Molecular Epidemiology of Multidrug-Resistant *Acinetobacter baumannii* in a Tertiary Care Hospital in Naples, Italy, Shows the Emergence of a Novel Epidemic Clone[∇]

Maria Giannouli,¹ Susanna Cuccurullo,² Valeria Crivaro,² Anna Di Popolo,¹ Mariano Bernardo,² Federica Tomasone,¹ Gerardino Amato,³ Sylvain Brisse,⁴ Maria Triassi,¹ Riccardo Utili,^{2,5} and Raffaele Zarrilli^{1,6}*

Dipartimento di Scienze Mediche Preventive, Università di Napoli Federico II, Naples, Italy¹; Azienda Ospedaliera V. Monaldi, Naples, Italy²; Azienda Ospedaliera A. Cardarelli, Naples, Italy³; Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France⁴; Dipartimento di Scienze Cardiorespiratorie, Seconda Università degli Studi di Napoli, Naples, Italy⁵; and CEINGE Biotecnologie Avanzate, Naples, Italy⁶

Received 19 November 2009/Returned for modification 14 January 2010/Accepted 12 February 2010

The molecular epidemiology of multidrug-resistant *Acinetobacter baumannii* was investigated in two intensive care units of the V. Monaldi university hospital in Naples, Italy, from May 2006 to December 2007. Genotype analysis by pulsed-field gel electrophoresis (PFGE), trilocus sequence-based typing (3LST), and multilocus sequence typing (MLST) of *A. baumannii* isolates from 71 patients identified two distinct genotypes, one assigned to PFGE group A, 3LST group 1, and ST2 in 14 patients and the other to PFGE group B, 3LST group 6, and ST78 in 71 patients, that we named ST2/A and ST78/B, respectively. Of these, ST2/A corresponded to European clone II identified in the same hospital during 2003 and 2004; ST78/B was a novel genotype that was isolated for the first time in May 2006 but became prevalent during 2007. The ST78/B profile was also identified in five patients from two additional hospitals in Naples during 2007. The ST2/A and ST78/B isolates were resistant to all antimicrobials tested, including carbapenems, but were susceptible to colistin. Both ST2/A and ST78/B isolates possessed a plasmid-borne carbapenem-hydrolyzing oxacillinase gene, *bla*_{OXA-58}, flanked by IS*Aba2* and IS*Aba3* elements at the 5' and 3' ends, respectively. The selection of the novel ST78/B *A. baumannii* clone might have been favored by the acquisition of the *bla*_{OXA-58} gene.

Acinetobacter baumannii is an emerging opportunistic nosocomial pathogen, with increasing prevalence worldwide, responsible for a variety of nosocomial infections, especially in intensive care unit (ICU) patients (10, 15). Several hospital outbreaks caused by the selection of multiresistant A. baumannii clones have been described in Europe and worldwide (1, 10, 15, 27). Genotypic characterization of epidemic A. baumannii isolates through amplified fragment length polymorphism analysis has identified clusters of highly similar strains, which were assumed to represent distinct clonal lineages and were defined as European clones I, II, and III (9, 24). Similarly, three distinct groups were recently identified among A. baumannii isolates from five different countries by sequencebased typing (ST): group 1, corresponding to European clone II; group 2, corresponding to European clone I; and group 3, corresponding to European clone III (22). Moreover, epidemics caused by A. baumannii genotypes assigned to novel ST groups 4 and 5 have been recently described in different Greek and Turkish cities (11). The majority of the outbreaks occurring in Europe were caused by carbapenemresistant strains that carried the bla_{OXA-58} gene or a distinct carbapenem-hydrolyzing oxacillinase (CHDL) gene (4, 8, 11-13, 16, 20, 27, 28).

* Corresponding author. Mailing address: Dipartimento di Scienze Mediche Preventive, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy. Phone: 39-081-7463026. Fax: 39-081-7463352. Email: rafzarri@unina.it.

We have previously reported the occurrence of two sequential outbreaks from August 1999 to February 2001 and from January 2002 to December 2002 along with the emergence of carbapenem-resistant A. baumannii in the ICU of the Federico II university hospitals in Naples, Italy, during 2002 (26). More recently, we have shown that the same epidemic A. baumannii clone isolated during 2002 was responsible for a large and sustained outbreak in the V. Monaldi tertiary care teaching hospital of Naples between June 2003 and June 2004 (25). An increase in the number of cases of A. baumannii infection was observed after 2 years in the V. Monaldi hospital. The objectives of the present study were (i) to investigate the molecular epidemiology of A. baumannii in the V. Monaldi hospital, (ii) to study the genetic characteristics of A. baumannii isolates responsible for the epidemic, and (iii) to analyze the antimicrobial susceptibilities of the A. baumannii isolates and their mechanisms of resistance.

MATERIALS AND METHODS

Setting and study period. The V. Monaldi hospital is a 600-bed tertiary care teaching hospital serving approximately 20,000 admissions per year. The hospital is provided with five ICUs: a neonatal ICU, a coronary ICU, a cardiac surgery ICU, a general and specialist surgery ICU (namely, a postoperative ICU [PO-ICU]), and a cardiorespiratory ICU (CR-ICU). The PO-ICU and CR-ICU are located in a recently renovated area of the hospital and are connected by a short internal corridor, and each has eight beds and an isolation box. Although spatially very close, the two wards have distinct staffs and medical equipment. Patients admitted to the PO-ICU are inpatients requiring intensive care and outpatients from other municipal or regional ICUs. The present study analyzed

^v Published ahead of print on 24 February 2010.

all 71 available *A. baumannii* isolates from 71 patients in the CR-ICU and PO-ICU wards between May 2006 and December 2007.

Microbiological surveillance and epidemiological data. Patient microbiological screening is routinely performed at admission to the CR-ICU and PO-ICU; further specimens are collected during patients' stays upon clinical judgment. Moreover, starting from January 2007 monthly reporting to the local infection control team of all microbiological isolations in high-risk areas was implemented. Analysis of data for the first part of the study period (May 2006 to December 2006) was performed retrospectively. Epidemiological data for the 76 *A. baumannii*-positive patients in the V. Monaldi, Cotugno, and A. Cardarelli hospitals (age, gender, primary diagnosis, infectious comorbidities, and outcome) were retrospectively collected from hospital discharge cards. *A. baumannii*-associated mortality was defined as death occurring during *A. baumannii* infection. Epidemiological and microbiological data were analyzed using SPSS v.11.0 (SPSS Inc., Chicago, IL) by means of Student's *t* test or Pearson's chi-square test as appropriate. Results were considered to be statistically significant at P < 0.05.

Bacterial strains and microbiological methods. A. baumannii isolates were obtained from clinical specimens by standard methods, followed by isolation in pure culture on MacConkey agar plates, and were stored at -80° C in nutrient broth containing 20% (vol/vol) glycerol. Strains were originally identified as *Acinetobacter baumannii-A. calcoaceticus* complex by using the Vitek 2 automatic system with the ID-GNB card for identification of Gram-negative bacilli (bioMerieux, Marcy-l'Etoile, France). *A. baumannii* species identification and sequence analysis of the 16S-23S rRNA intergenic spacer region (6, 22).

Antimicrobial susceptibilities. MICs were determined by a microdilution method according to Clinical and Laboratory Standards Institute document M7-A6 (7). Breakpoint values were those recommended by the CLSI (7). Breakpoints for colistin were those from the British Society for Antimicrobial Chemotherapy (BSAC) (5). Etest MBL strips (AB Biodisk, Solna, Sweden) were used to evaluate the presence of metallo-beta-lactamase (MBL) activity according to the manufacturer's procedure. The role of oxacillinase production in carbapenem mesistance was assessed by determining carbapenem MICs by microdilution in the presence of 200 mM NaCl, as described previously (28).

PFGE and dendrogram analysis. ApaI DNA macrorestriction and pulsed-field gel electrophoresis (PFGE) and dendrogram analysis of *A. baumannii* isolates were performed as previously reported (25). Because *A. baumannii* isolates were epidemiologically related, interpretation of genomic relatedness was performed using the criteria of Tenover et al. (19).

Identification of PCR-based sequence groups and ST. Multiplex PCRs and sequence-based typing (ST) were performed as previously described (22). Assignment of novel alleles and ST types was performed using the bioinformatic tools at the Health Protection Agency website on *A. baumannii* sequence typing that has been developed and maintained by J. F. Turton and R. Meyers (http://www.hpa-bioinformatics.org.uk/AB/home.php).

MLST. Multilocus sequence typing (MLST) analysis was performed using the Institut Pasteur's MLST scheme, publicly available from the MLST website at http://www.pasteur.fr/mlst. This MLST scheme is based on sequencing of an internal portion of the seven genes encoding 60-kDa chaperonin (*cpn60*), protein elongation factor EF-G (*fusA*), citrate synthase (*gltA*), CTP synthase (*pyrG*), homologous recombination factor (*recA*), 50S ribosomal protein L2 (*rp1B*), and RNA polymerase subunit B (*rpoB*). Primer pairs for three of these genes (*cpn60*, *gltA*, and *recA*) were previously designed by Bartual et al. (3). Primer pairs for three other genes (*fusA*, *pyrG*, and *rplB*) are derived from primers initially proposed by Santos and Ochman (18). Finally, primers for gene *rpoB* were designed previously (17). PCR conditions were 35 cycles (denaturation at 94°C for 1 min, annealing at 58°C for 1 min, and extension at 72°C for 1 min) preceded by a 3-min denaturation at 94°C and followed by a 5-min extension at 72°C. Further details on this MLST scheme can be found at www.pasteur.fr/mlst.

PCR analysis of carbapenemase genes and ISs. PCR analysis for carbapenemase-encoding genes in *Acinetobacter* spp. ($bla_{\rm IMP}$, $bla_{\rm VIM}$, $bla_{\rm SIM}$, $bla_{\rm OXA-23}$ like, $bla_{\rm OXA-24}$ -like, $bla_{\rm OXA-51}$ -like, and $bla_{\rm OXA-58}$) was performed as previously described (28). PCR characterization of the $bla_{\rm OXA-58}$ -surrounding insertion sequence (IS) was performed as described previously (16). The colinearity between IS elements and the $bla_{\rm OXA-66}$ or $bla_{\rm OXA-90}$ gene was analyzed using primers for IS elements described previously by Poirel and Nordmann (16) and for the $bla_{\rm OXA-51}$ -like gene described previously by Turton et al. (23).

Plasmid analysis. Plasmid DNA preparations were performed by using the QIAfilter plasmid purification maxikit adapted for low-copy-number plasmids (Qiagen Corporation, Milan, Italy) according to the manufacturer's procedure. HindIII-generated fragments were separated on 1% agarose gels, transferred

onto nylon membranes, and hybridized with PCR-generated probes specific for $bla_{\rm OXA-58}$.

Mating experiments. Filter mating was performed using *A. baumannii* isolates of PFGE type A or B, resistant to imipenem and susceptible to rifampin, and *Acinetobacter* genomic species 3 strain 4442 (13), susceptible to imipenem but resistant to rifampin, as donor and recipient cells, respectively. Transconjugants were selected on brain heart infusion (BHI) agar plates containing imipenem (16 mg/liter) plus rifampin (100 mg/liter). The frequency of transfer was calculated as the number of transconjugants divided by the number of surviving recipients.

DNA sequencing and computer analysis of sequencing data. DNA sequences of plasmid pABNA1 and pABNA2 were amplified using primers 5'-GTCACG CCAGTATTAACCAA-3' and 5'-TCGTTTACCCCAAACATAAGC-3', spanning plasmid *oriV* and ISAba3, respectively. DNA sequencing of PCR products was performed using the ABI Prism BigDye Terminator v3.1 ready reaction cycle sequencing kit and the 3730 DNA analyzer (Applied Biosystems, Foster City, CA). DNA sequences were assembled using the program Autoassembler version 1.4 (Applied Biosystems, Foster City, CA) and annotated using the BLAST program (2) and the sequence annotation tools integrated into the Sequin program version 7.9 available at http://www.ncbi.nlm.nih.gov/Sequin /index.html.

Nucleotide sequence accession numbers. The nucleotide sequences of the novel alleles identified for *A. baumannii* isolates of ST group 6 have been deposited in the GenBank nucleotide database under accession numbers EU433384 (*ompA* allele 7), EU433383 (*csuE* allele 10), and EU433382 (*bla*_{OXA-51}-like allele 9 corresponding to *bla*_{OXA-90}). The nucleotide plasmid sequences pABNA1and pABNA2, amplified from isolates 3979 (PFGE type A) and 3957 (PFGE type B), have been assigned accession numbers GQ338082 and GQ338083, respectively, in the GenBank nucleotide database. Allele sequences of ST2 and ST78 are available from the Institut Pasteur's *A. baumannii* MLST website at www.pasteur.fr/mlst.

RESULTS

Molecular epidemiology of A. baumannii in the hospital. We have recently described an A. baumannii outbreak between June 2003 and June 2004 in the V. Monaldi hospital of Naples, Italy (25). During the two subsequent years, only a few sporadic cases of A. baumannii infection were detected in the hospital. The epidemiology of A. baumannii was studied in the CR-ICU and PO-ICU of the hospital between May 2006 and December 2007, when a further increase of the number of A. baumannii isolates was observed in the two wards, while no isolates were obtained from other wards. During the study period, a total of 1,760 patients were admitted to the two wards (514 and 1,240 to the CR-ICU and PO-ICU, respectively). A. baumannii was isolated from 101 patients, with an overall A. baumannii isolation rate of 5.7% (14.6% and 2.1% for the CR-ICU and PO-ICU, respectively; P < 0.05). A. baumannii was isolated in 75 CR-ICU patients who showed a mean number of positive specimens of 2.17 \pm 1.58. In the PO-ICU 26 patients proved to be positive for A. baumannii, with a mean number of positive specimens of 2.08 ± 1.35 (P > 0.05). Mean length of stay in the two wards was calculated and proved to be 10.98 ± 22.32 and 2.22 ± 2.94 days for the CR-ICU and PO-ICU, respectively (P < 0.05).

To investigate whether the increase in the frequency of isolation of *A. baumannii* during the study period was caused by the spread of epidemic clones, all 71 available, nonrepetitive *A. baumannii* isolates from 71 patients between May 2006 and December 2007 were genotyped: 54 were from CR-ICU patients (73.3% of patients) and 17 were from PO-ICU patients (61.5% of patients). One *Acinetobacter* isolate was not included in the study because its species identification as *A. baumannii* was not confirmed by molecular methods. Molecular typing by PFGE identified two major PFGE groups, which differed in m

A

A A A A1 A2 B B B B1

m

FIG. 1. (A) ApaI PFGE profiles of representative *A. baumannii* strains included in the study. Capital letters above the lanes indicate PFGE types identified; m, phage lambda DNA molecular mass markers. The isolate number is shown below each lane. Sizes of lambda DNA molecular mass markers are shown on the right. (B) Multiplex PCR to selectively amplify *ompA*, *csuE*, and *bla*_{OXA-51}-like alleles. ST groups identified are indicated above the lanes; m, 1-kb DNA ladder molecular mass markers (Promega, Milan, Italy). The isolate number is shown below each lane.

the migration of more than six bands, in 14 and 57 isolates, which we named A and B, respectively. Of the 14 isolates of PFGE group A, 12 showed an identical macrorestriction pattern (type A) whereas two differed in the migration of at least two and three DNA fragments and were classified into subtypes A1 and A2, respectively. Fifty-six isolates of PFGE group B showed an identical macrorestriction pattern (type B),whereas one differed in the migration of up to six bands and was designated subtype B1 (Fig. 1A and Table 1). The epidemic PFGE profile A was identical to that of the epidemic A. baumannii strain 2638 isolated in the V. Monaldi hospital in 2004 (25) (Fig. 1A). Genotype analysis using the multiplex PCRs and trilocus sequence-based typing (3LST) approach described by Turton et al. (22) assigned all 14 isolates of PFGE group A to previously defined three-locus sequence type group 1 (Fig. 1B and Table 1). The multiplex PCR approach identified a distinct PCR pattern in the other 57 isolates of PFGE group B with the amplification of bla_{OXA-51} -like and *ompA* but not csuE alleles in PCR mix 1 and amplification of csuE but not bla_{OXA-51}-like and ompA alleles in PCR mix 2 (Fig. 1B). Trilocus sequence-based typing identified an identical allele profile, 7/10/9, at ompA/csuE/bla_{OXA-51}-like loci in the 57 isolates of PFGE group B that were assigned to novel 3LST group 6 (Table 1). The differences in group-specific PCR patterns facilitated rapid identification of the A. baumannii isolates belonging to different ST groups, 1 and 6, in the hospital and were used as a preliminary typing approach for the isolates. MLST based on the conserved regions of cpn60, fusA, gltA, pyrG, recA, rplB, and rpoB housekeeping genes identified ST2 for isolates of PFGE type A and subtypes A1 and A2 (group A), allelic profile 25/3/6/2/28/1/29, which corresponds to a novel ST assigned as ST78 for isolates of PFGE type B and subtype B1 (group B), respectively (Table 1). Based on all the above data, two distinct genotypes were identified, one assigned to PFGE group A (including PFGE type A and subtypes A1 and A2), 3LST group 1, and ST2, and the other assigned to PFGE group B (which included PFGE type B and subtype B1), 3LST group 6, and ST78, which we named ST2/A and ST78/B, respectively. The differences in PFGE patterns observed between subtypes A1 and A2 and type A and between subtype B1 and type B were probably due to the higher discriminatory power of PFGE than of MLST and were not further considered.

Molecular epidemiology of A. baumannii isolates showed that the outbreak in the two wards of the V. Monaldi hospital was caused by the spread of ST2/A and ST78/B genotypes, which were isolated in two consecutive temporal clusters, one clone predominating over the other. In fact, ST2/A was identified in 10 CR-ICU patients and in 4 PO-ICU patients, while ST78/B was found in 44 CR-ICU patients and in 13 PO-ICU patients. Moreover, ST2/A isolates occurred between May 2006 and February 2007 in both wards, while ST78/B isolates were first identified in the CR-ICU ward in May 2006 and predominated in both wards from March 2007 onward (Fig. 2). The lower respiratory tract was the most frequent site of isolation (9 of 14 and 45 of 57 patients for ST2/A and ST78/B, respectively) (P > 0.05) and was associated with clinical infection as the primary diagnosis or infectious comorbidity in 3 of 10 and 11 of 44 patients for ST2/A and ST78/B, respectively (P > 0.05). Nine A. baumannii isolates from blood were assigned to ST78/B, and one was assigned to ST2/A (P > 0.05), and they were always associated with clinical infection. ST78/B was also isolated from one wound swab, the urinary tract of one patient, and one catheter tip, while ST2/A was also isolated from the upper respiratory tract of one patient and the central venous catheter and the catheter tip of two patients and one patient, respectively. The mean ages of patients infected by ST2/A and ST78/B were 75.5 \pm 9.84 and 59.79 \pm 14.42 years, respectively (P > 0.05). The female/male ratios for patients

	COL	≤0.5	<pre>C.0 ≤</pre>	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	≤0.5	×0.5	-	202		S.U.S	1	≤0.5	202		C.U <	≤0.5	≤0.5	202	0.0	≤0.5	201		≥0.5	202	0.0	≥0.5	201	0.0/	≤0.5	401	C.U.N	۲ 0 ک		C.08	202		₹0.5	201	0.0/1	≥0.5	101	C.0/I	N0.5		C.0	۲0 ×		10/1	VI VI	V		C.0 VI	N0.5	0		10	80.5	02		VI	V V		VI VI	V		VI	V		, VI	V		 VI	0 VI		 VI	8.0≤
	RIF	4 4	4 4	. 61	0	>500	4	0	4	>500	4	. с	1 -	+ 004 /	>>00 <	0	>500	4	+ -	4	4	>500	9	р ;	16	-	• •	4	16	01	~1	1200		4		4	c	1.	4	Φ	+ •	4	¢	1	4	¢	1	4		4	4	• •	4	4	-	+ •	4	4	Þ		4	4	Τ	+ •	4	4	- (x	4	• •	4	٢	• •	4	4		4	0	1 -	4	4
tibiotic	GM	32	32 o	00	×	~	×	32	×	256	32	4	- 0	0 4	4	256	4	×	5 0	ø	32	64	; 0	0	32	6	10	32	5	70	32	0	0	32	17	04	ć	10	32	5	10	32	64	5	32	ĉ	70	32	1	64	3		70	32	5		32	32	64	5 6	25	64	5	10	32	5		32	6		32	52		25	5	10	25	32	16	25	32
r) of an	AK	125	125	125	125	4	4	125	32	125	125	16	175	C71	10	125	16	>250		C71	125	16	750	003	32	050		32	125	15	16	020	007~	>250	ĉ	25	ĉ	100	>250	>250		125	175	140	125	;	70	125	2	32	33		C71	125	125	3	10	125	16		10	125	16		125	>250		120	16		125	175		10	125	100	C71	>250		172	125
(mg/lite	SAM	125	22 125	32	32	125	32	125	32	125	64	125	22	70	64	125	32	5	100	25	64	125	175		125	175		125	125	140	64	. 19	04	125	64	04	125	201	125	175	3	64	301	140	125	301	C71	125		125	125		C71	64	175	121	64	125	64	50	04	125	175		125	125		172	64		125	175		C71	125	201	071	125		125	125
MIC	MEM	16 °	c oc	16	4	4	4	4	8	4	4	16	0	0 7	10	×	×	Ā	+ •	4	×	16	0	0 0	×	0	0 0	×	×	0	×	16	10	×	0	ø	×	0	×	x		4	0	0	16	F	4	×) =	4	4		4	×	0	0 0	x	×	×	, .	4	~	4	F	×	×	0 0	x	×		4	0		4	16	20	ά	~	, - ,	4	8
	IPM	32	27 16	16	16	16	16	×	16	×	16	16	26		32	16	×	16		70	32	16	e or	0	32	16		16	16	01	16	16	01	16	0	ø	16		16	x	0 0	×	0	0	16	<i>с с</i>	70	32	10	x	16		10	16	0	0 0	×	×	16		10	32	x	0	×	×	,	10	x	,	16	52	10	ø	33	10	x	16	2 0	×	16
MI CT	ST	78	782	5	0	7	0	78	0	0	78	78	ç c	10	7	78	0	0	10	7	78	0	101	0	78	01		78	78	0/	78	¢	1	78	10	/8	78		/8	78		78	10	0/	78	10	0/	78		/8/	78		0/	78	10	0 0	8/	78	78		/9	78	78		/8	78		/8	78		78	78		2/2	78	200	/8	78		/8	78
L	dno.	6	1 9	1	1	1	-	9	1	1	9	9		- .	_	9	Ļ	<i>.</i>	- .	-	9	1	. 9		9	2		9	9	0	9	- .	T	9	2	0	9		9	9		9	2	0	9	2	0	9		0	9		0	9	. 9		0	9	9		0	9	9		9	9		0	9		9	9		0	9		0	9	د د	9	9
2. ECE 3.	in advi	B	A B	A	A1	A	A	В	A	V	В	, m	1 <	۲.	V	в	A	47		A	в	A	_	9 1	в		2 4	В	ď	9	в	<	X	в	P	n	Ē	م <i>ב</i>	я	ď	2 4	m	ρ	٩	в	6	Δ	m		я	æ		٩	В		م	я	в	μ μ		р	В	ц	م <i>ב</i>	я	£	1	р	ď	1 4	n	ц	1	n	£	a c	Я	В	ء د	Я	В
D	ce t													c																		C	ر																																																
Icolo	SOUL	BA	BA BA	BA	BA	BC	PS	ΒA	ΒA	ΒA	ΒA	ΒA		Ê	2	ΒA	BA	£	5	PD	BC	BA			BA	- C		BA	ΒA		BA	E	ر	BA	4	ВA	C H		E C C C C C	SM		BA	۲ D	ť d	BA	Ч С	DA	BA		ВА	ΒA		5	5	Ca		ВA	BA	ΒA		ВA	BC	ΒA	1 . 1	BA	ΒA		ВA	RΔ		BA	Ca) •	ВA	ΒA	i c	ЪÅ	BA	i é	ВA	ΒA
	Outcome	н	с Р	Ш	щ	Щ	Г	Щ	D	Щ	Ц	Ц	10	96	-	Щ	Щ	Ц	16	וב	Щ	Щ		וב	Щ		- t	Δ	ΠΛ	ר או	Щ	L D	4	Щ	E	1	ĹŢ	1	ц	Ц	1	щ	μ	4	Щ	þ	4		1	긔	Ľ	1 4	P	Ш		1	비	Щ	ĹŢ	A E	1	٢D	Ц	1	ם	F	۹ p	니	ΓI	1 [ц	F	• F	ц	Γ	16	I	Щ	j t	ц	Щ
	oidity																					s infection*																																																											
	Infectious comorl	Pneumonia	Pneumonia*			Sepsis				Pneumonia	Pneumonia					Pneumonia*					Sepsis	Vascular prosthesis						Lung abscess)								Sensis	ered on	Sepsis																Cancie	eredoc			Pneumonia	nunouna i		Sepsis			Pneumonia	Pneumonia						Sancie	ered on							rneumonia	
	Primary diagnosis Infectious comor	Respiratory failure Preumonia	kespiratory tanure rneumonia Respiratory failure Pneumonia*	Acute myocardial infarction	Pneumonia	Lung cancer Sepsis	Pneumonia*	Aortic dissection	Respiratory failure	Respiratory failure Pneumonia	Reshiratory failure Pneumonia	Pneumonia	Decentrotory foilure		Pneumonia	Esophageal cancer Pneumonia*	Lung cancer	Respiratory failure		Kespiratory ranure	Respiratory failure Sepsis	Abdominal aortic aneurysm Vascular prosthesis	Tommer concer		Respiratory failure	Colorented concer		Bronchiectasis Lung abscess	Resniratory failure	Nespitatory railure	Respiratory failure	T	Lung cancer	Intestinal occlusion	A oution discontions	Aortic dissection	Pneumorvetosie* Sensis		Kespiratory failure Sepsis	I Inchedified hemorrhade		Mediastinitis	A autic discontion	VOLUC UISSECUOII	Respiratory failure	Deminotoni fellino	respiratory famile	Respiratory failure		Pneumonia	Resniratory failure		DIAUUET CANCET	Respiratory failure	Coloractal cancar Cancie		Wegener's granulomatosis	Respiratory failure	Acute myocardial infarction Pneumonia		Respiratory ranure	Aortic dissection Sepsis	Rechiratory failure		Amyotrophic lateral sclerosis Pheumonia	Resniratory failure Pneumonia		Acute myocardial infarction	Resultatory failure		Respiratory failure	Danol ntocic Cancie		Respiratory failure	Resniratory failure	Descriptions for func-	respiratory ranure	Respiratory failure		Respiratory failure Pheumonia	Respiratory failure
A.c. (111)	Primary diagnosis Infectious comort gender	61/M Respiratory failure Preumonia	67/F Respiratory failure Pneumonia	81/F Acute myocardial infarction	83/F Pneumonia	67/M Lung cancer Sepsis	79/F Pneumonia*	75/M Aortic dissection	81/F Respiratory failure	67/F Respiratory failure Pneumonia	47/F Resniratory failure Pneumonia	67/M Pneumonia	50/F Decembration		/6/M Pneumonia	59/M Esophageal cancer Pneumonia*	68/M Lung cancer	10/M Resniratory failure		/0/F Kespiratory failure	26/M Respiratory failure Sepsis	81/M Abdominal aortic aneurysm Vascular prosthesis	68/M I own concer	00/IVI LAIJIIA CAILUCI	81/M Respiratory failure	66/M Coloreotel concor		44/M Bronchiectasis Lung abscess	81/F Resniratory failure	ot/r respiratory ranute	85/F Respiratory failure		20/IM LUII CAUCE	65/F Intestinal occlusion	20.04 A contractions	39/IM Aortic dissection	45/M Pneumocystosis* Sensis		52/F Respiratory failure Sepsis	75/M Hushevified hemorrhage		66/F Mediastinitis	TA/N A mitical incore		62/M Respiratory failure	71/E Description feeling	/1/r Respiratory failure	78/M Resniratory failure		/2/F Pneumonia	76/F Resniratory failure		/2/IM DIADUEL CALLCEL	57/F Respiratory failure	64/M Colorantal concar Cancie		/4/M wegener's granulomatosis	79/F Respiratory failure	52/F Acute moreardial infarction Pneumonia		49/IM Respiratory failure	68/F Aortic dissection Sepsis	76/M Respiratory failure		54/M Amyotrophic lateral sclerosis Pheumonia	85/M Resniratory failure Preumonia		90/M Acute myocardial infarction	70/F Resniratory failure		84/F Respiratory failure	51/M Dand streets Cancie		23/F Respiratory failure	70/M Resniratory failure	77/E Descinations failure	///r Kespiratory tanure	70/M Respiratory failure		26/F Kespiratory failure Pheumonia	76/F Respiratory failure
Ana (111/)	Ward "Ye Vil) Primary diagnosis Infectious comort gender	DR-ICU 61/M Respiratory failure Pneumonia	CK-ICU 67/F Respiratory failure Pheumonia CR-ICU 67/F Respiratory failure Pheumonia*	PO-ICU 81/F Acute myocardial infarction	CR-ICU 83/F Pneumonia	CR-ICU 67/M Lung cancer Sepsis	CR-ICU 79/F Pneumonia*	CR-ICU 75/M Aortic dissection	CR-ICU 81/F Respiratory failure	CR-ICU 67/F Respiratory failure Pneumonia	CR-ICU 47/F Reshiratory failure Pneumonia	R-ICII 67/M Pneumonia	TO ICTI 50/E Description	The second secon	K-ICU /6/M Pneumonia	CR-ICU 59/M Esophageal cancer Pneumonia*	PO-ICU 68/M Lung cancer	R-ICII 10/M Resniratory failure		-K-ICU /0/F Kespiratory failure	² O-ICU 26/M Respiratory failure Sepsis	O-ICU 81/M Abdominal aortic aneurysm Vascular prosthesis	D ICII 68/M I anny cancer		CR-ICU 81/M Respiratory failure	UTILI (Clorented control of the clorented cont		PO-ICU 44/M Bronchiectasis Lung abscess	PO-ICI 81/F Resultatory failure	O-ICO 01/F Respiratory tanute	CR-ICU 85/F Respiratory failure		O-ICO 20/IM LUIB CALICE	PO-ICU 65/F Intestinal occlusion	O ICII 2004 Annie discostion	O-ICU 39/IM Aortic dissection	"R.ICII 45/M Pneumocyctocie* Sensis		CK-ICU 52/F Respiratory failure Sepsis	20.ICII 75/M Husherified hemorrhaue		CR-ICU 66/F Mediastinitis	TO ICIT 77/M Annuito discontion		CR-ICU 62/M Respiratory failure		UN-ICO /1/F Respiratory tanure	CR-ICU 78/M Respiratory failure		JR-ICU /J/F Preumonia	CR-ICII 76/F Resniratory failure		O-ICO /2/IM Bladder cancer	CR-ICU 57/F Respiratory failure	O ICIT 64/M Coloradial concerning		JR-ICU /4/M Wegener's granulomatosis	CR-ICU 79/F Respiratory failure	R-ICII 52/F Acute myocardial infarction Dueumonia		JK-ICU 49/IM Respiratory failure	CR-ICU 68/F Aortic dissection Sepsis	"R-ICII 76/M Resniratory failure		CR-ICU 54/M Amyotrophic lateral sclerosis Pheumonia	R-ICII 85/M Resniratory failure Pneumonia		JK-ICU 90/M Acute myocardial infarction	R_ICII 70/F Resultatory failure		CR-ICU 84/F Respiratory failure	PLUTI 51/M Danal atosis Cancie		JR-ICU 33/F Respiratory tanure	R-ICII 70/M Resniratory failure	TO LOT 77/15 Descination of the contract of th	UK-ICU ///F Kespiratory failure	CR-ICU 70/M Respiratory failure		UK-ICU 38/F Kespiratory tailure Pneumonia	CR-ICU 76/F Respiratory failure
Gultures data Ana (unV)	Current and Mard Ast Orly Primary diagnosis Infectious comort (day/mo/yr) Ward agueter	15/05/2006 CR-ICU 61/M Respiratory failure Pneumonia	29/02/2000 CK-ICU 20/F Kespiratory tallure riteumonia 05/06/2006 CR-ICU 67/F Respiratory failure Preumonia*	09/06/2006 PO-ICU 81/F Acute myocardial infarction	19/06/2006 CR-ICU 83/F Pneumonia	28/06/2006 CR-ICU 67/M Lung cancer Sepsis	17/07/2006 CR-ICU 79/F Pneumonia*	17/07/2006 CR-ICU 75/M Aortic dissection	17/07/2006 CR-ICU 81/F Respiratory failure	31/07/2006 CR-ICU 67/F Respiratory failure Pneumonia	03/08/2006 CR-ICU 47/F Respiratory failure Preumonia	14/08/2006 CR-ICUI 67/M Pre-immedia	21/00/2000 COLUCIO COLUCION FUNCTION		23/08/2006 CK-ICU /6/M Pneumonia	28/08/2006 CR-ICU 59/M Esophageal cancer Pneumonia*	12/09/2006 PO-ICU 68/M Lung cancer	06/11/2006 CB-ICII 10/M Receivations failure		V0/11/2000 CK-ICO /0/F Respiratory tanure	05/01/2007 PO-ICU 26/M Respiratory failure Sepsis	08/01/2007 PO-ICU 81/M Abdominal aortic aneurysm Vascular prosthesis	08/11/2007 DO ICUI 68/04 Lower contest and the province of the		15/01/2007 CR-ICU 81/M Respiratory failure	15/11/2007 DO ICII 66/M Colonation		18/01/2007 PO-ICU 44/M Bronchiectasis Lung abscess	24/01/2007 PO_ICI 81/F Resuiratory failure	24/01/200/ FO-ICO 01/F Respiratoly failure	29/01/2007 CR-ICU 85/F Respiratory failure		U2/U2/20U/ FO-ICO 20/M LUIB CAILCE	12/02/2007 PO-ICU 65/F Intestinal occlusion	16/02/2007 DO ICIT 20/M Acutic discontice	10/02/200/ PO-ICU 39/IM Aortic dissection	23/02/2007 CR_ICI1 45/M Pneumocyctocie* Sensis		03/03/2007 CK-ICU 52/F Respiratory failure Sepsis	13/03/2007 DO-ICI1 75/M Unspecified hemorrham		19/03/2007 CR-ICU 66/F Mediastinitis	21 M3 / 2007 CD ICIT 77M Activity discontinue		21/03/2007 CR-ICU 62/M Respiratory failure	10.004 CD ICHI 71/E Doctory follows	10/04/2007 CK-1CO /1/F Respiratory tallure	30/04/2007 CR-ICU 78/M Respiratory failure		30/04/2007 CR-ICU 7/5/F Pneumonia	04/05/2007 CR-ICII 76/F Resniratory failure		US/US/2007 FO-ICO /3/IM BIAUGET CARCET	14/05/2007 CR-ICU 57/F Respiratory failure	26/05/2007 BO ICTI 64/M Coloradal concer		04/06/200/ CK-ICU /4/M Wegener's granulomatosis	05/06/2007 CR-ICU 79/F Respiratory failure	19/06/2007 CR-ICII 52/F Acuite myocardial infarction Pneumonia		21/06/2007 CK-ICU 49/M Kespiratory failure	25/06/2007 CR-ICU 68/F Aortic dissection Sepsis	28/06/2007 CR-ICII 76/M Recuiratory failure		02/07/2007 CK-ICU 54/M Amyotrophic lateral sclerosis Pneumonia	16/07/2007 CR-ICII 85/M Resuiratory failure Preumonia		25/01/2007 CK-ICU 90/M Acute myocardial infarction	24/07/2007 CR_ICII 70/F Resuiratory failure		30/07/2007 CR-ICU 84/F Respiratory failure	01/08/007 CD-ICI1 51/M Daniel atosis		UZ/U8/2007 UR-ICU 35/F Respiratory tallure	04/08/2007 CR-ICII 70/M Resultatory failure		USUVIZUU UK-IUU ///F Respiratory failure	03/09/2007 CR-ICU 70/M Respiratory failure		UD/U9/2007 CK-ICU 28/F Respiratory tailure Pneumonia	10/09/2007 CR-ICU 76/F Respiratory failure
Culture data Aca (mV)	Strain Current work with the Primary diagnosis Infectious comort (day/mo/yr) Ward restores comort	3978 15/05/2006 CR-ICU 61/M Respiratory failure Pheumonia	39/9 29/02/2006 CK-ICU 52/F Respiratory failure Frietmonia 3980 05/06/2006 CR-ICU 67/F Respiratory failure Pneumonia*	3982 09/06/2006 PO-ICU 81/F Acute myocardial infarction	3993 19/06/2006 CR-ICU 83/F Pneumonia	3983 28/06/2006 CR-ICU 67/M Lung cancer Sepsis	3991 17/07/2006 CR-ICU 79/F Pneumonia*	3994 17/07/2006 CR-ICU 75/M Aortic dissection	3984 17/07/2006 CR-ICU 81/F Respiratory failure	4137 31/07/2006 CR-ICU 67/F Respiratory failure Pheumonia	3987 03/08/2006 CR-ICU 47/F Resolutatory failure Preumonia	3085 14/08/006 CR-ICIT 67/M Pre-immonia	2002 11/08/2006 CD ICIT 50/20 Description		3990 23/08/2006 CK-ICU /6/M Preumonia	3989 28/08/2006 CR-ICU 59/M Esophageal cancer Pneumonia*	4138 12/09/2006 PO-ICU 68/M Lung cancer	3086 06/11/2006 CB-ICI1 10/M Reseivation failure		3988 00/11/2000 CK-ICO /0/F Kespiratory tallure	3956 05/01/2007 PO-ICU 26/M Respiratory failure Sepsis	4155 08/01/2007 PO-ICU 81/M Abdominal aortic aneurysm Vascular prosthesis	1156 08(1/2007 DO ICIT 68/M Lownson and a second research and a second r		3958 15/01/2007 CR-ICU 81/M Respiratory failure	A157 15/01/200 DO ICUI 66/04 Colorado Do acordo		3957 18/01/2007 PO-ICU 44/M Bronchiectasis Lung abscess	3042 24/01/2007 DO-ICI1 81/F Resuiratory failure	3942 24/01/2007 FO-LOO 61/F Neshiratory tanute	3997 29/01/2007 CR-ICU 85/F Respiratory failure		4130 U3/U2/20U/ FO-ICO 30/M LUIIG CAILCE	3944 12/02/2007 PO-ICU 65/F Intestinal occlusion	2015 12 MOLYDON DO LCTI 20/M Acardia dicertica	3945 10/02/2007 PO-ICU 39/IM AOTIC DISSECTION	3060 23/02/2007 CR_ICTI 45/M Pneumocyctosis* Sensis		3998 03/03/2007 CK-ICU 52/F Respiratory failure Sepsis	3046 13.03/2007 PO_ICTI 75/M IInsnerified hemorrhaue		3999 19/03/2007 CR-ICU 66/F Mediastinitis	2061 21 M2 7007 CD ICII 77/M Acadic discontine		4000 21/03/2007 CR-ICU 62/M Respiratory failure	2050 10.004/0007 CD ICII 71/E D $\frac{1}{10000000000000000000000000000000000$	2902 10/04/200/ CR-ICO /1/F Respiratory lature	4001 30/04/2007 CR-ICU 78/M Respiratory failure		4002 30/04/2007 CK-ICU /2/F Preumonia	3963 04/05/2007 CR-ICU 76/F Respiratory failure		294/ UQ/UD/ZUU/ FO-ICO /2/M BIAUGET CARCET	4139 14/05/2007 CR-ICU 57/F Respiratory failure	2048 26/05/2007 DO ICUI 64/M Colorected connert		3969 04/06/2007 CK-ICU /4/M Wegener's granulomatosis	4140 05/06/2007 CR-ICU 79/F Respiratory failure	3070 19/06/2007 CR-ICII 52/F Acute myocardial infarction Phenmonia		4141 21/06/2007 CK-ICO 49/M Kespiratory failure	3971 25/06/2007 CR-ICU 68/F Aortic dissection Sepsis	4142 28/06/2007 CR_ICI1 76/M Resultatory failure		4143 02/07/2007 CR-ICU 54/M Amyotrophic lateral sclerosis Pneumonia	3072 16/07/2007 CR-ICI1 85/M Resultatory failure Prelimonia		4145 23/01/2007 CK-ICU 90/M Acute myocardial infarction	4144 24/07/2007 CR_ICI1 70/F Respiratory failure		4136 30/07/2007 CR-ICU 84/F Respiratory failure	3066 01/08/2007 CD ICII 51/M Danol mocie		4140 U2/05/200/ CK-ICU 35/F Kespiratory tanure	4147 04/08/2007 CR-ICI1 70/M Resultatory failure		240/ UNV/200/ UK-ICU ///F Kespiratory tallure	4148 03/09/2007 CR-ICU 70/M Respiratory failure		4149 UD/UV/2UU/ CK-ICU 28/F Kespiratory failure Preumonia	4150 10/09/2007 CR-ICU 76/F Respiratory failure

≤0.5	4	32	32	125	0.5	1	78	9	в	BC	D	Sepsis	Polytrauma	19/M	ICU	04/02/2007	3933
≤0.5	4	64	>250	125	×	16	78	9	в	CVC	D		Tetanus*	60/F	ICU	03/10/2007	3696
≤0.5	4	32	125	125	×	16	78	9	в	BC	ш		Sepsis	60/F	ICU	06/06/2007	3701
≤0.5	4	32	125	125	×	16	78	9	в	BC	D	Sepsis	Cholangiocarcinoma	75/M	ICU	24/05/2007	3679
≤0.5	4	4	125	125	16	32	78	9	в	BA	D	Pneumonia	Respiratory failure	W/09	ICU	07/04/2007	3678
≤0.5	4	32	>250	125	×	8	78	9	в	BA	ш		Acute myocardial infarction	45/M	CR-ICU	22/10/2007	3912
≤0.5	4	32	2	125	8	16	78	9	в	BC	ш	Sepsis	Abdominal aortic aneurysm	M/6/	PO-ICU	24/11/2007	3952
≤0.5	4	32	2	125	×	16	78	9	в	BAL	Щ	Pneumonia	Respiratory failure	62/M	CR-ICU	19/11/2007	4154
≤0.5	0	256	2	125	×	16	78	9	в	BA	ш		Pancreatic cancer	49/M	PO-ICU	14/11/2007	3951
≤0.5	4	32	2	125	8	32	78	9	в	BA	ш	Pneumonia*	Respiratory failure	44/F	CR-ICU	05/11/2007	3909
≤0.5	4	64	125	125	×	8	78	9	в	BA	ш		Respiratory failure	69/F	CR-ICU	03/11/2007	4153
≤0.5	4	64	>250	125	×	32	78	9	B1	BC	٧D	Sepsis	Respiratory failure	74/M	CR-ICU	24/10/2007	3911
≤0.5	4	32	16	64	4	8	78	9	в	BA	ш		Respiratory failure	72/M	PO-ICU	12/10/2007	3950
≤0.5	4	8	>250	125	4	8	78	9	в	BA	Щ		Respiratory failure	63/M	CR-ICU	12/10/2007	4152
≤0.5	4	10	C71	04	16	16	/8/	9	в	ΒA	щ		Respiratory failure	M/77	CK-ICU	01/10/2007	4151
	r	22	175	5	,		C	,									

FIG. 2. Molecular epidemiology of *A. baumannii* in the V. Monaldi hospital, Naples, Italy, during 2006 and 2007. Gray and white bars represent ST2/A isolates from the cardiorespiratory ICU (CR-ICU) and postoperative ICU (PO-ICU), respectively; black and dotted bars represent ST78/B isolates from the CR-ICU and PO-ICU, respectively.

infected by ST2/A and ST78/B were 3:1 and 0.46:1, respectively (P > 0.05). Crude mortality and *A. baumannii*-associated mortality were 64% (9/14) and 21% (3/14), respectively, for patients with isolation of ST2/A *A. baumannii* and 75% (43/57) and 25% (14/57), respectively, for patients with isolation of ST78/B *A. baumannii* (Table 1).

Five additional multidrug-resistant (MDR) *A. baumannii* strains with the ST78/B profile were isolated in the ICU wards of the Cotugno and A. Cardarelli hospitals in Naples (4 isolates and 1 isolate, respectively) during 2007 (Table 1).

Antimicrobial susceptibility patterns of A. baumannii isolates. Both ST2/A and ST78/B A. baumannii isolates from the V. Monaldi hospital showed a multidrug-resistant antibiotype. In particular, they were resistant to ampicillin-sulbactam, piperacillin-tazobactam, broad-spectrum cephalosporins, fluoroquinolones, and aminoglycosides; intermediate or resistant to imipenem and rifampin; and intermediate to meropenem but were susceptible to colistin sulfate (Table 2). Interestingly, 5 isolates with the ST2/A profile showed high-level resistance to rifampin (Tables 1 and 2). All four A. baumannii isolates with the ST78/B profile from the Cotugno hospital in Naples showed antimicrobial susceptibility profiles identical to those of ST78/B isolates from the V. Monaldi hospital; the single A. baumannii ST78/B isolate from the A. Cardarelli hospital was susceptible to imipenem (MIC, 1.0 mg/liter) and meropenem (MIC, 0.5 mg/liter) (Table 1). Tests with Etest MBL strips showed that all carbapenem-resistant ST2/A and ST78/B isolates were intermediate or resistant to imipenem (MICs, 8 to 16 mg/liter) but were negative for MBL production (imipenem-EDTA MICs, 4 to 8 mg/liter). To study the contribution of oxacillinases to imipenem resistance, imipenem MICs were analyzed in the presence of 200 mM NaCl for carbapenem-resistant ST2/A and ST78/B isolates by a microdilution method. These experiments showed that imipenem MICs (16 mg/liter) were inhibited by up to 8-fold in the presence of NaCl (2 mg/liter).

			MIC (mg/liter)		
Antibiotic		ST2/A (14 total stra	ins)		ST78/B (57 total str	ains)
	MIC ₅₀	MIC ₉₀	Range	MIC ₅₀	MIC ₉₀	Range
Sulbactam-ampicillin	32	125	32-125	125	125	64–125
Piperacillin-tazobactam	125	250	125->250	250	250	32->250
Ceftazidime	250	250	125->250	250	250	125->250
Cefepime	125	250	16-250	16	32	16-250
Imipenem	16	32	8-32	16	32	8-32
Meropenem	8	16	4-16	8	16	4-16
Amikacin	125	>250	4->250	125	>250	2->250
Gentamicin	8	64	4->250	32	64	4->250
Ciprofloxacin	64	250	32->250	64	250	32->250
Rifampin	4	500	2-500	4	4	2-16
Colistin	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5 - 1

TABLE 2. Antibiotic susceptibility profiles of A. baumannii isolates from the V. Monaldi hospital⁴

^a A. baumannii isolates were analyzed by a microdilution method for MIC determination according to CLSI guidelines.

Molecular analysis of carbapenem resistance in A. baumannii isolates. PCR and sequence analysis identified a bla_{OXA-58} gene flanked by ISAba2 and ISAba3 elements at the 5' and 3' ends, respectively, in plasmid DNA from all carbapenem-resistant A. baumannii ST2/A and ST78/B isolates but not from the single carbapenem-susceptible A. baumannii strain of PFGE type B isolated in the A. Cardarelli hospital. No amplification products were obtained from chromosomal or plasmid DNA of A. baumannii ST2/A and ST78/B isolates using primers for bla_{IMP}-type, bla_{VIM}-type, or bla_{SIM}-type MBLs or bla_{OXA-23} or bla_{OXA-24/40} CHDLs. Also, PCR experiments failed to identify any IS element upstream of the naturally occurring bla_{OXA-66} or bla_{OXA-90} genes in A. baumannii ST2/A and ST78/B isolates, respectively, thus excluding the notion that IS-mediated overexpression of these oxacillinases may account for the resistance to imipenem (23).

Genetic location and characterization of the genetic structures surrounding the bla_{OXA-58} gene. Digestion of plasmid DNA from *A. baumannii* ST2/A and ST78/B isolates with HindIII enzyme revealed different restriction patterns that generated two different positive bands of approximately 3.0 and 2.7 kb and 2.7 and 1.0 kb, respectively, when hybridized with a bla_{OXA-58} -specific probe (Fig. 3A). The direct sequence of amplicons generated from plasmid DNA preparation of *A. baumannii* ST2/A and ST78/B isolates using primers spanning the 5' end of *A. baumannii* origin of plasmid replication (*oriV*) and the 3' end of the IS*Aba3* element identified two similar fragments of 6,095 and 6,073 bp that were designated pABNA1 and pABNA2, respectively.

The two amplicons showed identical origins of replication (*oriV*); a repeat region composed of five 22-bp-long imperfect direct iterons in pABNA1 and four 22-bp-long iterons in pABNA1 and pABNA2, respectively; identical *repAci1* and *repAci2* replicase genes; and a single copy of the *bla*_{OXA-58} gene that was flanked by ISAbA2 and ISAba3 elements at the 5' and 3' ends, respectively (Fig. 3B). Filter mating experiments demonstrated that resistance to imipenem, along with the *bla*_{OXA-58} gene, was transferred from *A. baumannii* ST78/B isolate 3957, but not from *A. baumannii* ST2/A isolate 3979, to imipenem-susceptible *Acinetobacter* genomic species 3 isolate 4442 at a frequency of 1×10^{-6} . Imipenem MICs for transconjugants were similar (16 mg/liter) to those for donor isolates.

DISCUSSION

In the present report, we studied the molecular epidemiology and the genetic basis of carbapenem resistance in *A. baumannii* strains isolated between May 2006 and December 2007 during an epidemic occurring in two ICUs of the V. Monaldi hospital in Naples. In accordance with previous data (10, 15),

FIG. 3. (A) Plasmid localization of the bla_{OXA-58} gene in *A. baumannii* ST2/A and ST78/B isolates. Agarose (1%) gel electrophoresis in 1× Tris-acetate-EDTA buffer of HindIII-digested plasmids from *A. baumannii* isolates 3979 and 3957, respectively, stained with ethidium bromide and visualized under UV light and Southern blot hybridization with the bla_{OXA-58} probe are shown. Lane M shows a 1-kb DNA ladder (Promega, Milan, Italy). (B) Schematic map of the genetic structure surrounding the bla_{OXA-58} gene in *A. baumannii* ST2/A and ST78/B isolates. The genes and their corresponding transcription orientations are indicated by horizontal arrows. IS elements are represented by open rectangles filled with black arrows indicating the transposase gene and the direction of transcription. Names of relevant features are reported below or above the map.

the isolation rate of A. baumannii was significantly associated with length of stay in the ward, being higher in the CR-ICU than in the PO-ICU (10, 15). Based on a previous study of an A. baumannii outbreak occurring in the same institution between June 2003 and June 2004 (25), we could assume that the epidemic described herein was caused by the spread of a single epidemic clone. However, the present report revealed the emergence of two distinct A. baumannii epidemic clones that were isolated in two consecutive temporal clusters in the same wards of the hospital. Indeed, the identity of 3LST, ST, and resistance profiles/genes and the near-identity of PFGE profiles indicate that these two sets of isolates each represent a clone. The first epidemic clone showed identical PFGE profiles of the A. baumannii strains responsible for two epidemics occurring in Naples in the Federico II and V. Monaldi hospitals during 2002 and during 2003 and 2004, respectively (25, 26), and was assigned to 3LST group 1 and ST2, which corresponded to the previously characterized European clone II (9, 10). The second epidemic clone, which was first isolated in the CR-ICU in May 2006 and replaced the previous clone in both wards from March 2007 onward, showed a distinct genotype, assigned to novel 3LST group 6 and ST78, which has never been isolated before and is described for the first time herein. This is consistent with previous studies showing that carbapenem-resistant A. baumannii epidemics in southern Europe are caused by genotypes belonging to 3LST groups 1 and 2, corresponding to the European clones II and I, respectively, but also by additional genotypes of 3LST groups 4 and 5 (10, 11, 15, 22). Our data are also in agreement with a recent report showing that four distinct clones are responsible for a cluster of carbapenem-resistant A. baumannii infections in the ICU of a Greek hospital (21). Also, the isolation of A. baumannii ST78/B strains in the ICUs of two other hospitals in Naples during 2007 suggests that the spread of the novel A. baumannii epidemic clone described herein might have been caused by interhospital transfer of colonized patients in the city. In agreement with previous studies, the respiratory tract was the most frequent site of isolation for both clones (9, 15, 25, 26). However, ST78/B strains caused a higher but not statistically significant proportion of bacteremias than did the other clone in patients from the V. Monaldi hospital, thus suggesting that the novel epidemic clone may possess some inherent properties for developing invasive disease. Moreover, no statistically significant differences in mean age and female/male ratio were observed between patients of the V. Monaldi hospital infected by ST2/A strains and those infected by ST78/B strains of A. baumannii.

Several studies demonstrate that *A. baumannii* epidemic strains are selected in the hospital setting because of their multiple antimicrobial resistances (1, 9, 13, 15, 21, 27). In particular, the emergence of carbapenem resistance has been reported during hospital outbreaks of multidrug-resistant *A. baumannii* in Italy and southern Europe (4, 8, 11, 13, 20, 21, 25–28). Accordingly, the two *A. baumannii* clones described in the present study showed similar antibiotypes, characterized by resistance to all classes of antimicrobials, including carbapenems, and intermediate resistance to rifampin but susceptibility to colistin. Additional epidemiological information was provided by molecular analysis of carbapenem resistance genes. A plasmid-borne *bla*_{OXA-58} gene was identified in both *A. bau*

mannii clones isolated in the V. Monaldi hospital but not in the single carbapenem-susceptible A. baumannii ST78/B isolate from the A. Cardarelli hospital. Although the plasmids carrying the bla_{OXA-58} gene from the two epidemic clones showed distinct restriction patterns, two similar amplicons containing an origin of plasmid replication, a repeat region composed of four or five 22-bp imperfect direct iterons, the replicase genes, and a single copy of the bla_{OXA-58} gene flanked by ISAba2 and ISAba3 sequences at the 5' and 3' ends of the gene, respectively, were identified. The above genetic structures were highly homologous with those found in plasmids pOUR and pACICU1 from A. baumannii strains 183 and ACICU, respectively, isolated in Rome, Italy (4, 14). Interestingly, all A. baumannii strains carrying the bla_{OXA-58} gene isolated in Rome were assigned to ST group 1 and European clone II (4, 8, 14), as were the A. baumannii strains responsible for the outbreak occurring in the V. Monaldi hospital during 2003 and 2004 (11, 25). A bla_{OXA-58} gene flanked by ISAba2 and ISAba3 sequences has been also found in plasmids isolated in strains from France and Spain showing distinct pulsotypes (16) and in plasmids isolated in strains from Greece assigned to ST groups 1 and 2 (11). The above data all suggest that carbapenem resistance in the two A. baumannii epidemic clones might have been acquired through horizontal gene transfer among distinct clones. Because clone ST2/A carrying a plasmid-borne bla_{OXA-58} gene was first isolated in the V. Monaldi hospital during 2003 (25) while the first isolation of clone ST78/B carrying a plasmid-borne bla_{OXA-58} gene occurred during 2006 in the hospital and one carbapenem-susceptible A. baumannii strain with the ST78/B profile was isolated in another hospital of Naples during 2007, we can make the hypothesis that plasmid sequences carrying the bla_{OXA-58} gene flanked by ISAba2 and ISAba3 elements were transferred from ST2/A strains to ST78/B strains. In further support of this, we demonstrated herein that resistance to imipenem, along with the bla_{OXA-58} gene, was transferred from ST78/B strains into the imipenemsusceptible Acinetobacter genomic species 3 strain.

In conclusion, molecular epidemiology of *A. baumannii* in the V. Monaldi hospital showed the occurrence of a novel epidemic clone that successfully spread among different wards and was selected because of the presence of a plasmid-borne bla_{OXA-58} gene. This emphasizes the need to study the global epidemiology of *A. baumannii* and its associated antimicrobial resistances by using molecular typing methods in order to control the epidemic spread of multidrug-resistant *A. baumannii* infections in the hospital setting.

ACKNOWLEDGMENTS

We thank J. F. Turton, Health Protection Agency, United Kingdom, for help in the identification of the novel alleles and ST types of *A. baumannii* isolates and D. Vitale, CEINGE Biotecnologie Avanzate, Napoli, Italy, for technical support in DNA sequencing. We also thank J.-W. Chu (Centre for Health Protection, The Government of the Hong Kong SAR, China) for kindly providing *Acinetobacter* genomic species 3 strain 4442 and Alfonso Baccari, the V. Monaldi hospital, Naples, Italy, for his kind support in epidemiological data collection.

This work was supported in part by a grant from Agenzia Italiana del Farmaco (AIFA2007 contract no. FARM7X9F8K), and from Ministero dell'Istruzione, dell'Universitá e della Ricerca, Italy (PRIN 2008 to R.Z.). Platform Genotyping of Pathogens and Public Health receives financial support from the Institut Pasteur and the Institut de Veille Sanitaire (Saint-Maurice, France).

REFERENCES

- Adams, M. D., K. Goglin, N. Molyneaux, K. M. Hujer, H. Lavender, J. J. Jamison, I. J. MacDonald, K. M. Martin, T. Russo, A. A. Campagnari, A. M. Hujer, R. A. Bonomo, and S. R. Gill. 2008. Comparative genome sequence analysis of multidrug-resistant *Acinetobacter baumannii*. J. Bacteriol. 190: 8053–8064.
- Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
- Bartual, S. G., H. Seifert, C. Hippler, M. A. Luzon, H. Wisplinghoff, and F. Rodriguez-Valera. 2005. Development of a multilocus sequence typing scheme for characterization of clinical isolates of *Acinetobacter baumannii*. J. Clin. Microbiol. 43:4382–4390.
- Bertini, A., L. Poirel, S. Bernabeu, D. Fortini, L. Villa, P. Nordmann, and A. Carattoli. 2007. Multicopy bla_{OXA-58} gene as a source of high-level resistance to carbapenems in *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 51:2324–2328.
- British Society for Antimicrobial Chemotherapy. January 2006. British Society for Antimicrobial Chemotherapy methods for antimicrobial susceptibility testing. Version 6. British Society for Antimicrobial Chemotherapy, Birmingham, United Kingdom.
- Chang, H. C., Y. F. Wei, L. Dijkshoorn, M. Vaneechoutte, C. T. Tang, and T. C. Chang. 2005. Species-level identification of isolates of the *Acinetobacter* calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J. Clin. Microbiol. 43:1632–1639.
- Clinical and Laboratory Standards Institute. 2008. Performance standards for antimicrobial susceptibility testing, 18th informational supplement. Approved standards M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA.
- D'Arezzo, S., A. Capone, N. Petrosillo, and P. Visca on behalf of GRAB. 2009. Epidemic multidrug-resistant *Acinetobacter baumannii* related to European clonal types I and II in Rome (Italy). Clin. Microbiol. Infect. 15:347–357.
- Dijkshoorn, L., H. Aucken, P. Gerner-Smidt, P. Janssen, M. E. Kaufmann, J. Garaizar, J. Ursing, and T. L. Pitt. 1996. Comparison of outbreak and nonoutbreak *Acinetobacter baumannii* strains by genotypic and phenotypic methods. J. Clin. Microbiol. 34:1519–1525.
- Dijkshoorn, L., A. Nemec, and H. Seifert. 2007. An increasing threat in hospitals: multidrug-resistant *Acinetobacter baumannii*. Nat. Rev. Microbiol. 5:939–951.
- Giannouli, M., F. Tomasone, A. Agodi, H. Vahaboglu, Z. Daoud, M. Triassi, A. Tsakris, and R. Zarrilli. 2009. Molecular epidemiology of carbapenemresistant *Acinetobacter baumannii* strains in intensive care units of multiple Mediterranean hospitals. J. Antimicrob. Chemother. 63:828–830.
- Heritier, C., L. Poirel, T. Lambert, and P. Nordmann. 2005. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 49:3198–3202.
- Houang, E. T. S., J. W. Chu, W. S. Lo, K. J. Chu, and A. F. B. Cheng. 2003. Epidemiology of rifampin ADP-ribosyltransferase (*arr-2*) and metallo-βlactamase (*bla*IMP-4) gene cassettes in class 1 integrons in *Acinetobacter* strains isolated from blood cultures in 1997 to 2000. Antimicrob. Agents Chemother. 47:1382–1390.
- Iacono, M., L. Villa, D. Fortini, R. Bordoni, F. Imperi, R. J. P. Bonnal, T. Sicheritz-Ponten, G. De Bellis, P. Visca, A. Cassone, and A. Carattoli. 2008. Whole-genome pyrosequencing of an epidemic multidrug-resistant *Acineto-*

bacter baumannii strain belonging to the European clone II group. Antimicrob. Agents Chemother. **52**:2616–2625.

- Peleg, A. Y., H. Seifert, and D. L. Paterson. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21:538–582.
- Poirel, L., and P. Nordmann. 2006. Genetic structure at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla_{OXA-58} in Acinetobacter baumannii. Antimicrob. Agents Chemother. 50: 1442–1448.
- Salerno, A., A. Delétoile, M. Lefevre, I. Ciznar, K. Krovacek, P. Grimont, and S. Brisse. 2007. Recombining population structure of *Plesiomonas shigelloides (Enterobacteriaceae)* revealed by multilocus sequence typing. J. Bacteriol. 189:7808–7818.
- Santos, S. R., and H. Ochman. 2004. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ. Microbiol. 6:754–759.
- Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233–2239.
- Towner, K. J., K. Levi, M. Vlassiadi, and the ARPAC Steering Group. 2008. Genetic diversity of carbapenem-resistant isolates of *Acinetobacter baumannii* in Europe. Clin. Microbiol. Infect. 14:161–167.
- Tsakris, A., A. Ikonomidis, A. Poulou, N. Spanakis, D. Vrizas, M. Diomidous, S. Pournaras, and F. Markou. 2008. Clusters of imipenem-resistant *Acinetobacter baumannii* clones producing different carbapenemases in an intensive care unit. Clin. Microbiol. Infect. 14:588–594.
- Turton, J. F., S. N. Gabriel, C. Valderrey, M. E. Kauffmann, and T. L. Pitt. 2007. Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of *Acinetobacter baumannii*. Clin. Microbiol. Infect. 13:807–815.
- Turton, J. F., M. E. Ward, N. Woodford, M. E. Kaufmann, R. Pike, D. M. Livermore, and T. L. Pitt. 2006. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 258:72–77.
- 24. Van Dessel, H., L. Dijkshoorn, T. van der Reijden, N. Bakker, A. Paauw, P. van den Broek, J. Verhoef, and S. Brisse. 2004. Identification of a new geographically widespread multiresistant *Acinetobacter baumannii* clone from European hospitals. Res. Microbiol. 155:105–112.
- Zarrilli, R., R. Casillo, A. Di Popolo, M.-F. Tripodi, M. Bagattini, S. Cuccurullo, V. Crivaro, E. Ragone, A. Mattei, N. Galdieri, M. Triassi, and R. Utili. 2007. Molecular epidemiology of a clonal outbreak of multidrugresistant *Acinetobacter baumannii* in a university hospital in Italy. Clin. Microbiol. Infect. 13:481–489.
- Zarrilli, R., M. Crispino, M. Bagattini, E. Barretta, A. Di Popolo, M. Triassi, and P. Villari. 2004. Molecular epidemiology of sequential outbreaks of *Acinetobacter baumannii* in an intensive care unit shows the emergence of carbapenem resistance. J. Clin. Microbiol. 42:946–953.
- Zarrilli, R., M. Giannouli, F. Tomasone, M. Triassi, and A. Tsakris. 2009. Carbapenem resistance in *Acinetobacter baumannii*: the molecular epidemic features of an emerging problem in health care facilities. J. Infect. Dev. Countries 3:335–341.
- Zarrilli, R., D. Vitale, A. Di Popolo, M. Bagattini, Z. Daoud, A. U. Khan, C. Afif, and M. Triassi. 2008. A plasmid-borne bla_{OXA-58} gene confers imipenem resistance to Acinetobacter baumannii isolates from a Lebanese hospital. Antimicrob. Agents Chemother. 52:4115–4120.