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Abstract
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), gefitinib and erlotinib,
are reversible competitive inhibitors of the tyrosine kinase domain of EGFR that bind to its
adenosine-5′ triphosphate-binding site. Somatic activating mutations of the EGFR gene, increased
gene copy number and certain clinical and pathological features have been associated with dramatic
tumor responses and favorable clinical outcomes with these agents in patients with non-small-cell
lung cancer (NSCLC). The specific types of activating mutations that confer sensitivity to EGFR
TKIs are present in the tyrosine kinase (TK) domain of the EGFR gene. Exon 19 deletion mutations
and the single-point substitution mutation L858R in exon 21 are the most frequent in NSCLC and
are termed ‘classical’ mutations. The NSCLC tumors insensitive to EGFR TKIs include those driven
by the KRAS and MET oncogenes. Most patients who initially respond to gefitinib and erlotinib
eventually become resistant and experience progressive disease. The point mutation T790M accounts
for about one half of these cases of acquired resistance. Various second-generation EGFR TKIs are
currently being evaluated and may have the potential to overcome T790M-mediated resistance by
virtue of their irreversible inhibition of the receptor TK domain.
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Introduction
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (TKs),
referred to as the HER or ErbB family, consists of four members—EGFR (HER1/ErbB1),
HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4)—that regulate many developmental,
metabolic and physiological processes. The intracellular TK activity of EGFR is increased as
a consequence of the binding of various cognate ligands, which include EGF, transforming
growth factor-α, amphiregulin and others, leading to the homodimerization of two EGFRs or
the heterodimerization of EGFR with other family members, most commonly HER2 (Bazley
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and Gullick, 2005). Heterodimerization with HER2, which is over-expressed in some tumors,
is a more potent activator of EGFR TK than is EGFR homodimerization. The activation of
receptor TK leads to the autophosphorylation of the intracellular domain of EGFR, and the
phosphotyrosine residues that are formed act as a docking site for various adapter molecules,
resulting in the activation of the Ras/mitogen-activated protein kinase pathway, the PI3K/Akt
pathway and signal transducers and activators of transcription signaling pathways (Figure 1a)
(Kumar et al., 2008).

In tumor cells, the TK activity of EGFR may be dysregulated by various oncogenic
mechanisms, including EGFR gene mutation, increased gene copy number and EGFR protein
overexpression. (Ciardello and Tortora, 2008) Improper activation of EGFR TK results in
increased malignant cell survival, proliferation, invasion and metastasis. EGFR overexpression
is observed in tumors from more than 60% of patients with metastatic non-small-cell lung
cancer (NSCLC) and is correlated with poor prognosis (Sharma et al., 2007). These findings
have provided a rationale for the development of novel anticancer agents that target EGFR.

Treatment with the reversible EGFR TK inhibitors (TKIs), gefitinib and erlotinib, results in
dramatic antitumor activity in a subset of patients with NSCLC: clinical responses have been
achieved in approximately 10% of European patients and in 30% of patients from East Asia
(Fukuoka et al., 2003; Kris et al., 2003; Perez-Soler et al., 2004; Shepherd et al., 2005; Thatcher
et al., 2005; Sharma et al., 2007). Sequencing of the EGFR gene revealed that a majority of
tumors responding to EGFR TKIs harbored mutations in the TK domain of EGFR (Lynch et
al., 2004; Paez et al., 2004; Pao et al., 2004). Overall, the frequency of EGFR mutations is 5–
20%, depending on the populations studied (Riely et al., 2006). For patients whose tumors
exhibit EGFR mutations, the response rate to gefitinib and erlotinib is approximately 75%,
suggesting that these mutations, at least in part, drive malignant transformation (Jackman et
al., 2006; Riely et al., 2006).

As a result of these findings, a large amount of data on EGFR mutations occurring in patients
with NSCLC have recently become available. This article reviews the types of activating and
resistance EGFR mutations and the pivotal role they have in the sensitivity and resistance of
NSCLC tumors to gefitinib and erlotinib. Advances in understanding EGFR mutations have
led to strategies for novel EGFR TKIs that hold promise in the improvement of clinical
outcomes for patients with advanced NSCLC.

Activating mutations of the EGFR gene
EGFR mutations are the most prevalent and well characterized in NSCLC, owing their
relationship to clinical responses to EGFR TKIs. Because of the high frequency of EGFR
mutations in NSCLC, these somatic mutations are thought to represent very early genetic events
leading to the development of lung cancer (Politi et al., 2006; Gazdar and Minna, 2008).
Furthermore, the susceptibility to EGFR TKIs validates the fundamental dependence of
NSCLC tumors on EGFR mutations for maintaining the malignant phenotype. All of the
somatic activating EGFR mutations involve the adenosine triphosphate (ATP)-binding pocket
in the receptor TK domain, which is the binding site for the TKIs erlotinib and gefitinib. Kinase
domain mutations in EGFR are referred to as ‘activating mutations’ because they lead to a
ligand-independent activation of TK activity. In some tumors, partially activated mutant
EGFRs can be rendered fully ligand independent and, therefore, constitutively active by a
second mutation.

The activating mutations of the EGFR gene are found in the first four exons (18 through 21)
of the TK domain (Figure 1b) (Shigematsu and Gazdar, 2006; Kumar et al., 2008). These
mutations fall into three major classes, with the majority of EGFR TKI-sensitizing mutations
falling into class I and II. Class I mutations are in-frame deletions in exon 19; these deletions
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almost always include amino-acid residues leucine-747 to glutamic acid-749 (ΔLRE), and
account for about 44% of all EGFR TK mutations. Class II mutations are single-nucleotide
substitutions that cause an amino-acid alteration. The predominant single-point mutation is in
exon 21, which substitutes an arginine for a leucine at codon 858 (L858R). L858R has the
highest prevalence of any single-point activating mutation in EGFR TK and accounts for about
41% of all EGFR TK activating mutations. Other class II activating mutations result in a
glycine-719 (G719) change to serine, alanine or cysteine (4% of all EGFR TK activating
mutations), and other missense mutations account for another 6% of EGFR mutations. Class
III mutations are in-frame duplications and/or insertions in exon 20. These account for the
remaining 5% of EGFR TK activating mutations. A variety of other activating mutations have
been detected with low frequency, including V765A and T783A (<1%) in exon 20 (Sharma
et al., 2007). Many of the sensitizing mutations have been detected in tumors from drug
responders.

Overall, deletions in exon 19 and the point mutation of L858R constitute about 90% of all
EGFR activating mutations, and are termed ‘classical’ activating mutations. Although the
signaling events that are affected as a result of EGFR mutations are not fully understood, it is
well established that the ‘on–off’ equilibrium of EGFR TK states is altered (Kumar et al.,
2008). Specifically, an equilibrium shift occurs between active and inactive states of the TK
that favors the activated state, resulting in a net increase in kinase activity. As a consequence,
tumor cells, in which EGFR activating mutations are present, display an oncogene addiction
to EGFR, with consequent selective growth and survival advantages (Gazdar and Minna,
2005; Sharma et al., 2007). Crystallographic analysis suggests that this equilibrium shift is the
result of structural alterations induced by activating mutations (Kumar et al., 2008). It has been
postulated that these mutations cause a constitutive activation of the kinase by destabilizing
the autoinhibited conformation that is normally found in the absence of ligand binding (Zhang
et al., 2006; Yun et al., 2008).

A kinetic analysis of the intracellular domains of EGFR L858R and EGFR Del (746–750) has
shown that both mutants are active but show a higher KM for ATP and a lower Ki for erlotinib,
relative to wild-type receptor (Carey et al., 2006). Thus, mutant kinases demonstrate a reduced
affinity for ATP, which provides a molecular explanation for the increased sensitivity to
erlotinib and gefitinib (Carey et al., 2006). It is notable that when expressed in a cell line that
does not express EGFR or other ErbB receptors, both mutations activate downstream EGFR
signaling pathways and promote cell-cycle progression.

Although common EGFR mutations have been well studied in preclinical models (in vitro and
in vivo) and their effects on response to TKIs have been observed in patients, relatively little
is known about rarer mutations. We now realize that not all mutations are activating, and that
some activating mutations may be associated with resistance to TKIs (Kancha et al., 2009). In
particular, insertion mutations in exon 20 are associated with a lack of response to TKIs.

Effect of the activating mutations on clinical response
Despite the modest response rate and overall survival benefit observed with EGFR TKIs in
patients with advanced NSCLC, significant clinical benefits were achieved in a subset of 10–
30% of patients. In 2004, two independent studies were published that probed the molecular
basis for the dramatic responses to gefitinib observed in a series of patients with advanced
NSCLC (Lynch et al., 2004; Paez et al., 2004). Somatic activating mutations in the EGFR TK
domain (exons 18, 19 and 21) were found in tumor specimens from 13 of 14 patients who
experienced objective responses to gefitinib. These mutations were absent in tumors from
patients with progressive disease. Another study reported activating EGFR mutations in tumors
from patients who responded to gefitinib or erlotinib (Pao et al., 2004). EGFR mutations were
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subsequently examined in several studies of unselected NSCLC tumor specimens. Activating
EGFR TK mutations are significantly more common in East Asians, women, never smokers
and patients with adenocarcinoma histology (Table 1) (Jänne and Johnson, 2006). Thus, the
frequency of the EGFR mutation mirrors the clinically defined subgroups of patients who were
most likely to achieve radiographic responses to EGFR TKIs (Miller and Kris, 2004). A germ
line transmission of EGFR mutations has also been described within families that show a high
incidence of lung cancer (Ikeda et al., 2008).

The presence of EGFR activating mutations impacts not only on response rate but also
progression-free survival and overall survival in patients with NSCLC treated with EGFR TKIs
(Table 2) (Bonomi et al., 2007). In four single-arm studies of EGFR TKIs in patients with
metastatic NSCLC, a significantly longer overall survival was observed in patients with EGFR
mutations (Cortez-Funes et al., 2005;Han et al., 2005;Mitsudomi et al., 2005;Takano et al.,
2005). In a study of NSCLC patients treated with gefitinib 250 mg/day, response and time to
progression were statistically significantly correlated with EGFR mutations and there was a
trend toward longer overall survival in patients harboring these mutations (Cappuzzo et al.,
2005). When data from all of these studies are combined, the response rate for patients with
EGFR mutations (n=110) is 60% (Bonomi et al., 2007). However, EGFR mutations were not
found to be significantly associated with longer survival times in a trial comparing erlotinib
with placebo, in which hazard ratios (HRs) for death were similar for patients with classical
activating mutations, novel mutations and wild-type EGFR (HR, 0.65, 0.67 and 0.73,
respectively) (Shepherd and Tsao, 2006). These investigators proposed that EGFR activating
mutations may be a prognostic factor for NSCLC rather than being a predictive factor of EGFR
TKI efficacy. This possibility is supported by a subset analysis from a phase III trial of erlotinib
plus chemotherapy versus chemotherapy alone, which revealed significantly longer survival
times in patients with EGFR mutations compared with those who had wild-type EGFR when
treated with chemotherapy alone (Eberhard et al., 2005).

In contrast, EGFR mutations did show a predictive value in the INTEREST study, which
compared docetaxel with gefitinib in patients with NSCLC that had progressed or recurred
after chemotherapy. Patients with mutations had a significantly longer progression-free
survival (PFS) with gefitinib than with docetaxel (7.0 vs 4.1 months; HR, 0.16; P=0.001),
whereas PFS among patients with wild-type EGFR trended in favor of docetaxel (1.7 vs 2.6
months; HR 1.24; P=0.135) (Douillard et al., 2008). A similar association was found in recently
reported results from the I-PASS trial, which compared first-line gefitinib with carboplatin/
paclitaxel in Asian patients with advanced NSCLC and with no history of substantial smoking.
In this study, patients harboring EGFR mutations had a significantly longer PFS with gefitinib
(HR, 0.48; P<0.001), whereas those with wild-type EGFR had a better PFS with chemotherapy
(HR, 2.85; P<0.001) (Mok et al., 2008).

A recent prospective study in first-line gefitinib-treated patients with NSCLC reported that
EGFR activating mutations were the most important independent predictors for time to
treatment failure compared with other mutations, among which exon 19 deletion and L858R
mutations were the best predictors for longer time to treatment failure in a multivariate analysis
(Yang et al., 2008). However, additional prospective studies are needed to clarify the
prognostic and predictive implications of EGFR activating mutations.

Interestingly, despite the impact of the EGFR mutation on outcomes in advanced NSCLC, the
mutational status may not have a dramatic effect on the outcome of patients with early-stage
NSCLC. In a study in 277 Japanese patients with early-stage lung cancer who had undergone
surgical resection, a Kaplan–Meier analysis that excluded patients treated with gefitinib, as
well as patients undergoing surgery for recurrent or second primary cancers, indicated that
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EGFR mutations did not affect the survival of these patients (P = 0.9933). However, it is
noteworthy that the median follow-up period was short (788 days) (Kosaka et al., 2004).

Not all activating mutations necessarily lead to a full or constitutive EGFR TK activity.
Therefore, the type of EGFR mutations in NSCLC tumors seems to influence the sensitivity
of the tumor to gefitinib and erlotinib. For example, NSCLC cells expressing the L858R mutant
are significantly more sensitive to gefitinib than are those that express the G719S mutant (Jiang
et al., 2005). Response rates to EGFR TKIs are higher in patients with NSCLC, whose tumors
have exon 19 mutations (70–100%), than in patients with exon 21 mutations (20–67%)
(Mitsudomi et al., 2005; Hirsch et al., 2006; Jackman et al., 2006; Riely et al., 2006). These
differential response rates translated into longer survival, whereby patients with an exon 19
(ΔLRE) deletion mutation had a median overall survival ranging from 26 to 34 months and
patients with exon 21 (L858R) had a median overall survival ranging from 8 to 17 months
(Hirsch et al., 2006; Jackman et al., 2006; Paz-Ares et al., 2006).

EGFR mutations and resistance to EGFR TKIs
Although EGFR kinase mutations are associated with an enhanced sensitivity to gefitinib and
erlotinib, not all tumors that have activating mutations are associated with an enhanced
response. Tumors that fail to respond to EGFR TKIs despite the presence of an activating
mutation might have an additional genetic lesion that relieves the tumor of its dependence on
the EGFR signaling pathway. One mechanism that has been linked to insensitivity of NSCLC
to EGFR TKIs is the occurrence of insertion point mutations in exon 20 of the EGFR gene.
These include the exon 20 insertion mutants D770_N771 (ins NPG), D770_(ins SVQ) and
D770_(ins G) N771T (Greulich et al., 2005; Sharma et al., 2007). In an in vitro model system,
insertion mutations in exon 20 render transformed cells less responsive to EGFR TKIs
compared with the sensitizing mutations of exons 19 and 21 (Greulich et al., 2005). However,
exon 20 mutations are relatively rare, suggesting that other mechanisms probably contribute
to EGFR TKI primary resistance in metastatic NSCLC. For many of the rare point mutations,
the effect on responsiveness to EGFR TKIs remains unknown.

Acquired resistance occurs in virtually all NSCLC tumors that initially respond to EGFR TKI
therapy. It is now recognized that the efficacy of gefitinib and erlotinib is of limited duration
owing, in large part, to the emergence of drug resistance conferred by a second point mutation
in the TK domain. The threonine-790 to methionine (T790M) point mutation is found in
approximately 50% of all patients at the time of acquired resistance to EGFR TKI therapy
(Kobayashi et al., 2005; Balak et al., 2006; Kosaka et al., 2006). This so-called gatekeeper
mutation is believed to be acquired through selective pressure during treatment, as it is rarely
detected in tumors from untreated patients (Pao et al., 2005a). Interestingly, using a highly
sensitive allele-specific assay, Maheswaran et al. (2008) recently detected low levels of T790M
in pretreatment NSCLC tumor samples from 10 of 26 patients. Although significant responses
were achieved with EGFR TKIs in these patients, the presence of T790M before treatment was
associated with a significantly shorter progression-free survival compared with that in TKI-
naive patients o without detectable T790M (7.7 vs 16.5 months; P < 0.001). These results
suggest that T790M may be a useful pretreatment biomarker for identifying patients who are
unlikely to achieve durable responses with reversible EGFR TKIs (that is, erlotinib and
gefitinib).

Preclinical studies support clinical findings implicating T790M as an underlying mechanism
of resistance. It has been demonstrated in vitro that this mutation can substantially suppress
the inhibitory effects of erlotinib and gefitinib, whereas TK activity is maintained (Kobayashi
et al., 2005; Pao et al., 2005a). Similarly, the introduction of T790M into gefitinib-sensitive
tumor cells that show activating EGFR mutations or an increased EGFR copy number also
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confers resistance to gefitinib treatment (Greulich et al., 2005). It is not clear how T790M
imparts resistance to reversible EGFR TKIs. The T790M mutation results in an alteration of
the topology of the ATP-binding pocket (Kumar et al., 2008). It has been suggested that this
change in topology precludes the binding of reversible EGFR TKIs through steric hindrance,
thereby resulting in resistance (Kobayashi et al., 2005; Kwak et al., 2005; Pao et al., 2005b).
However, another mechanism was proposed in a recent study showing that T790M increases
the affinity of the kinase domain for ATP (Yun et al., 2008). The authors suggested that this
increased affinity results in reduced potency of any ATP-competitive agent.

Other resistance point mutations, such as aspartic acid-761 to tyrosine (D761Y), have been
reported, some of which may weaken the interaction of EGFR TKI with its target (Balak et
al., 2006). Clinically, the challenge remains how to best detect tumors with the T790M and
other resistance point mutations on limited quantities of post-treatment tumor samples. A
molecular analysis of circulating cells may provide an alternative approach for monitoring
tumor mutations (Maheswaran et al., 2008). In a recent report, it was shown that the actual
number of activating EGFR mutant molecules could be detected in the plasma of patients with
NSCLC using a procedure called micro-fluidics digital polymerase chain reaction, which is
capable of detecting single input template molecules (Yung et al., 2009). In addition, it was
found that the concentration of mutant sequences from sequential measurements correlated
with response to therapy (that is, decreased concentration correlated with clinical response,
whereas persistence of the mutant sequence correlated with progression). These results indicate
that an examination of the plasma may be a suitable surrogate test when tumor tissue is not
available for determining therapy selection.

Strategies for optimizing response to EGFR TKIs
Insights gained from the treatment of patients with metastatic NSCLC with gefitinib and
erlotinib are dramatically changing drug development and treatment strategies, as well as
clinical outcomes. Because acquisition of the secondary resistance point mutation T790M
reduces the efficacy of ATP-competitive inhibitors, one strategy for preventing or overcoming
EGFR TKI resistance would be to identify novel agents that bind and inhibit EGFR by a distinct,
non-ATP competitive mechanism. A second strategy may be to irreversibly inhibit the binding
of ATP to the TK domain with an irreversible rather than a reversible inhibitor. As a class, the
irreversible EGFR inhibitors, including BIBW 2992, HKI-272 and PF00299804, are able to
inhibit EGFR phosphorylation and inhibit growth in gefitinib-resistant NSCLC or Ba/F3 cell
lines that contain the EGFR T790M mutation (Kwak et al., 2005; Wong, 2007; Li et al.,
2008; Engelman et al., 2008). For example, the irreversible EGFR/HER2 inhibitor, BIBW
2992, suppresses wild-type and activated EGFR and HER2 mutants, including EGFR and
HER2 inhibitor-resistant isoforms (Li et al., 2008). BIBW 2992 has a higher affinity for binding
to EGFR with the T790M resistance mutation than do first-generation EGFR TKIs (Table 3)
(Li et al., 2008), and induces dramatic tumor regression in an L858R/T790M EGFR-driven
lung cancer model. Late-stage clinical trials are evaluating BIBW 2992 and HKI-272 for the
treatment of patients with NSCLC who relapse after a successful previous treatment with
gefitinib or erlotinib.

Another approach for overcoming resistance to reversible EGFR TKIs involves targeting
parallel- or convergent signaling pathways. The mammalian target of the rapamycin (mTOR)
signaling pathway integrates nutrient and mitogen signals to regulate cell proliferation, survival
and angiogenic pathways, and has been implicated in resistance to EGFR inhibitors. In both
sensitive and resistant tumor cell lines, the mTOR inhibitor, everolimus, reduces the expression
of EGFR signaling effectors and cooperates with gefitinib to overcome resistance (Bianco et
al., 2008). In patients with resistance to first-generation EGFR TKIs generated by MET
amplification, it is unlikely that an irreversible EGFR inhibitor alone would be effective, but
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the combination of an irreversible EGFR inhibitor and an mTOR inhibitor may be an effective
strategy for overcoming resistance (Li et al., 2008). These hypotheses suggest novel therapeutic
strategies that are yet to be validated in clinical studies.

Conclusion
Various clinical characteristics and molecular factors have been associated with sensitivity and
resistance to EGFR TKIs. The discovery and characterization of EGFR activating mutations
and their relationship to sensitivity to gefitinib and erlotinib have provided a basis for
transforming NSCLC from a disease treated with conventional combination chemotherapy to
one in which subsets of patients with specific EGFR mutations can be effectively treated with
targeted therapy. It is reasonable to suggest that personalized therapy for NSCLC patients
should include a genetic assessment of the EGFR mutational status for individual patients.
Current research is directed at optimizing the accuracy and sensitivity of EGFR mutational
testing so that it might be introduced into routine clinical practice. The appropriate role of an
EGFR mutation analysis in the treatment of patients with NSCLC continues to evolve, awaiting
prospective clinical studies with an adequate documentation of the EGFR mutational status.

Several novel targeted therapies are currently in clinical development for patients with
advanced NSCLC. The irreversible EGFR TKIs are one class of agents that may have the
potential to prevent and overcome resistance that emerges during treatment with gefitinib and
erlotinib. Results of ongoing phase III studies on this class of compounds in erlotinib-resistant
NSCLC populations are eagerly awaited.
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Figure 1.
Schematic of EGFR TK activation and EGFR kinase domain mutations. (a) Upon binding of
the extracellular ligand, the EGFR receptor dimerizes, leading to the activation of cytoplasmic
TK activity. (b) This exon boundary map shows the location of regions within the EGFR TK
domain wherein mutations activate the kinase activity by a ligand-independent mechanism.
Deletions in exon 19 and the point mutation of L858R are common activating mutations and
these ‘classical’ mutations are associated with sensitivity to gefitinib and erlotinib in patients
with NSCLC. T790M is a secondary point mutation found in tumors that were previously
responsive to these agents, but have developed acquired resistance. Adapted from Kumar et
al., 2008.
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Table 1

Frequency of EGFR mutations in different NSCLC patient subgroups

Total, % Non-east Asian, % East Asian, %

All subgroups 19 10 30

Smokers 11 4 17

Nonsmokers 54 35 60

Adenocarcinoma 42 16 49

Non-adenocarcinoma 3 1 4

Male 16 1 22

Female 46 20 58

Adapted from Jänne and Johnson, 2006.
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Table 3

In vitro inhibitory activities of BIBW 2992, lapatinib, canertinib and gefitinib on the receptor TK activities of
wild-type and mutated EGFR

IC50 (nm)

BIBW 2992 Lapatinib Canertinib Gefitinib

EGFRWT 0.5 3 0.3 3.0

EGFRL858R 0.4 8 0.4 0.8

EGFRL858R/T790M 10.0 >4000 26.0 1013.0

Abbreviations: EGFRWT, wild-type epidermal growth factor receptor; EGFRL858R, epidermal growth factor receptor harboring the L858R

resistance mutation; EGFRL858R/T790M, epidermal growth factor receptor harboring the L858R-activating mutation and the T790 resistance
mutation. Adapted from Li et al., 2008.
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