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Abstract

Cells within tissues can be morphologically indistinguishable yet show molecular expression 

patterns that are remarkably heterogeneous. Here, we describe an approach for comprehensively 

identifying coregulated, heterogeneously expressed genes among cells that otherwise appear 

identical. The technique, called “stochastic profiling”, involves the repeated, random selection of 

very-small cell populations via laser-capture microdissection, followed by a customized single-cell 

amplification procedure and transcriptional profiling. Fluctuations in the resulting gene-expression 

measurements are then analyzed statistically to identify transcripts that are heterogeneously co-

expressed. We stochastically profiled matrix-attached human epithelial cells in a three-

dimensional culture model of mammary-acinar morphogenesis. Of 4,557 transcripts, we identified 

547 genes with strong cell-to-cell expression differences. Clustering of this heterogeneous subset 

revealed several molecular “programs” implicated in protein biosynthesis, oxidative-stress 

responses, and nuclear factor-κB signaling, which were independently confirmed by RNA 

fluorescence in situ hybridization. Thus, stochastic profiling can reveal single-cell heterogeneities 

without measuring individual cells explicitly.

INTRODUCTION

Cell-to-cell variations in gene and protein expression play an important role in the 

development and function of many tissues1, 2. Fluctuations at the single-cell level can be 
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masked or completely misrepresented when analyzed at the population level3. This makes 

heterogeneities problematic for interpreting bulk measurements from large numbers of cells, 

such as from tumors or developing organs. Yet, such non-uniformities often uncover 

interesting molecular patterns that can reveal important mechanisms for the regulation of 

cell fate4, 5. Identifying heterogeneities is thus key for gaining a deeper understanding of 

tissue physiology.

The challenge in discovering heterogeneities is that cells of the same type may appear 

phenotypically indistinguishable. Heterogeneities at the molecular level can be uncovered by 

immunochemistry, but the markers must be selected a priori and analyzed in small groups. 

While more parameters can be screened simultaneously with flow cytometry3, this involves 

substantial tissue processing to isolate single cells from solid tissues. Extraction of 

individual cells is possible in situ using laser-capture microdissection6, but aside from large 

cells such as neurons and cardiomyocytes7, 8, there is usually not enough biological material 

to measure the expression of all but the most-abundant transcripts.

Last and most importantly, there is the conceptual hurdle of interpreting measurements from 

a single cell. Regulated cell-to-cell heterogeneities will appear as fluctuations in one-cell 

measurements. However, fluctuations will also be observed because of random biological 

variation, which may be functionally inconsequential9, and measurement error, which can be 

enormous10. The inability to separate contributions from these different sources has 

precluded using single-cell approaches to study the coordination of pathways that are 

heterogeneously activated.

We sought to address these challenges by developing an approach, called stochastic 

profiling, which is based on small-population averaging of randomly chosen cells. As a first 

application, we examined single-cell gene expression in a three-dimensional culture model 

of mammary acinar morphogenesis11. The sensitivity, precision, and quantitative accuracy 

of stochastic profiling make it an attractive technique for studying endogenous 

transcriptional heterogeneities in development and cancer.

RESULTS

To reveal the dichotomous expression of a gene (“Gene B”), which is expressed at high 

levels in one population and at low levels in another (Fig. 1a), we repeatedly select very-

small cell populations at random and measure the average gene expression from each 

random sampling (Step 1). Then, we construct a reference histogram from homogeneously 

expressed genes (“Gene A”), which estimates the sampling fluctuations when no dichotomy 

is present (Step 2). Last, we compare the estimated reference distribution to fluctuations of 

candidate genes measured from the same stochastic samplings (Step 3). The Gene-B 

distribution will deviate from the Gene-A reference because of differences in the proportion 

of subpopulations that were collected at each sampling (Fig. 1a). In addition, dichotomously 

expressed genes that are coregulated at the single-cell level (“Gene B” and “Gene C”) will 

have deviations that correlate across repeated samplings. Therefore, we can in principle 

reveal heterogeneous expression programs composed of multiple genes by clustering 

patterns of sampling fluctuations.
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Theoretical validation of stochastic sampling

We used computer simulations to help define the required sampling conditions and 

characterize the expression heterogeneities that stochastic sampling detects. Cells transcribe 

genes in exponential “bursts”12, which give rise to log-normal distributions of mRNA 

species in the population13 (see below). Single-cell gene-expression levels were thus 

modeled as log-normal probability distributions with coefficients of variation (CVs) 

proportional to the log-standard deviation (Fig. 1b). Together, the model described the 

reference and dichotomous distributions with four parameters: the CV of the reference 

distribution (CVa), the CV of the distributions in the gene that is dichotomously expressed 

(CVb), the magnitude of the expression difference between the dichotomous subpopulations 

(D), and the fraction of cells with high expression for the gene that is dichotomously 

expressed (F) (Fig. 1b).

After selecting values for CVa, CVb, D, and F, we simulated the experiments and centered 

the sampling fluctuations of each gene on their respective log mean (Fig. 1a). Next, the 

sampling fluctuations of the dichotomously expressed gene were compared against a log-

normal distribution using the log-standard deviation calculated from the reference 

distribution. The discrepancy between the log-normal reference and the sampling 

fluctuations of the dichotomously expressed gene was then assessed for statistical 

significance by a χ2 goodness-of-fit test (see Online Methods).

As a control for the modeled stochastic samplings, we simulated a parallel set of control 

samplings, where all the parameters were the same but F was set to zero (i.e., no 

dichotomy). These control samplings identified false positives, which were scored as 

different from the reference simply because the model CVs were poorly matched (CVa << 

CVb; Fig. 1c,d). When the reference and dichotomy CVs were poorly matched in the 

opposite direction (CVa >> CVb), there was the danger of false negatives, because a 

dichotomous sampling distribution could be misinterpreted as a log-normal distribution with 

a larger CV (Fig. 1c,e). Effective stochastic sampling occurred when the reference and 

dichotomy CVs were roughly comparable, so that significant deviations from the reference 

were observed only when F ≠ 0 (P < 0.05, Fig. 1c,f).

We first sought to determine the maximum number of cells that, when averaged, could 

confidently identify heterogeneities across a wide range of CVb. Direct estimates of 

transcriptional noise are not available, but studies in yeast have found that protein levels can 

fluctuate with CVs ranging from ~12-38% (Ref. 14). We independently varied CVa and CVb 

over this range for different numbers of cells sampled and then identified the CV 

combinations that gave false positives, false negatives, and effective stochastic sampling. 

When CVa was very low (< 20%), we found that there was a substantial likelihood of false 

positives, which was independent of the number of cells sampled (Fig. 1g). Conversely, 

when CVa was very high (> 30%), there was a danger of false negatives, which increased 

dramatically when more than 10 cells were sampled (Fig. 1g). With 10-cell samplings and 

an intermediate reference distribution (CVb ~25–30%), we were able to achieve effective 

stochastic sampling across nearly all CVb values (Fig. 1g). Furthermore, using these 

parameters, stochastic sampling could successfully identify dichotomies as small as 5–6 fold 
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(Fig. 1h), with relatively little dependence on the dichotomy fraction above ~5% (Fig. 1i). 

When F < 0.05, the dichotomy is too rare to detect reliably in 10-cell samplings, and we 

observed a sharp increase in false negatives (Supplementary Fig. 1). We conclude that 

stochastic sampling of up to 10 cells is sufficient to detect many dichotomies when given a 

reference for the “average” non-dichotomous sampling fluctuations.

Optimization of small-cell PCR for stochastic profiling

Based on the simulation-derived estimates, we then developed a poly(A)-PCR amplification 

procedure for accurately profiling gene expression in 10 microdissected cells. Poly(A) PCR 

can amplify large quantities of polyadenylated transcripts from minute samples15. This 

technique has previously been modified to improve either single-cell representation of genes 

or detection sensitivity for low-abundance transcripts10, 16. To optimize the technique for 

stochastic sampling, we designed a “small-cell” poly(A) PCR that maximizes both the 

reproducibility between measurement replicates and the quantitative accuracy of genes 

measured from 10 cells (Supplementary Fig. 2 and Online Methods). Accuracy and 

precision were validated by serially diluting microdissected cells before the amplification 

and then quantifying high- to low-abundance genes post-amplification by real-time 

quantitative PCR (RT-qPCR). The dilutions are critical to ensure that quantitative 

differences in transcript levels are not artificially increased or decreased during the 

procedure. To date, this quantitative accuracy has only been shown when amplification is 

omitted entirely17, which substantially limits the number of transcripts that can analyzed 

from the same sample.

For a large panel of genes with varying abundances, we found that small-cell poly(A) PCR 

was highly accurate and reproducible for 3–100 cells (Fig. 2a–h and Supplementary Fig. 3). 

The median amplification efficiency (E) across all genes measured was 99.5%, and for 

individual genes, the efficiency was comparable to that of the RT-qPCR primers themselves 

(Ep). This suggested that the poly(A)-PCR procedure was not skewing changes in the 

abundance of individual genes. Overall 10-cell reproducibility as measured by RT-qPCR 

was 0.36 cycle thresholds (CT), which corresponds to an amplification precision of ~28% if 

E = 100% (20.36 – 1 = 28%, Fig. 2i). Importantly, we found for many genes that the 

accuracy and precision of poly(A) PCR decreased substantially when single-cell equivalents 

of RNA were used (Fig. 2a–h and Supplementary Fig. 3). Several genes were not 

reproducibly detectable (e.g., Fig. 2e–h), whereas others deviated from the log-linear 

standard predicted from the 3–100-cell dilution series (e.g., Fig. 2a,c,d). These results were 

obtained from microdissected breast-epithelial cells with an average diameter of ~10 μm. 

Therefore, many more cell types should be quantifiable using a small-cell (rather than 

single-cell) approach together with stochastic profiling.

Adapting small-cell PCR to oligonucleotide microarrays

A key step toward accurate 10-cell quantification was limiting the number of amplification 

cycles in small-cell poly(A) PCR to no more than 30 (Supplementary Fig. 2). With 10 

microdissected cells, a 30-cycle amplification typically yielded ~10 ng of unlabeled cDNA, 

which was insufficient for oligonucleotide microarrays. We therefore reamplified a fraction 

of the poly(A) cDNA and added aminoallyl-dUTP for subsequent fluorophore labeling, 
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yielding ~1.5 μg of labeled cDNA per 10-cell sample. The conditions for reamplification 

differed from small-cell poly(A) PCR (see Online Methods) and were carefully monitored 

with real-time pilot experiments to identify the maximum number of cycles that kept all 

samples in the exponential phase of amplification. We found that doing so maintained the 

quantitative accuracy toward high- and low-abundance transcripts (Supplementary Fig. 4). 

Furthermore, repeat reamplifications using the same starting cDNA pool confirmed that 

reamplification added little measurement error to the final microarray measurements 

(Supplementary Fig. 5). Hybridization of reamplified samples to Illumina HumanRef-8 

microarrays consistently detected 7,000–8,000 transcripts (median detection P < 0.1). This 

result compares favorably with an earlier study from our group18, in which ~8,700 

transcripts were detected by standard profiling approaches using RNA extracted from large 

populations of the cells used here. We conclude that our experimental platform is 

sufficiently accurate and sensitive to quantify much of the transcriptome for stochastic 

profiling.

Stochastic profiling of epithelial acinar morphogenesis

As a proof of principle, we tested the feasibility of stochastic profiling in a three-

dimensional (3D) culture model of mammary-epithelial acinar morphogenesis11. For this 

culture model, individual MCF10A mammary-epithelial cells are seeded in reconstituted 

basement membrane and develop to form proliferation-arrested, hollow acinar structures 

comprised of 50–100 cells when fully mature. Each acinus is clonal and thus isogenic, but 

many signaling and cell-fate dichotomies nonetheless emerge during morphogenesis. For 

example, matrix-attached cells of the outer acinus appear grossly similar but show variable 

expression of phospho-Akt19, phospho-myosin light chain20, and the CDK inhibitor p27 

(Ref. 21). The overall extent of such cell-to-cell heterogeneities and their role in 

morphogenesis has not been defined.

We focused the stochastic profiling on matrix-attached cells in developing 3D cultures, 

because these cells comprise the final acinar structure that resembles the lobular unit of the 

breast in vivo11. Matrix-attached cells are also readily identified in cryosections of 3D 

structures and can be microdissected as single cells with high accuracy (Supplementary Fig. 

6 and Online Methods). We obtained transcriptional profiles for 16 independent 10-cell 

samplings of matrix-attached cells along with 16 measurement controls. The control samples 

consisted of independent amplifications from a common starting pool of 160 microdissected 

cells. These amplification replicates were used to gauge the measurement error associated 

with profiling gene expression from 10 “average” cells.

Our analysis focused on the 4,557 transcripts that were clearly identified in all 32 

microarrays (16 samplings plus 16 controls, P < 0.1). First, we identified the subset of 

transcripts whose sampling CV was significantly higher than the corresponding control CV 

in amplification replicates (see Online Methods). We reasoned that the independent 

samplings of such transcripts would provide a good estimate for normal biological variation 

with only a minor contribution from measurement noise. Many transcripts were eliminated 

from the subset because their independent 10-cell sampling measurements were highly 

reproducible. For example, 1,332 genes had a sampling CV < 20%, meaning that the 
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corresponding control CV would have needed to be < ~10% to be included in the analysis. 

We presume that the majority of these transcripts are homogeneously expressed or show 

heterogeneities too small or infrequent to be detected experimentally.

Next, we clustered the independent measurements of the 1,003 genes in the subset, using 

Euclidean distance as a metric to sort transcripts roughly by sampling CV (Fig. 3a). We 

observed a plateau of low and consistent sampling CVs, followed by an abrupt increase 

where sampling fluctuations seemed to become more irregular and less random. We defined 

the transcripts in the early plateau as the reference-gene set (Fig. 3a) and found that the 

median sampling CV in this set was 19% with an interquartile range of 14–26% 

(Supplementary Fig. 7a). We fed these empirically derived parameters into our earlier model 

and found that stochastic profiling should be effective across the entire interquartile range of 

CVs (Supplementary Fig. 7b). Last, we compared sampling fluctuations of individual 

transcripts against a log-normal reference distribution with CVa = 0.19 at a false-discovery 

rate of 0.05 (Supplementary Fig. 7c). Overall, stochastic profiling identified 547 genes 

whose expression was predicted to be strongly heterogeneous (12% of all transcripts 

consistently detected).

Discovery of heterogeneous single-cell programs

We standardized and reclustered the sampling data for the candidate heterogeneities to 

organize genes by their pattern of sampling fluctuations (Fig. 3b). The analysis identified 

multiple clusters that had strong links to recognized biological processes. The first cluster 

contained many genes involved in protein synthesis, including ribosomal subunits (RPS6, 

RPL38, etc.), initiation-elongation factors (EIF3M, EEF2), and chaperones (SEC61G, 

TBCA). This cluster also contained the basal-progenitor markers, KRT5 (Ref. 22) and an 

ALDH isoform23, and the JUND transcription factor. The second cluster was comprised of 

several transcripts connected with oxidative-stress responses and proliferative suppression, 

such as PRDX4, FAM120A24, SERP1 (Ref. 25), and FOXO126. The third cluster was the 

smallest but contained a large proportion of genes known to be initiators (ILIR1), effectors 

(NFKBIA), or markers (BIRC3, SOD2) of nuclear factor-κB (NF-κB) signaling27. NF-κB 

signaling heterogeneity was also observed posttranslationally by localization of the p65 

subunit of NF-κB and expression of IκBα, an upstream inhibitor of NF-κB (Supplementary 

Fig. 8). Taken together, the correlated sampling fluctuations and shared biological function 

within clusters suggested these were molecular programs that were induced heterogeneously 

in single cells.

We next sought to validate the stochastic-profiling predictions by an independent method. 

We developed an RNA fluorescence in situ hybridization (FISH) procedure for dual tracking 

of gene-expression variation in individual cells (see Online Methods). Our two-color RNA 

FISH protocol was optimized for specificity (Supplementary Figs. 9 and 10) and for 

reliably detecting single-cell coregulatory patterns between selected transcripts (Fig. 4a-c). 

Using RNA FISH, we observed pronounced cell-to-cell expression heterogeneities for 

nearly all transcripts identified by stochastic profiling that were examined (Fig. 4a-c, 

Supplementary Fig. 11, and Supplementary Note 1). Conversely, we observed more-

uniform expression for two genes, GAPDH and HINT1, whose stochastic-sampling 
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fluctuations were not different than the reference distribution (Supplementary Fig. 12). 

Thus, stochastic profiling can separate acute single-cell heterogeneities from transcripts with 

normal expression variability.

In addition, for gene pairs in the same cluster, we found highly concordant patterns of strong 

and weak expression among individual cells (Fig. 4a-c, Supplementary Fig. 11, and 

Supplementary Note 2). Analysis of cell-to-cell fluorescence intensities revealed that 

matrix-attached cells were almost exclusively “double negative” (weakly expressing both 

genes) or “double positive” (strongly expressing both genes) (Fig. 4d). Cells that strongly 

expressed one gene but not the other (“single positive”) were too rare to constitute a 

meaningful subpopulation and were likely filtered out by stochastic profiling (Fig. 4d and 

Supplementary Fig. 1). Together, this indicates that clusters of genes with similar stochastic-

sampling fluctuations are heterogeneously coexpressed with high probability.

As a final validation, we checked whether genes in separate stochastic-profiling clusters 

were distinguishable on the single-cell level by RNA FISH. The observed concordance 

between clusters ranged from no discernable correlation (Fig. 5a-c) to pairs with stronger 

covariation (Fig. 5d-i). Nevertheless, for each gene pairing, we repeatedly identified single-

positive cells at frequencies that should be detected by stochastic profiling (> 9–10%, Figs. 

1i and 5b,e,h). Inclusion of these single-positive cells during stochastic sampling would be 

sufficient to perturb any correlated fluctuations, providing an explanation for the distinct 

clusters shown in Figure 3b. Indeed, using the RNA FISH measurements as the basis for 

simulated stochastic samplings, we estimated probability distributions that largely captured 

the stochastic-profiling measurements (Figs. 3b and 5c,f,i).

DISCUSSION

Transcriptional heterogeneities can emerge from purely stochastic cell-fate decisions1, 2, 28, 

but they can also be instructed by differences in the microenvironment29. Stochastic 

profiling does not make a distinction between these heterogeneities but provides a means for 

identifying them so that the underlying mechanisms can be studied thereafter. The biggest 

advantage of stochastic profiling is its improved accuracy and reproducibility, which 

becomes possible when 10 cells are measured instead of one (Fig. 2). Although 

measurements are not explicitly single cell, the entire procedure requires only a few hundred 

cells, meaning that stochastic profiling should be amenable to most ex vivo tissue specimens 

in the future.

Our first application of stochastic profiling uncovered many genes not previously suspected 

to show heterogeneous regulation during morphogenesis. MCF10A cells have a basal-

progenitor expression profile30, suggesting that some heterogeneities could be due to partial 

differentiation of single cells in 3D. The existence of a heterogeneous stress-response 

program is particularly intriguing, because it raises the possibility that individual cells might 

occupy stressful niches caused by local cell-cell interactions and basement-membrane 

composition.
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Another interesting question raised by the study here is whether the single-cell programs 

identified by stochastic profiling are coordinated during morphogenesis. For the gene 

clusters imaged simultaneously by RNA FISH, we found that the single-positive populations 

were not equally populated. For example, high JUND expression could be found in cells 

with low IL1R1 or FOXO1 expression, but cells with the opposite pattern were extremely 

rare (Fig. 5e,h). Future work will focus in greater depth on these dependencies and their 

possible role during morphogenesis.

The extent to which heterogeneously activated pathways in vivo might obscure phenotypes 

or create patterns in tissues is only beginning to be studied1. The bottleneck is not in 

studying the role of heterogeneities, but rather in identifying them in the first place. 

Stochastic profiling provides a valuable tool for analyzing the coordination of such 

pathways quantitatively and systematically.

ONLINE METHODS

Monte Carlo simulations

Stochastic sampling simulations (Fig. 1) were performed in MATLAB (Mathworks) with 

the statistics toolbox. For each simulation, the model assumed a binomial distribution for the 

cellular dichotomy and log-normal distribution of measured transcripts13, 31. CVa and CVb 

were varied between 12–38% to approximate biologically plausible values14 and then re-run 

with empirically derived values (Supplementary Fig. 7a,b). The distribution of 48 

population-averaged samplings was log-mean centered and compared to a log-normal 

distribution with a standard deviation estimated from 48 reference samplings. The χ2 

goodness of fit between the dichotomous and reference distributions was done using the 

chi2gof function with 10 bins. The χ2 test directly evaluates the relative differences 

between observed and expected values on the sampling histogram and is a robust, 

conservative test for this application32. Bins were pooled if the observed or expected value 

in a bin was less than five. Each CVa, CVb, D, and F parameter set was run 50 times to 

measure the median P values and the associated nonparametric confidence intervals. 

Stochastic sampling was deemed effective when the median P value for F ≠ 0 was less than 

0.05 and the median P value for F = 0 was greater than 0.05. The source code for the 

simulations is available in the Supplementary Software.

For the simulation of probability density functions (Fig. 5c,f,i), the single-cell FISH 

intensities from Fig. 5b,e,h were randomly combined as 10-cell averages for each gene pair 

for 5,000 iterations. These bootstrapped estimates were standardized and then compiled as 

two-dimensional histograms by using the hist2 function with 20 bins.

Cell lines

The MCF10A-5E clone was isolated by limiting dilution of the parental MCF10A line 

(ATCC) and selected for its homogeneous behavior in 3D. MCF10A-5E cells were 

maintained as described previously for MCF10A cells33.
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Frozen sectioning of 3D cultures

To allow embedding of 3D cultures, a plastic coverslip was cut to size and placed at the base 

of an 8-well chamber slide (BD Biosciences) before starting. Coverslipped chamber slides 

were then coated with Matrigel (BD Biosciences), and 3D culture of MCF10A-5E cells was 

performed as described previously33. For fresh frozen sections (used for laser capture 

microdissection), coverslips were washed with PBS and then embedded directly in NEG 50 

on a dry ice-isopentane bath. For fixed frozen sections (used for RNA FISH), coverslips 

were washed in PBS and fixed in 3.7% paraformaldehyde for 15 min. After three 5 min 

washes in PBS, samples were cryopreserved in 15% sucrose for 15 min, 30% sucrose for 15 

min, and then embedded in NEG 50 as described above. Sectioning was performed at −24°C 

on a cryostat (Leica). Embedded specimens and cryosections were stored at −80°C until 

further use.

Laser capture microdissection

8 μm sections were cut on plain glass slides and kept at −24°C during sectioning and −80°C 

during storage. After removing from −80°C, slides were fixed immediately in 75% ethanol 

for 30 sec, followed by distilled water for 30 sec. Fixed slides were stained for 30 sec with 

nuclear fast red (Vector Laboratories) containing 1 U ml−1 RNAsin Plus (Promega), then 

washed twice in distilled water for 15 sec. Stained slides were dehydrated with an ethanol 

series (30 sec each of 70%, 95%, and 100% ethanol) and cleared with xylene for 2 min. 

After air drying for 5–10 min, slides were stored in a dessicator and used immediately.

Before microdissection, slides were cleaned with a PrepStrip (Arcturus) to remove loosely 

adherent material. Microdissection was performed on a Pixcell II instrument (Arcturus) 

using Capsure HS LCM caps (Arcturus). 750 μs laser shots were used at 50–65 mW power 

to achieve single-cell resolution (Supplementary Fig. 6). For this study, matrix-attached cells 

were sampled at 3–4 random positions across ~3 acini to focus on matrix-dependent (rather 

than acinus-dependent) heterogeneities. After microdissection, LCM caps were cleaned with 

an adhesive note to remove biological material adjacent to the dissected cells.

Small-cell quantitative mRNA amplification

Samples were eluted from the microdissection caps by adding 4 μl digestion buffer (1.25× 

MMLV RT buffer [Invitrogen], 100 μM dNTPs [Roche], 0.08 OD ml−1 oligo(dT)24, and 

250 μg ml−1 proteinase K [Sigma]) and incubating at 42°C for 1 hr. Digested samples were 

spun into PCR tubes and quenched with 1 μl of digestion stop buffer (1.5 U ml−1 Prime 

RNAse inhibitor [Eppendorf], 1.5 U ml−1 RNAguard [Amersham], and 5 mM freshly 

prepared PMSF). The quenched samples were then processed by using poly(A) PCR15 that 

was heavily modified to allow quantitative amplification of high- and low-abundance 

transcripts.

4.5 μl of the quenched samples were transferred into thin-walled 0.2-ml PCR tubes, and 0.5 

μl of Superscript III (Invitrogen) was added. The first-strand synthesis reaction was 

incubated at 50°C for 15 min and then heat-inactivated at 70°C for 15 min. The samples 

were placed on ice and spun for 2 min at 14,000 rpm on a benchtop centrifuge at 4°C. Next, 

1 μl of RNAse H solution (2.5 U ml−1 RNAse H [USB Corporation],12.5 mM MgCl2) was 
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added, and the reaction was incubated at 37°C for 15 min. After RNAse H treatment, the 

reaction was poly(A) tailed with 3.5 μl of 2.6× tailing solution (80 U terminal transferase 

[Roche], 2.6× terminal transferase buffer [Invitrogen], 1.9 mM dATP) for 15 min at 37°C 

and then heat-inactivated at 65°C for 10 min. The samples were placed on ice and spun for 2 

min at 14,000 rpm on a benchtop centrifuge at 4°C. To each sample, 90 μl of ThermoPol 

PCR buffer was added to a final concentration of 1× ThermoPol buffer (New England 

Biolabs), 2.5 mM MgSO4, 1 mM dNTPs (Roche), 100 μg ml−1 BSA (Roche), 10 U 

AmpliTaq (Applied Biosystems), and 5 μg AL1 primer15. Each reaction was split into three 

thin-walled 0.2-ml PCR tubes and amplified according to the following thermal cycling 

scheme: four cycles of 1 min at 94°C (denaturation), 2 min at 32°C (annealing), and 6 min 

plus 10 sec per cycle at 72°C (extension); 21 cycles of 1 min at 94°C (denaturation), 2 min 

at 42°C (annealing), and 6 min 40 sec plus 10 sec per cycle at 72°C (extension). The 

reaction was cooled, placed on ice, and the three tubes from each sample were pooled and 

amplified according to the following thermal cycling scheme: five cycles of 1 min at 94°C 

(denaturation), 2 min at 42°C (annealing), and 6 min at 72°C (extension). Further thermal 

cycling led to overamplification and loss of quantitative accuracy (K.A.J. and J.S.B., 

unpublished observations). Samples were stored at −20°C until use.

Real-time quantitative PCR (RT-qPCR)

RT-qPCR of amplified material from stochastic sampling was measured as described 

previously34, except that tenfold less of each amplified sample was used as the starting 

cDNA template. Primer sequences and concentrations are shown in Supplementary Table 1.

Small-cell reamplification and microarray hybridization

Amplified small-cell samples were reamplified and aminoallyl labeled in a 100 μl reaction 

containing 1× High-Fidelity buffer (Roche), 3.5 mM MgCl2, 200 μM dATP, dCTP, and 

dGTP, 40 μM dTTP (Roche), 160 μM aminoallyl-dUTP (Ambion), 100 μg ml−1 BSA 

(Roche), 5 μg AL1 primer, and 1 μl amplified cDNA. Each reaction was amplified according 

to the following thermal cycling scheme: 1 min at 94°C (denaturation), 2 min at 42°C 

(annealing), and 3 min at 72°C (extension). In pilot experiments, 20 μl of this reaction for 

each stochastic sampling was monitored in the presence of 0.25× SYBR Green on a 

LightCycler II real-time PCR instrument (Roche). The number of amplification cycles (~20) 

was selected to ensure that all samples remained in the exponential phase during 

amplification35. Samples were purified on a PureLink column (Invitrogen), ethanol 

precipitated, and labeled with Alexa 555 amine-reactive dye (Invitrogen) according to the 

manufacturer's recommendation. Labeling efficiency was ~2 dye molecules per 100 bases.

For microarray hybridization, 1 μg Alexa 555-labeled cDNA (total volume: 5 μl) was mixed 

with 10 μl GEX hybridization buffer (Illumina). Samples were denatured at 94°C for 4 min 

and then added directly to HumanRef-8 Expression BeadChips (Illumina) prewarmed at 

58°C. Slides were incubated at 58°C for 20 hr and washed according to the manufacturer's 

recommendations. After drying, slides were scanned on a BeadArray reader (Illumina) with 

a scan setting of “Direct hybridization 1”. Samples were normalized to their mean overall 

fluorescence intensity relative to the overall dataset and then to the median fluorescence 

intensity of all transcripts detected (P < 0.1) on each sample for subsequent analysis.
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Riboprobe synthesis

A 175–225 bp fragment of each gene was cloned by PCR into pcDNA3 (Invitrogen) from an 

MCF10A cDNA library generated by first-strand synthesis with Superscript III (Invitrogen) 

and an oligo(dT)24 primer. Plasmids were linearized with the appropriate restriction 

enzymes and purified by phenol-chloroform extraction and ethanol precipitation. 

Riboprobes were synthesized from the linearized template by using the MAXIscript Sp6/T7 

kit (Ambion) as recommended, except that in vitro transcriptions were incubated for 2 hr 

and Sp6 in vitro transcriptions were performed at 40°C to increase yield. Digoxigenin 

(DIG)- and dinitrophenyl (DNP)-labeled riboprobes were synthesized with 35% DIG–UTP 

(Roche) or DNP–UTP (Perkin Elmer) and 65% unlabeled UTP. After DNAse digestion, 

riboprobes were ethanol precipitated, resuspended in RNAse-free water to 0.2 μg ml−1, and 

stored at −80°C.

Multicolor RNA fluorescence in situ hybridization (RNA FISH)

5 μm frozen sections of day 10 structures were cut on Superfrost Plus slides (Fisher), air 

dried, and stored at −80°C until further use. Slides were thawed at room temperature until 

completely dry, treated with 0.2 N HCl for 10 min, and washed in PBS for 5 min. Slides 

were then postfixed in 3.7% paraformaldehyde for 15 min, washed 2 × 10 min in PBS, and 

once in freshly prepared 0.1 M triethanolamine (pH 8.0) for 10 min. Samples were next 

acetylated with 0.25% acetic anhydride in freshly prepared 0.1 M triethanolamine (pH 8.0) 

for 5 min and washed in 2× SSC for 10 min. Slides were dehydrated with an ethanol series 

(2 min each of 70%, 95%, and 100% ethanol), and sections were covered with hybridization 

solution (1 mg ml−1 yeast tRNA, 10% dextran sulfate in 2× SSC, 50% formamide) 

containing 50–500 ng ml−1 of each riboprobe. Sections were covered with Parafilm, sealed 

with rubber cement, and incubated at 42°C in a humidified chamber for 14–16 hr.

After hybridization, slides were soaked in 2× SSC at 37°C for 5 min, the Parafilm was 

removed, and slides were washed in 2× SSC, 50% formamide for 30 min at 55°C, followed 

by 0.1× SSC for 30 min at 55°C. Slides were equilibrated in PBS for 10 min and then 

blocked for 1 hr at room temperature with 1× Western Blocking Reagent (Roche) in PBS + 

0.3% Tween-20. After blocking, slides were incubated 1 hr at room temperature with 1× 

Western Blocking Reagent (Roche) in PBS + 0.3% Tween-20 containing anti-digoxin 

(1:500, Jackson ImmunoResearch) and anti-DNP (1:1,000, Invitrogen). Slides were washed 

3 × 5 min in PBS and incubated for 1 hr at room temperature with 1× Western Blocking 

Reagent (Roche) in PBS + 0.3% Tween-20 containing Alexa 488-conjugated goat anti-

rabbit (1:200, Invitrogen) and Alexa 555-conjugated goat anti-mouse (1:200, Invitrogen). 

Slides were washed 3 × 5 min in PBS and cell membranes were labeled with 20 μg ml−1 

Alexa 350-conjugated wheat-germ agglutinin for 5 min at room temperature. After two 5 

min washes in PBS, autofluorescence was quenched with 10 mM CuSO4 in 50 mM NH4Ac 

(pH 5.0) for 10 min36. Slides were washed with PBS for 5 min and mounted with 0.5% n-

propyl gallate in PBS + 90% glycerol37.

Immunofluorescence

5 μm sections of day 10 structures were cut on Superfrost Plus slides (Fisher), air dried, and 

stored at −80°C until further use. Slides were thawed at room temperature until completely 
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dry, hydrated 3 × 5 min in PBS, and then blocked for 1 hr at room temperature with 1× 

Western Blocking Reagent (Roche) in PBS + 0.3% Tween-20. After blocking, slides were 

incubated overnight at room temperature with 1× Western Blocking Reagent (Roche) in 

PBS + 0.3% Tween-20 containing anti-p65 (A) (1:100, Santa Cruz) or anti-IκBα (C-21) 

(1:500, Santa Cruz). Slides were washed 3 × 5 min in PBS and incubated for 1 hr at room 

temperature with 1× Western Blocking Reagent (Roche) in PBS + 0.3% Tween-20 

containing Alexa 555-conjugated goat anti-rabbit (1:200, Invitrogen). Slides were washed 3 

× 5 min in PBS and counterstained with 0.5 μg ml−1 DAPI (Sigma) for 5 min at room 

temperature. After two 5 min washes in PBS, autofluorescence was quenched with 10 mM 

CuSO4 in 50 mM NH4Ac (pH 5.0) for 10 min36. Slides were washed with PBS for 5 min 

and mounted with 0.5% n-propyl gallate in PBS + 90% glycerol37.

Microscopy

Frozen sections and coverslips were imaged with a 40× 1.3 NA oil objective on an BX51 

upright fluorescence microscope (Olympus) with the following filter sets: ET-DAPI 

(excitation: 325–375 nm, dichroic: 400 nm, emission: 435–485 nm), ET-FITC (excitation: 

450–490 nm, dichroic: 495 nm, emission: 500–550 nm), ET-CY3 (excitation: 520–570 nm, 

dichroic: 565 nm, emission: 570–640 nm), and ET-CY5 (excitation: 590–650 nm, dichroic: 

660 nm, emission: 665–735 nm). Images were captured with an Orca R2 CCD camera 

(Hamamatsu) at 2×2 binning and exposure times that filled 90% of the camera bit depth, 

with the exception of the RNA FISH sense controls (Supplementary Figs. 9 and 10) where 

the exposure time was matched to the antisense image. Displayed images were rainbow 

pseudocolored with a linear lookup table that covered the full range of the data for each 

fluorescence channel.

Image segmentation and quantification

Single cells from RNA FISH images were segmented by hand based on wheat-germ 

agglutinin staining (DAPI channel), and traced image segments were then applied to the 

DIG- and DNP-labeled riboprobe stainings (FITC and Cy3 channels). Median fluorescence 

intensities per cell for each riboprobe were calculated, and individual images were 

normalized to the maximum observed intensity in each channel for comparison across 

multiple images.

Statistical analysis

Statistical analyses of RT-qPCR measurements were performed on the cycle thresholds of 

the measured genes. This is equivalent to a log2 transformation, which allows log-normal 

distributions to be treated as normal distributions13, 31. Estimation of the coefficient of 

variation for amplification replicates (Fig. 2i) was done in Igor Pro (WaveMetrics) by 

nonlinear least-squares curve fitting of the mean-centered cycle thresholds to a normal 

distribution with a mean of zero. Confidence intervals on CVs were calculated with 

McKay's transformation38, and non-overlapping 90% confidence intervals were considered 

significantly different. χ2 goodness-of-fit tests for sampling fluctuations were performed in 

MATLAB with the chi2gof function, a mean of zero, and a standard deviation equal to the 
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reference distribution (false-discovery rate = 0.05). Nonparametric confidence intervals for 

the RNA FISH subpopulations were based on a binomial distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Small-cell profiling by stochastic sampling can distinguish transcriptional 
heterogeneities from normal biological variation
(a) The statistical and empirical steps of stochastic sampling, as described in the main text. 

The distributions shown were based on 48 simulated samplings with the following model 

parameters: CVa = 25%, CVb = 25%, D = 8, F = 0.2 (as defined in the main text). (b) 

Theoretical population distributions of a constitutively expressed gene (Gene A) and a 

dichotomy with two subpopulations (Gene B). (c) Identifying false positives (FP, brown), 

false negatives (FN, blue), and effective stochastic sampling (SS, green) through Monte 

Carlo simulations. Stochastic-sampling experiments were simulated as described in the 

Online Methods with the indicated parameters and D = 8. Data are shown as the median p 

value for the χ2 goodness of fit between the test and reference distributions ± 90% 

nonparametric confidence intervals from 50 simulations of 48 samplings. (d-f) Examples of 

false positives (brown), false negatives (green), and effective stochastic sampling (blue) for 

D = 8 and CVb = 0.21. (g) Effective stochastic sampling with up to 10 averaged cells. Note 

that when 10 cells are averaged and CVa = 25–30% (yellow box), stochastic sampling is 

effective for all values of CVb. (h) Effective stochastic sampling for dichotomies with 

expression differences greater than fivefold. (i) Stochastic sampling is not strongly 

dependent on the relative proportion of subpopulations in a dichotomy.
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Figure 2. Quantitative and reproducible small-cell amplification of high- to low-abundance 
transcripts from 3–100 cells
(a–h) The RT-qPCR cycle threshold for each gene is plotted as a function of starting cellular 

material and is shown as the median ± range of three replicate small-cell amplifications. 

Amplification efficiencies (E) based on a log-linear fit of the 3–100-cell dilutions (red line) 

are listed along with primer efficiencies (Ep) calculated by serially diluting the template 

before RT-qPCR. Genes are ordered a through h in the order of increasing median cycle 

threshold from the 10-cell replicates, which was used as an approximation of relative 

abundance (lower cycle thresholds suggest increased relative abundance). Note that the one-

cell amplifications (gray) of higher-abundance transcripts (a-d) often deviate from the log-

linear fit, and the one-cell amplification of lower-abundance transcripts (e-h) are frequently 

not detectable (yellow, ND). (i) Reproducible small-cell amplification of 10 cells. The cycle 

thresholds from 10-cell amplification replicates of all genes were mean centered, grouped, 

and fit to a normal distribution. The standard deviation (σ) of the mean-centered cycle 

thresholds (CT) was 0.36, corresponding to a coefficient of variation of 28%, assuming that 

amplicons double after each cycle (i.e., 100% efficiency, 20.36 – 1 = 0.28).
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Figure 3. Stochastic profiling of matrix-attached cells at day 10 of MCF10A morphogenesis
(a) Hierarchical clustering of unscaled sampling fluctuations for transcripts with measurable 

biological variation. Genes with sampling variations greater than measurement error were 

clutered using a Euclidean distance metric and average linkage. The genes with consistent 

CV values (left) were used as the reference subset for calculating an appropriate reference 

distribution used to test for heterogeneous expression. (b) Hierarchical clustering of scaled 

sampling fluctuations for transcripts predicted to be heterogeneously expressed by stochastic 

profiling. Candidate heterogeneities were scaled to unit variance and clustered using a 

Euclidean distance metric and Ward's linkage. Selected clusters were examined for enriched 

biological functions. Genes consistent with the assigned functions are highlighted in green.
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Figure 4. Stochastic profiling identifies clusters of heterogeneously coexpressed transcripts
Two-color RNA FISH images were collected at day 10 of MCF10A morphogenesis for (a) 

JUND and KRT5 in the protein-synthesis cluster, (b) FOXO1 and PRDX4 in the stress-

response cluster, and (c) IL1R1 and BIRC3 in the NF-κB cluster. Images are pseudocolored 

to highlight quantitative differences in fluorescence intensity, and single cells showing 

strong coexpression are highlighted with arrows (high expression) or flat markers (low 

expression). Two-color images for 3–4 additional gene pairs within each cluster are shown 

in Supplementary Figure 11. (d) BIRC3–IL1R1 images were segmented to quantify average 

fluorescence intensities in single cells as described in the Online Methods. Data are shown 

from cells in four independent acini after normalization to the maximum observed cellular 

fluorescence signal in each image. Gates were defined as the 25th percentile centered on the 

median fluorescence intensity (black lines) for each gene. Observations that were within the 

range of the gates were scored as neither positive nor negative (gray). Single positive cells 

(red) are shown as the percentage of the overall cell population with 90% confidence 

intervals in parentheses. For a-c, scale bar is 20 μm.
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Figure 5. Stochastic profiling distinguishes heterogeneous expression patterns that are not 
exclusively coexpressed
Two-color RNA FISH images were collected at day 10 of MCF10A morphogenesis and 

compared to the stochastic-profiling data for (a-c) FOXO1 and IL1R1, (d-f) IL1R1 and 

JUND, and (g-i) FOXO1 and JUND. (a,d,g) Representative pseudocolored images, 

containing single-positive cells highlighted with red arrows (high expression) or flat markers 

(low expression) Scale bar is 20 μm. (b,e,h) Fluorescence intensities are shown from cells in 

four independent acini after normalization to the maximum observed cellular fluorescence 

signal in each image. Gates were defined as the 25th percentile centered on the median 

fluorescence intensity (black lines) for each gene. Observations that were within the range of 

the gates were scored as neither positive nor negative (gray). The percentages of single-

positive cells (red) in the overall cell population are shown with 90% confidence intervals in 

parentheses. (c,f,i,) RNA FISH distributions of b,e,h were resampled as 10-cell averages, 

standardized, and the resulting probability density function (pdf) was compared to the 

standardized sampling fluctuations from stochastic profiling (black circles) shown in Figure 

3b.
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