the
function of a certain brain region?). Studies of this kind have significantly advanced our
knowledge of brain functions. Nevertheless, if neuroimaging studies are ever going to advance
our understanding of human decision-making, we must be able to make inferences on the
ongoing cognitive processes. Although such inferences have been made (implicitly or
explicitly) for a long time, by cognitive neuroscientists, their validity has only been carefully
examined recently by Poldrack (2006). Poldrack pointed out this issue as a “reversal inference”
problem. Typical inference in cognitive neuroscience goes like this: “When task A is presented,
brain area Z is active; then we conclude that brain area Z is responsible for task A”. The reversal
reference, on the other hand, goes like this: “Brain area Z is active in task X and previous
studies show that area Z has been involved in task A. Thus we conclude that task X engages
cognitive process A.” The reversal inference is guaranteed to be valid only if “Area Z is only
involved in cognitive process A”. However, the reality discovered from neuroimaging studies
in the last 20 years is that we seldom find a brain region that is just doing one thing. Even the
primary visual cortex is involved in both visual processing and visual imagery. The Broca's
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area, which had been assumed to be solely associated with articulation, has been found to be
active in numerous tasks. In the decision-making literature, the nucleus accombens (NAcc) is
often found to be active in processing reward. However, this does not necessarily mean that
whenever the NAcc is activated, the participant is experiencing reward and happiness. Indeed,
other studies have found that the NAcc is also involved in processing risk (Xue et al., 2008)
as well as stimulus and feedback salience (Cooper & Knutson, 2008). The logical pitfall hidden
in “reversal inference” is potentially very serious and deserves careful treatment. Poldrack
(2006) proposed two ways to improve confidence in reversal inference: increase the response
selectivity in the brain region of interest, or increase the prior probability of the cognitive
process in question. It should be noted that pattern analysis approaches, which have been
developed to improve “reversal inference” (Poldrack, 2008), are using both strategies. By
looking at the pattern of many voxels rather than the activation or deactivation of a single
averaged region, pattern analysis approaches significantly increase the selectivity of brain
responses to certain stimuli. Using the same experimental task for both the training and test
dataset, it also significantly increases the prior probability of the cognitive process. However,
because the same experimental task is used in both training and test stages, this design does
not allow us to learn anything about the underlying cognitive process. One potential solution,
for example, is to use the pattern analysis approach to train the classifier to differentiate two
well-studied tasks (e.g., pictures eliciting positive vs. negative emotions) and then use this
classifier to test whether the brain pattern of watching an in-group and an out-group member
would match the two patterns respectively. If they match, we can then conclude with some
confidence that observing an out-group member would engage negative emotions (see Miller,
2008 for similar discussion).

Third, the laboratory settings for functional imaging studies are very different from daily life.
To simplify interpretations of experimental results, researchers have usually used
oversimplified decision tasks and added strict experimental controls. These practices might
have impaired the ecological validity of these tasks and limited their explanatory power in
accounting for real-life decision-making phenomena. For example, in typical fMRI studies,
participants have to stay very still in a semi-closed space for a relatively long time, and engage
in very limited social interactions. Due to the weak signal levels in brain imaging, most studies
require repetitions of the same decision. As a result, the decision- making tasks in this setting
have to be relatively simple and can be made quickly. These requirements have placed major
limitations on the research questions that can be addressed with functional imaging techniques.
In addition, to dissociate the neural responses involved in different cognitive processes, special
task designs are required in many functional imaging studies. For example, since the BOLD
response is very slow, in order to separate the neural responses associated with decision and
feedback processes, researchers have to either discard the feedback or introduce long and
jittered delays between decision and feedback. Although these manipulations have been very
successful, their effects on the psychological and neural processes of decision-making are not
well understood and it is not clear how results from these studies can be connected to daily life
decision-making, such as gambling in Las Vegas. One possible way to increase the ecological
validity of functional imaging studies is to associate laboratory task performance with
performance in daily-life decision-making. For example, the Iowa Gambling Task (IGT),
developed by Bechara and colleagues (1994) to examine risky decision-making in laboratory
settings, has been shown to be able to predict decision-making behavior in daily life situations.
Our hope is that, with technical advances, a lot of these issues can be resolved in the near future.

Finally, the fundamental question is whether we can make better predictions of human decision
behavior from neuroeconomical studies. Since the birth of neuroeconomics, researchers have
been debating whether neuroimaging can provide theories for economists or whether economic
theories can provide frameworks for neuroscience (Glimcher, Camerer, Poldrack, & Fehr,
2008). Ultimately, critics are skeptical whether neuroimaging can provide better descriptions
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and predictions of human decision-making behaviors than behavioral theories. In a 2005 article
by two economists at Princeton University, Faruk Gul and Wolfgang Pesendorfer, “The Case
for Mindless Economics”, the authors argued that neuroscience cannot transform economics
because what goes on inside the brain is irrelevant to the discipline. What matters are the
decisions people make--in their jargon, the “revealed preferences”--not the process by which
they reach them (Gul & Pesendorfer, 2005). The argument is similar to that of “mindless”
psychology used by behaviorists and that of “brainless” psychology used by cognitive
psychologists. Although it would be easier to argue for “mindless” decision making than
“brainless” decision making, since the latter is based on traceable physical responses, many
enthusiasts of neuroeconomics like Daniel Kahneman have acknowledged that the findings in
neuroeconomics have so far generally just confirmed the expectations of behavioral theorists
and behavioral economists (Kahneman, 2008). This is a methodological issue as well as a
theoretical issue, and it is not limited to functional imaging techniques but also applies to other
methods in neuroeconomics. So far we are nowhere close to a solution to this issue, but we
have reasons to be optimistic since neuroeconomics is in its infancy and its potential in
describing the neural bases of decision-making and predicting future decision making has just
begun to be revealed.

Conclusion
This paper provides an overview of brain imaging techniques, with an emphasis on functional
MRI and EEG, and their applications in studying human decision-making. With its rapid
development and wide applications, brain imaging has profoundly changed the landscape of
cognitive neuroscience research. One prominent application of brain imaging in the last few
years is neuroeconomics, an emerging field that has roots in economics, neuroscience, and
psychology. By combining theoretical models from experimental and behavioral economics
and real-time measurements of brain activities, neuroeconomics has significantly advanced
our understanding of the neural mechanisms underlying a wide range of decision behaviors,
such as decision under uncertainty, intertemporal choice, and game theory. We believe
neuroeconomics will fully realize its potentials by addressing several theoretical and
methodological challenges.
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